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SUBJECTIVITY WORD SENSE DISAMBIGUATION:

A TOOL FOR SENSE-AWARE SUBJECTIVITY ANALYSIS

Cem Akkaya, PhD

University of Pittsburgh, 2013

Subjectivity lexicons have been invaluable resources in subjectivity analysis and their creation

has been an important topic in subjectivity analysis. Many systems rely on these lexicons.

For any subjectivity analysis system, which relies on a subjectivity lexicon, subjectivity sense

ambiguity is a serious problem. Such systems will be misled by the presence of subjectivity

clues used with objective senses called false hits.

We believe that any type of subjectivity analysis system relying on lexicons will benefit

from a sense-aware approach. We think sense-aware subjectivity analysis has been neglected

mostly because of the concerns related to word sense disambiguation (WSD), the problem

of automatically determining which sense of a word is activated by the use of the word in

a particular context according to a sense-inventory. Although WSD is the perfect tool for

sense-aware classification, trust in traditional fine-grained WSD as an enabling technology

is not high due to previous mostly unsuccessful results.

In this thesis, we investigate feasible and practical methods to avoid these false hits via

sense-aware analysis. We define a new coarse-grained WSD task capturing the right semantic

granularity specific to subjectivity analysis.
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1.0 INTRODUCTION

Subjectivity Analysis [Wiebe et al., 1999, Wiebe et al., 2004] is the automatic extraction of

linguistic expressions of private states in text. A private state is defined by [Quirk et al.,

1985] as a state that is not open to objective observation or verification. They are mental and

emotional states such as opinions, beliefs, sentiments, emotions, goals, evaluations, stances,

and speculations.

Subjectivity analysis is an active area of research in Natural Language Processing (NLP).

It is largely motivated by the need to automatically analyse opinions and emotions in text

to support NLP applications. The advance of the World Wide Web and Social Media, which

made vast amount of opinionated user content available, is one of the driving forces behind

this research field.

Many approaches to subjectivity analysis rely on lexicons of words that may be used to

express subjectivity. We call these lexicon entries subjectivity clues. Examples of such clues

from an established subjectivity lexicon [Wiebe et al., 2005b,Wilson, 2007] are the following

(in bold):

(1.1) He is a disease to every team he has gone to.

(1.2) Converting to SMF is a headache.

(1.3) The concert left me cold.

(1.4) That guy is such a pain.
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Knowing the subjectivity and the semantic orientation (i.e. polarity) of these clues

would help a system recognize the negative sentiments in these sentences. Thus, subjectivity

analysis systems typically look for the presence of these clues in text. They may rely only

on this information, or they may combine it with additional information (e.g. discourse

relations) as well.

1.1 MOTIVATION FOR SENSE-AWARE SUBJECTIVITY ANALYSIS

Subjectivity lexicons have been invaluable resources in subjectivity analysis and their cre-

ation has been an important topic in subjectivity analysis [Hatzivassiloglou and McKeown,

1997, Turney, 2002a, Gamon and Aue, 2005, Esuli and Sebastiani, 2006a]. However, even

manually-developed subjectivity lexicons have significant degrees of subjectivity sense am-

biguity. This means many entries in the lexicon have both subjective and objective senses.

False hits – subjectivity clues used with objective senses – are a significant source of error

in subjectivity analysis. A study on the MPQA opinion-annotated corpus [Akkaya et al.,

2009] shows that 42.9% of the clue instances in the MPQA Corpus are false hits. This

demonstrates how serious the ambiguity is. For example, even though the following sentence

contains all of the negative keywords from the examples above, it is nevertheless objective,

as the keywords are all used with objective senses:

(1.5) Early symptoms of the disease include severe headaches, red eyes, fevers and cold

chills, body pain, and vomiting.

A subjectivity analysis system relying on a subjectivity lexicon will be misled by the

presence of such false hits. A possible solution to this problem is creating subjectivity lexicons

listing word senses instead of simple keywords and doing sense-aware subjectivity analysis,
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where clue instances in text are disambiguated for their senses to avoid false hits. There

have been recent efforts to create subjectivity lexicons listing word senses [Andreevskaia and

Bergler, 2006, Wiebe and Mihalcea, 2006, Su and Markert, 2009]. Primarily, subjectivity

lexicons have only been applied as conventional subjectivity lexicons by aggregating sense

level information to the word level. We believe that any type of subjectivity analysis system

relying on lexicons will benefit from a sense-aware approach.

We think sense-aware subjectivity analysis has been neglected mostly because of the

concerns related to Word Sense Disambiguation (WSD), the problem of automatically de-

termining which sense of a word is activated by the use of the word in a particular context

according to a sense-inventory. Although WSD is the perfect tool for sense-aware classi-

fication, trust in traditional fine-grained WSD as an enabling technology is not high due

to previous mostly unsuccessful results in applications such as Information Retrieval and

Document Classification.

1.2 RESEARCH SUMMARY

There are three major obstacles for utilizing sense information in subjectivity analysis. First

of all, the sense inventories utilized in WSD are very fine-grained. Even the best performing

supervised WSD systems are not accurate. That is not surprising considering that even for

trained humans it is hard to distinguish between fine-grained senses of a word. Utilizing such

a noisy information for sense-aware analysis will not be optimal. WSD systems disambiguate

each target word separately and each word needs separate training data, but sense-tagged

corpora to train WSD systems are very limited in availability and hard to create manu-

ally. This brings us to the second obstacle, namely the knowledge acquisition bottleneck.

The third obstacle is the sparsity problem that will form by utilizing fine-grained senses of

3



subjectivity clues. In our research, we aim to target these obstacles in order to accomplish

successful sense-aware subjectivity analysis.

We think that fine sense distinctions, which make WSD a hard task, are not required

for sense-aware subjectivity analysis. We do not need to pinpoint the exact sense of a word

in context, we just need to know if the word is used with a subjective sense or an objective

sense. Following this insight, we define a coarse-grained WSD task, Subjectivity Word Sense

Disambiguation (SWSD), which disambiguates two senses of a word: (1) a subjective sense

and (2) an objective sense. SWSD aims to capture the right semantic granularity specific to

subjectivity analysis. There are two high level goals we want to accomplish :

• Goal 1: We want to show that SWSD can provide reliable sense subjectivity information

and that we can utilize it to improve contextual subjectivity. We target accuracy and

sparsity issues to accomplish this goal.

• Goal 2: We want to show that it is feasible to obtain large amounts of training data for

SWSD rendering it a practical technology. We target knowledge acquisition bottleneck to

accomplish this goal.

For our first goal, we build a SWSD system to disambiguate instances of subjectivity

clues as being used with a subjective sense or an objective sense. In this phase, we utilize

sense-tagged data produced by human experts to train our system, which is very limited.

Thus, the impact of SWSD is also limited by the number of the clues for which we have sense-

tagged data. Since our first goal is to prove the feasibility of SWSD and show its impact on

contextual subjectivity analysis, the limited amount of data is not a big concern. We are

interested in the applicability of SWSD as an enabling technology. Since we conceptualize

SWSD as a tool to achieve sense-aware subjectivity analysis, we want to see improvements in

end systems. We work on methods to integrate SWSD into contextual subjectivity analysis
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systems. We conduct two types of evaluation: in vivo and in vitro. In vivo evaluation of

SWSD gives us an idea about its performance as a standalone task. In vitro evaluation of

SWSD shows us if SWSD can have a positive impact on contextual subjectivity analysis via

sense-aware classification.

For our second goal, we try to reduce annotation time and cost to obtain training data for

SWSD. Although the definition of SWSD allows easier data annotation – choosing between

two senses vs. choosing from a fine-grained list senses –, we implement additional steps to

take on the problem of the knowledge acquisition bottleneck. We follow two very different

approaches.

Our first approach is utilizing crowdsourcing – Amazon Mechanical Turk (MTurk) – in

order to reduce annotation time and cost. We can obtain large amounts of non-expert an-

notations as a cheap and fast alternative to expert annotations. We face multiple challenges

due to the unique properties of the MTurk environment as an annotation source and also

due to the definition of our task. The annotations obtained via MTurk are noisy by nature,

since the workers are not trained on the underlying annotation task and some of them are

just spammers. We need to deal with these challenges to obtain reliable non-expert SWSD

annotations. For this purpose, we propose a simple representation of the annotation task

suitable for the MTurk environment and investigate applicability of built-in control mecha-

nisms in the MTurk environment as a filter for spammers. Again we conduct in vivo and in

vitro evaluation of SWSD trained on non-expert annotations. As we experiment with this

approach, we explore the following general hypotheses:

Our second approach is semi-automatically generating annotated data. We explore the

application of a “cluster and label” strategy. Basically, we cluster unlabeled word instances

into coherent clusters – in terms of the meanings the word instances have – and then label

clusters as a whole instead of labelling all the instances of a word separately. Of course, such
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an approach introduces noise in the labeled data that we want to keep minimal. Thus, we

experiment with novel techniques to obtain an expressive representation of word meaning.

In addition, we work on a novel semi-supervised clustering algorithm to incorporate some

prior knowledge into the clustering process and minimize noise as much as possible. Again

we conduct in vivo and in vitro evaluation of SWSD trained on semi-automatically generated

annotations.

To summarize, sense-aware subjectivity analysis is a neglected line of research represent-

ing real problems. It has the promise to improve any type of subjectivity analysis system

relying on subjectivity lexicons. In our research, we fill in this missing piece.

1.3 GENERAL HYPOTHESES

In our research, we follow as step-by-step approach targeting problems associated with sense-

aware subjectivity analysis. As we work towards our goals, we explore following general

hypotheses addressed in different chapters throughout this dissertation.

• Hypothesis 1: S/O sense groupings are natural and both groups can be disambiguated

accurately by a supervised model.

• Hypothesis 2: The subjectivity sense information provided by SWSD is more reliable

than the fine-grained sense information provided by WSD.

• Hypothesis 3: SWSD can be exploited to improve the performance of contextual sub-

jectivity analysis systems via sense-aware analysis.

• Hypothesis 4: Crowdsourcing can be utilized to collect high-quality SWSD annotations

in order to train SWSD classifiers with a good performance.
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• Hypothesis 5: A “cluster and label” strategy together with some prior knowledge can

be utilized to reduce annotation effort to train reliable SWSD classifiers.

1.4 MAIN CONTRIBUTIONS

The research in this dissertation contributes to an on-going line of research in subjectivity

analysis and lexical disambiguation. The main contribution of this thesis is to establish sense

information as a useful information for contextual subjectivity analysis.

We show that SWSD, as a coarse-grained WSD task, can be done reliably and can

improve contextual subjectivity analysis via sense-aware classification. We are the first

ones to conceptualize the task SWSD and use it for sense-aware subjectivity classification.

The findings are also important for the lexical disambiguation community because of the

previous mixed results for WSD as an enabling technology. Our research is a representative

of application-specific WSD, which is considered a promising next step in WSD [Agirre and

Edmonds, 2006].

This research provides general strategies to integrate SWSD information into contex-

tual subjectivity analysis. The integration of SWSD to the underlying subjectivity analysis

system is important. How we do the integration heavily depends on the properties of the

underlying system. We define strategies for various subjectivity analysis systems.

We show that a simple representation of the annotation task suitable for the MTurk

environment allows us to collect reliable non-expert annotations. We demonstrate that non-

expert SWSD can be utilized to improve contextual subjectivity analysis.

We rely on a “cluster and label” strategy to reduce annotation effort. To achieve best

possible purity, we experiment with novel methods for context representation and semi-

supervised clustering. We propose a new semi-supervised clustering algorithm with active
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constraint selection. We see that our active selection improves over previous work. Ul-

timately, we show that we can reduce the annotation effort by 41% without any loss in

performance. The proposed method is not limited to SWSD. It is also applicable for the

general WSD task.

As part of the “cluster and label” approach, we define a novel model for representing

meaning in context, which extends on an existing method for compositional semantics. When

we utilize this representation for context clustering, we achieve significant improvement over

previous approaches. These results have implications for various lexical disambiguation tasks

such as word sense discrimination, paraphrase recognition, and textual entailment.

1.5 OUTLINE

Chapter 2 provides the background knowledge on linguistic subjectivity, word senses and

their relation. In this chapter, we also introduce two important annotation tasks on which

we rely for our research. The remainder of the thesis follows a straightforward structure.

Each hypothesis from section 1.3 is explored in order. In Chapter 3, we define our task

SWSD and present our experiments on feasibility and applicability of SWSD. This chapter

deals with our first goal and explores the first three hypotheses. Part of the research pre-

sented in this chapter is published in [Akkaya et al., 2009]. Chapter 4 summarizes our work

on crowdsourcing. The focus of this chapter is SWSD relying on non-expert annotations.

The chapter deals with our second goal and explores the fourth hypothesis. The research

presented in this chapter is published in [Akkaya et al., 2010,Akkaya et al., 2011]. In Chapter

5, we present our work on reducing annotion effort via a “cluster and label” strategy. We

propose novel methods to improve quality of semi-automatically labeled data for SWSD. The

chapter deals with our second goal and explores the fifth hypothesis. Part of the research
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presented in this chapter is published in [Akkaya et al., 2012]. Finally, in Chapter 6, we

summarize the thesis contributions and discuss future directions.
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2.0 BACKGROUND

In this chapter, we aim to introduce two major concepts vital for our research: subjectivity

and word senses. In Section 2.1, we will introduce the concept of subjectivity and related

resources made use of in this research. Then, we will look at the concept of word senses

in Section 2.2. In Section 2.3 and 2.4, we will discuss two annotation tasks related to the

subjectivity of word senses.

2.1 SUBJECTIVITY

We adopt the definitions of subjective and objective from [Wiebe et al., 2005b,Wilson, 2007,

Wiebe and Mihalcea, 2006]. Subjective expressions are words and phrases being used to

express mental and emotional states, such as speculations, evaluations, feelings, emotions,

stances and beliefs. A general covering term for such states is private state [Quirk et al.,

1985], an internal state that cannot be directly observed or verified by others. [Wiebe and

Mihalcea, 2006] give the following examples:

(2.1) His alarm grew.

(2.2) He absorbed the information quickly.

(2.3) UCC/Disciples leaders roundly condemned the Iranian President’s

10



(2.4) verbal assault on Israel.

(2.5) What’s the catch?

Subjective/objective (S/O) distinction allows us to discriminate between objective and

subjective content. For example, such a discrimination is beneficial for question answering

[Stoyanov et al., 2005] and information extraction [Riloff et al., 2005]. Feeding a system

only with factual data or only with non-factual data depending on the system’s needs yields

better performance. Polarity (also called semantic orientation) is also important to NLP

applications. For example, in product review mining, we want to know whether an opinion

about a product is positive or negative.

The contextual subjectivity analysis experiments in this work include both S/O and

polarity classifications. Note that some other researchers generally associate polarity classi-

fication with sentiment analysis. In our group, we consider sentiment as a specific subtype

of subjectivity, namely linguistic expressions of evaluations, stances and emotions. Thus, we

use subjectivity as a general term.

It is important to point out the relation between polarity and subjectivity for later

sections. An objective expression – an expression which is not subjective – does not show

any semantic orientation. On the contrary, a subjective expression does not necessarily have

to show any particular semantic orientation. Although it is more probable that a subjective

expression has a positive or negative semantic orientation, its semantic orientation may also

be neutral. In the examples below, while the subjective expression in the first snippet does

not have any semantic orientation (neutral), the subjective expression in the second snippet

has a positive semantic orientation.

(2.6) Certainly, the intensive efforts that our big sister, Egypt, made ...

(2.7) This will be a big deal down there ...

11



2.1.1 MPQA Corpus and Subjectivity Lexicon

The Multi Perspective Question Answering (MPQA) Opinion Corpus 1 [Wiebe et al., 2005b,

Wilson, 2007], is annotated for subjective expressions of varying lengths from single words to

long phrases. It consists of 535 documents from 187 different new resources. The annotations

are done according to the MPQA subjectivity annotation scheme [Wiebe et al., 2005a,Wiebe,

2002, Wiebe, 1994]. The annotations hold three major components: (1) the source of the

private state, (2) the expression of the private state, (3) the target of the private state.

The annotation scheme differentiates between various subjectivity types such as sentiment,

arguing, agreement, and speculation. In addition, properties of these private states are also

annotated including polarity and intensity.

Another important resource we make us of is the subjectivity lexicon2 introduced in

[Wilson et al., 2005], which contains approximately 8000 words which may be used to

express subjectivity. Each entry consists of a subjective word, its prior polarity (posi-

tive/negative/neutral), morphological information, and part of speech information. More-

over, the words are grouped according to their reliability as subjectivity clues. Words that

are subjective in most contexts are marked as strongly subjective (strongsubj ), and those

that may only have certain subjective usages are marked weakly subjective (weaksubj ).

2.2 WORD SENSES

In this section, we will not go into detail of philosophical accounts of meaning (e.g. Gricean

and Fregean models). We will concentrate on the more practical view hold by lexicographers.

The meaning of a word is context sensitive. Different meanings of a word may be related to

1Available at http://mpqa.cs.pitt.edu/corpora
2Available at http://mpqa.cs.pitt.edu/lexicons
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each other, in which case we speak from polysemy. They may also be completely unrelated,

in which case we speak from homonymy. For example, the “financial institution” meaning

and the “river side” meaning are two unrelated senses of the noun “bank”. In comparison,

when we talk about a “financial institution”, we may refer to a company or to an actual

building, which are two related senses of the noun “bank”. The senses of words can be

found in dictionaries, which are created on evidence found in text corpora by lexicographers.

Lexicographers use concordance information in large text corpora and mine frequent usage

patterns in order to explore and describe different senses of a word. [Kilgarriff, 1997] describes

this process in detail. A lexicographer collects occurrences of a word in a corpus and tries

to cluster different usages into coherent sets. All the instances in a set should have more

in common with the other instances of that set, than with any instance of any other set.

Then, it is the lexicographer’s job to describe the common attributes and semantic content

in a cluster and code this information as a dictionary definition. The target audience of a

dictionary effects how usages are clustered by a lexicographer and also which clusters are

lexicalized as a dictionary definition.

2.2.1 WordNet

Word Sense Disambiguation research is driven by the need for a sense inventory (i.e. dictio-

nary). WordNet [Miller, 1995] provides such a sense inventory. WordNet lists different senses

of words and groups them into sets of synonyms called synsets. It also provides semantic

relations between synsets. In Figure 1, we see the synsets for the noun “alarm” extracted

from WordNet. For each target synset, we also print the corresponding hypernym ( i.e.

parent in a kind-of relation).

Generally, WordNet is too fine-grained for most applications. Because of that, unneces-
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{alarm, dismay, consternation} – fear resulting from the awareness of danger

=> {fear, fearfulness, fright} – an emotion experienced in anticipation of some specific pain or danger

(usually accompanied by a desire to flee or fight)

{alarm, warning device, alarm system} – a device that signals the occurrence of some undesirable

event

=> {device} – an instrumentality invented for a particular purpose; ”the device is small enough to wear

on your wrist”; ”a device intended to conserve water”

{alarm, alert, warning signal, alarum} – an automatic signal (usually a sound) warning of dan-

ger

=> {signal, signaling, sign} – any nonverbal action or gesture that encodes a message; ”signals from the

boat suddenly stopped”

{alarm clock, alarm} – a clock that wakes a sleeper at some preset time

=> {clock} – a timepiece that shows the time of day

Figure 1: WordNet senses for the noun “alarm”

sary errors may occur. That is not surprising considering that even for a human it is hard

to distinguish between fine-grained senses of a word hitting a ceiling of 80% inter-annotator

agreement [Edmonds and Kilgarriff, 2002]. Nevertheless, WordNet has been the choice of

the sense inventory for WSD due to its availability and coverage.

2.3 SUBJECTIVITY SENSE LABELING

For SWSD, we need the notions of subjective and objective senses of words in a dictionary.

We adopt the definitions from [Wiebe and Mihalcea, 2006], who describe their annotation

scheme as follows.

Classifying a sense as S means that, when the sense is used in a text or conversation,

one expects it to express subjectivity, and also that the phrase or sentence containing it to

expresses subjectivity. Figure 2 holds subjective examples given in [Wiebe and Mihalcea,
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2006].

His alarm grew.

{alarm, dismay, consternation} – fear resulting from the awareness of danger

=> {fear, fearfulness, fright} – an emotion experienced in anticipation of some specific pain or danger

(usually accompanied by a desire to flee or fight)

What’s the catch?

{catch} – a hidden drawback; “it sounds good but what’s the catch?”

=> {drawback} – the quality of being a hindrance; “he pointed out all the drawbacks to my plan”

Figure 2: Subjectivity sense labels – subjective examples

Classifying a sense as O means that, when the sense is used in a text or conversation, one

does not expect it to express subjectivity. Figure 3 holds objective examples given in [Wiebe

and Mihalcea, 2006].

The alarm went off.

{alarm, warning device, alarm system} – a device that signals the occurrence of some undesirable

event

=> {device} – an instrumentality invented for a particular purpose; “the device is small enough to wear

on your wrist”; “a device intended to conserve water”

He sold his catch at the market.

{catch, haul} – the quantity that was caught; “the catch was only 10 fish”

=> {indefinite quantity} – an estimated quantity

Figure 3: Subjectivity sense labels – objective examples

They also note that a phrase or a sentence containing an objective sense does not neces-

sarily need to be objective. If the phrase or sentence containing the objective sense is subjec-

tive, the subjectivity is due to something else. Consider the following examples from [Wiebe

and Mihalcea, 2006]:

(2.8) Will someone shut that damn alarm off?
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(2.9) Can’t you even boil water?

While these sentences contain objective senses of alarm and boil, the sentences are sub-

jective nonetheless. But they are not subjective due to alarm and boil, but rather to punc-

tuation, sentence forms, and other words in the sentence. Finally, classifying a sense as B

means it covers both subjective and objective usages.

[Wiebe and Mihalcea, 2006] performed an agreement study and report that a good

agreement (κ=0.74) can be achieved between human annotators labelling the subjectivity of

senses. For a similar task, [Su and Markert, 2008] also report a good agreement (κ=0.79).

Note that subjectivity sense labelling is different from subjectivity sense tagging, where

one annotates a word instance in text as being used with an objective or a subjective sense.

2.4 SUBJECTIVITY SENSE TAGGING

The training and test data for SWSD consists of word instances in a corpus labeled as S or

O, indicating whether they are used with a subjective or objective sense. Subjectivity sense

tagging refers to the annotation of word instances in text. The same definition of subjective

and objective sense from section 2.3 is used for subjectivity sense tagging.

In the examples below, first instance of attack should be tagged as S , because it is used

with a subjective sense. Second instance is used with an objective sense. Thus, it should be

tagged as O.

(2.10) Ivkovic had been a target of intra-party feuding that has shaken the party. He was

attacked by Milosevic for attempting to carve out a new party from the Socialists.

(2.11) A new treatment based on training T-cells to attack cancerous cells is being developed

at the University of Pennsylvania.
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In this research, subjectivity sense tagging was done according to subjectivity sense

labeled sense inventories. This means subjectivity sense labeling was a prior step for sub-

jectivity sense tagging. As mentioned earlier, WordNet is not built with subjectivity in

mind – this is also true for other dictionaries. Thus, it misses some subjective and objective

meanings and even mixes them together into the same synset. To handle this problem, we

also conduct subjectivity sense tagging according to usage inventories. Usage inventories are

basically sets of sample subjective and objective usages of a word extracted from text. We

will discuss usage inventories in more detail in Section 4.3.2.1.
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3.0 SUBJECTIVITY WORD SENSE DISAMBIGUATION

For any subjectivity analysis system, which relies on a subjectivity lexicon, subjectivity sense

ambiguity is a serious problem. Such systems will be misled by the presence of false hits –

subjectivity clues used with objective senses. Sense-aware subjectivity analysis is a solution

to avoid false hits and errors. A straightforward way to achieve sense-aware treatment is

to provide the sense of each clue instance to the subjectivity analysis system. The sense

information can be obtained via Word Sense Disambiguation (WSD). Figure 4 illustrates

this straightforward scenario.

There are three major problems with this approach. First of all, fine-grained sense

information provided is not very reliable and will introduce noise. Supervised WSD is a

must even for a moderately accurate performance and the annotation effort to create fine-

grained sense tagged training data is very time-consuming and expensive. Thus, knowledge

acquisition bottleneck is another problem. Third, the input of fine-grained senses might

result in sparsity, because it will increase the number of features input to the underlying

subjectivity analysis system. Each clue will result in as many features as the number of

the senses it has. [Ar et al., 2011] shows supporting evidence. On a document-level polarity

classification task, they report that sense-level information only helps if it is provided by an

oracle but not if it is provided by automatic WSD.

In this chapter, we introduce a new task Subjectivity Word Sense Disambiguation (SWSD)

targeting mentioned three problems in the way of sense-aware analysis. Our aim is to exploit
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Figure 4: Sense-aware subjectivity analysis relying on WSD.

SWSD improve the performance of subjectivity analysis systems. We implement SWSD re-

lying on supervised learning methods and integrate it to contextual subjectivity analysis. In

this chapter, we entirely make use of expert annotations to train our SWSD models.

In Section 3.1, we represent statistics to demonstrate the potential benefit of performing

SWSD. Section 3.2 describes how we conceptualize SWSD. Section 3.3 provides implemen-

tation details. In Section 3.4, we evaluate SWSD as a standalone task and also its impact

on the contextual subjectivity analysis. The research presented in this chapter is published

in [Akkaya et al., 2009].

3.1 POTENTIAL OF SENSE-AWARE SUBJECTIVITY ANALYSIS

We investigate the distribution of the clues from the subjectivity lexicon in the MPQA

Corpus to show the promise of sense-aware subjectivity analysis. In our studies, we find
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out that the subjectivity lexicon covers a substantial subset of the subjective expressions

in the MPQA Corpus: 67.1% of the subjective expressions contain one or more lexicon

entries. On the other hand, 42.9% of the instances of the lexicon entries in the MPQA

Corpus are not in subjective expressions. An instance that is not in a subjective expression

is, by definition, being used with an objective sense. Thus, these instances are false hits of

subjectivity clues. As mentioned before, the entries in the lexicon have been pre-classified as

either more (strongsubj) or less (weaksubj) reliable. We see this difference reflected in their

degree of ambiguity – 53% of the weaksubj instances are false hits, while only 22% of the

strongsubj instances are.

Another related finding is reported in [Wilson, 2007]. [Wilson, 2007] reports that the

out-of-context lexicon polarity of a subjectivity clue (i.e. prior polarity) does not agree with

the polarity of its context 48% of the time. Of these mismatches, 76% result from clues

with non-neutral prior polarity appearing in phrases with neutral contextual polarity. Most

probably, these clues are used with an objective sense.

To summarize, the high coverage of the lexicon in the MPQA corpus demonstrates its

potential usefulness for subjectivity analysis systems, while its degree of ambiguity, in the

form of false hits, shows the potential benefit of performing sense-aware subjectivity analysis.

3.2 TASK DEFINITION

In this work, we define SWSD as automatically determining the sense type - subjective sense

or objective sense - of a target word in context. SWSD is as an application-specific WSD

task.
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{pain, hurting} – a symptom of some physical hurt or disorder; ”the patient developed severe pain and

distension”

=> {fear, fearfulness, fright} – an emotion experienced in anticipation of some specific pain or danger

(usually accompanied by a desire to flee or fight)

{pain, painfulness} – emotional distress; a fundamental feeling that people try to avoid; ”the pain of loneli-

ness”

=> {fear, fearfulness, fright} – an emotion experienced in anticipation of some specific pain or danger

(usually accompanied by a desire to flee or fight)

{pain, pain sensation, painful sensation} – a somatic sensation of acute discomfort; ”as the intensity increased

the sensation changed from tickle to pain”

=> {fear, fearfulness, fright} – an emotion experienced in anticipation of some specific pain or danger

(usually accompanied by a desire to flee or fight)

{pain, pain in the neck, nuisance} – a bothersome annoying person; ”that kid is a terrible

pain”

=> {fear, fearfulness, fright} – an emotion experienced in anticipation of some specific pain or danger

(usually accompanied by a desire to flee or fight)

Figure 5: WordNet senses for the noun “pain”

Consider senses of the word “pain” from WordNet in Figure 5. First and third entries are

objective usages of the word pain and remaining ones are subjective usages. The objective

senses are more similar to each other than they are to subjective senses and vice versa. For

sense-aware subjectivity analysis we do not need to pinpoint the exact sense of the word pain.

It is enough to know if the instance is used with a subjective or with an objective sense.

It is a binary task. That makes our task easier than traditional fine-grained WSD. Thus,

we believe that SWSD can be done with a high accuracy and that we can avoid confusion

and probable errors caused by making unnecessary fine distinctions. Figure 6 illustrates the

sense-aware analysis using SWSD. As we see, SWSD provides to the subjectivity analysis

system the information if the clue instance has a subjective or an objective sense. Thus,

sparsity is not a problem in contrast to providing specific sense information about each clue

instance. In addition, the annotation task – subjectivity sense-tagging – to create training
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data is easier than doing fine-grained sense-tagging.

Subjectivity 
Analysis System 

Lexicon 

SWSD 
Module 

Conventional Subjectivity Analysis  Sense-aware Subjectivity Analysis - SWSD  

… alarm went 
off … made the 
catch … 

Lexicon 

… alarmo-sense went 
off … … made the 
catchs-sense … 

Subjectivity 
Analysis System 

Figure 6: Sense-aware subjectivity analysis relying on SWSD.

Note that SWSD is midway between pure dictionary classification and pure contextual

interpretation. For SWSD, the context of the word is considered in order to perform the

task, but the subjectivity is determined solely by the dictionary. In contrast, full contextual

interpretation can deviate from a sense’s subjectivity label in the dictionary. As noted

above, words used with objective senses may appear in subjective expressions. For example,

an SWSD system would label the following examples of alarm as S, O and O, respectively.

On the other hand, a sentence-level subjectivity classifier would label the sentences as S, S,

and O, respectively.

(3.1) His alarm grew.

Will someone shut that darn alarm off?

The alarm went off.
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3.3 SWSD METHOD

We rely on supervised learning to conduct SWSD. For each target clue, we train a different

classifier. The method is similar to targeted WSD where a different classifier is trained

for each target word. In contrast, all-words WSD relies on a single classifier to classify all

the words in a text piece. We choose to follow a supervised and targeted method, since it

performs best for WSD and we expect the same for SWSD.

3.3.1 WSD features for SWSD

We borrow machine learning features which have been successfully used in WSD research.

These features try to capture information about the context of the target word instance to

be disambiguated. They are grouped usually into local and topical features. Local features

describe the local context of the target word instance. They capture collocations, argument-

head relations and syntactic cues. On the other hand, topical features describe a larger

context. They capture topic or domain of the text piece. We make use of both feature types.

Specifically, we use the features listed in Figure 7 from [Mihalcea, 2002b].

3.3.2 Subjectivity features for SWSD

We extend wsd features with features aiming to capture subjectivity of the surrounding

context. Some of these features are proven to be effective in contextual subjectivity analysis

[Wiebe and Riloff, 2005,Wilson et al., 2005].

Sentence subjectivity features listed in Figure 8 try to capture the subjectivity of a larger

context around the target word. They are comparable to the global context WSD features in

terms of their scope. This set includes as features counts of strongsubj (highly reliable) and
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CW : the target word itself : nominal {1}
CP : the part of speech of the target word : nominal {1}
CF : the surrounding context of 3 words and their POS : nominal {12}
HNP : the head of the noun phrase to which the target word belongs : nominal {1}
NB : the first noun before the target word : nominal {1}
VB : the first verb before the target word : nominal {1}
NA : the first noun after the target word : nominal {1}
VB : the first verb before the target word : nominal {1}
VA : the first verb after the target word : nominal {1}
SK : at most 10 context words occurring at least 5 times (for each sense) : numeric {<= 10∗#sense}

Figure 7: WSD features for SWSD

weaksubj (less reliable) clues in the sentence the target word instance appears (i.e. current),

and also in the previous and the next sentence. The set also includes counts of adjectives

and adverbs in the current sentence. Local subjectivity features listed 8 aim to capture the

subjectivity of the immediate neighbours of the target word. Thus, they are comparable to

the local context WSD features. They capture the relation to other subjectivity clues.

3.3.3 Training

As mentioned before, SWSD automatically determines which sense type (i.e. S or O) is

activated in a specific context. We have two options to accomplish this. We can train our

SWSD classifiers on subjectivity sense-tagged data 2.4 in a straightforward fashion. We refer

to this approach as coarse-grained training. Another approach, though not optimal, is to

train a classifier on the fine-grained sense tagged data. Then the system can collapse the

fine-grained sense distinctions, output by the classifier, to sense types (i.e. S or O) according

to a subjectivity sense labeled sense inventory 2.3. We refer to this approach as fine-grained
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Sentence subjectivity features:

SC : number of strongly subjective clues in the current sentence : numeric {1}
SP : number of strongly subjective clues in the previous sentence : numeric {1}
SN : number of strongly subjective clues in the next sentence : numeric {1}
WC : number of weakly subjective clues in the current sentence : numeric {1}
WP : number of weakly subjective clues in the previous sentence : numeric {1}
WN : number of weakly subjective clues in the next sentence : numeric {1}
CB : number of adjectives in the current sentence : numeric {1}
CB : number of adverbs in the current sentence : numeric {1}

Local subjectivity features:

MSC : the membership of the surrounding context of 3 words to the subjectivity lexicon: ternary

(strongsubj,weaksubj,not member) {6}
PSC : the presence of the weak and strong subjectivity clues in the local context of 3 words:

binary {4}

Figure 8: Subjectivity features for SWSD

training. Such an approach has the major disadvantage that we will need fully sense-tagged

data to train our classifiers. In comparison, the former approach relies on subjectivity sense

tagged data for training.

3.4 EXPERIMENTAL DESIGN

This section describes experiments on supervised SWSD based on expert annotations. Sec-

tion 3.4.1 presents how we derive our training and test data for SWSD from SENSEVAL

sense tagged corpora. In Section 3.4.2, we evaluate a SWSD module and compare its perfor-

mance to conventional fine-grained WSD. Section 3.4.3 shows a simple rule-based approach

to enable SWSD integration and evaluates the effect of SWSD on contextual subjectivity
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analysis.

3.4.1 Data Creation

Our target words are members of the subjectivity lexicon introduced in section 2.1.1, because

we know these words have subjective usages – since they appear in a subjectivity lexicon –

and since the subjectivity analysis systems, to which we apply our SWSD module, rely on

this lexicon.

The training and test data for SWSD consists of word instances in a corpus labeled as

S or O, indicating whether they are used with a subjective or objective sense. Because we

do not have data labeled with the S/O coarse-grained senses, we combine two types of sense

annotations: (1) labels of senses within a dictionary as S or O (i.e., subjectivity sense labels),

and (2) sense tags of word instances in a corpus (i.e., sense-tagged data). The subjectivity

sense labels are used to collapse the sense labels in the sense-tagged data into the two new

senses, S and O. This allows us to compare SWSD performance to WSD performance directly

on the same dataset.

Our sense-tagged data are the lexical sample corpora (training and test data) from SEN-

SEVAL I [Kilgarriff and Palmer, 2000], SENSEVAL II [Preiss and Yarowsky, 2001], and

SENSEVAL III [Mihalcea and Edmonds, 2004]. We selected all of the SENSEVAL words

that are also in the subjectivity lexicon, and labelled their dictionary senses as S, O, or

B according to the annotation scheme described above in section 2.3. After excluding the

senses labeled B (a total of 10 senses), we use remaining sense labels to collapse fine-grained

senses in the SENSEVAL corpora. Among the words, we found that 11 are not ambiguous

- either they have only S or only O senses (in the corresponding sense inventory), or the

senses of their instances in the SENSEVAL data are all S or all O. So as not to inflate our

results, we removed those 11 from the data, leaving 39 words: 9 words (64 senses) from the
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SENSEVAL I, 18 words (201 senses) from the SENSEVAL II, and 12 words (107 senses)

from the SENSEVAL III corpus. In total, we have subjectivity sense-tagged data for 39 sub-

jectivity clues. From now on, we will refer to this expert subjectivity sense-tagged corpus as

the senSWSD corpus. Overall, we can disambiguate 39 subjectivity clues from the lexicon

which represents the coverage of the SWSD system trained on senSWSD.

3.4.2 In Vivo Evaluation

Our aim is to show that SWSD is a feasible task and that the subjectivity sense information

provided by SWSD is much more reliable than the fine-grained sense information provided

by WSD. For this purpose, we evaluate a SWSD system – based on coarse-grained training

– on the senSWSD dataset and compare its performance to a WSD system on the same

dataset via 10-fold cross validation experiments. Both SWSD and WSD systems utilize the

WSD features introduced in Section 3.3.1.

In addition, we also evaluate fine-grained training approach for SWSD and compare it to

coarse-grained training approach. Note that, although generally in the SENSEVAL datasets,

training and test data are provided separately, a few target words from SENSEVAL I do not

have both training and testing data. Thus, we opted to combine the training and test data

into one dataset, and then perform 10-fold cross validation experiments.

As our classifier, we use the SVM classifier from the Weka package (Witten and Frank.,

2005) with its default settings. We are interested in how well the system would perform on

more and less ambiguous words. Thus, we split the words into three subsets according to

their majority-class baselines – [50%,70%) , [70%,90%), and [90%,100%).

3.4.2.1 Results on Coarse-grained Training Table 1 contains the cumulative results

over the whole senSWSD dataset, as well as results for the subsets S1, S2, and S3. Base
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Base Acc SP SR SF OP OR OF IB EB%

All 79.9 88.3 89.3 89.1 89.2 87.1 87.4 87.2 8.4 41.8

S1 57.9 80.7 81.1 78.3 79.7 80.2 82.9 81.5 22.8 54.2

S2 81.1 87.3 86.5 85.2 85.8 87.9 89 88.4 6.2 32.8

S3 95 96.4 96.5 99 97.7 96.3 87.8 91.8 1.4 28.0

Table 1: Results of SWSD with coarse-grained training on senSWSD.

stands for the majority-class baseline. Acc is accuracy. SP, SR, and SF are subjective

precision, recall and F-measure respectively – analogous for the objective class O. IB is

improvement in accuracy over the baseline. EB is percent error reduction in accuracy.

In our evaluation, we see that the improvement for SWSD over the majority-class baseline

is especially high for the less skewed set, S1. This is very encouraging because these words

are the more ambiguous words, and thus are the ones that most need SWSD (assuming

the SENSEVAL priors are similar to the priors in the target corpus). The average error

reduction over baseline for S1 words is 54.2%. Even for the more skewed sets S2 and S3,

reductions are 32.8% and 28.0%, respectively, with an overall reduction of 41.8%.

To compare SWSD with WSD, we re-run the 10-fold cross validation experiments, but

this time using the original sense labels, rather than subjective sense and objective sense

labels. The accuracy is 67.9%, much lower than the accuracy of SWSD (88.3%). The error

reduction over the baseline for WSD is 18.9%, where SWSD provides an error reduction of

41.8%.

The positive results provide evidence that SWSD is a feasible variant of WSD, and that

the S/O sense groupings are natural ones, since the system is able to learn to distinguish

between them with high accuracy.
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Base Acc SP SR SF OP OR OF IB EB%

All 79.9 86.3 87.1 88.3 87.7 85.4 84.0 84.7 6.4 31.8

S1 57.9 78.0 78.6 81.8 80.2 77.3 73.6 75.4 20.1 47.7

S2 81.1 85.0 83.5 83.1 83.3 86.3 86.6 86.5 4.9 25.9

S3 95 95.6 96.2 98.3 97.2 94.0 87.4 90.5 0.6 12

Table 2: Results of SWSD with fine-grained training on senSWSD.

3.4.2.2 Results on Fine-grained Training We repeat 10-fold cross validation experi-

ment for SWSD with fine-grained training. Table 2 summarizes the results. We observe that

coarse-grained training has better performance than fine-grained training. Overall, there is 2

percentage points difference in accuracy (Table 3). The difference is statistically significant

at the p < .05 level according to a paired t-test.

3.4.2.3 Extending SWSD with Subjectivity Features In this section, we evaluate

the effect of subjectivity features on the SWSD performance. For this purpose, we train

two additional SWSD systems, one utilizing only subjectivity features introduced in Section

3.3.2 and the other one utilizing both WSD and subjectivity features. We evaluate both

systems on the senSWSD dataset via 10-fold cross validation and compare the results to the

original results.

Table 4 holds results for all three systems relying on different feature sets. We see that

subjectivity features alone are not enough to have accurate SWSD. This result suggest that

subjectivity of the surrounding context is not indicative of the sense subjectivity. Moreover,

we do not see any improvement when we combine wsd features with subjectivity features.
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Base Fine Coarse

All 79.9 86.3 88.3

S1 57.9 78.0 80.7

S2 81.1 85.0 87.3

S3 95 95.6 96.4

Table 3: Results of SWSD: fine-grained training vs. coarse-grained training

3.4.3 In Vitro Evaluation

This section gives details on the conducted experiments to test the following hypothesis

that SWSD can be exploited to improve the performance of contextual subjectivity analysis

systems. We show in section 3.1, that there is a great deal of subjectivity sense ambiguity in

a standard subjectivity-annotated corpus (MPQA) and then in section 3.4.2 that SWSD is

a feasible task. We now turn to exploiting the results of SWSD to automatically recognize

subjectivity in the MPQA Corpus. A motivation for using the MPQA Corpus is that many

types of classifiers have been evaluated on it. We exploit SWSD in several contextual opinion

analysis systems, comparing the performance of sense-aware and non-sense-aware versions.

They are all variations of components of the OpinionFinder opinion recognition system.1

3.4.3.1 MPQA Coverage The SWSD system trained on the senSWSD dataset can

disambiguate 39 target words, which have 723 instances in the MPQA Corpus. We refer to

this subset of the MPQA Corpus as senMPQA. This subset makes up the coverage of the

SWSD system evaluated in this section. Thus, we evaluate the effect of SWSD on contex-

tual subjectivity analysis on senMPQA dataset. We integrate SWSD to two expression-level

1Available at http://www.cs.pitt.edu/opin
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Feature Set Acc

Base 79.9

WSD 86.3

WSD+Subj 85.7

Subj 80.8

Table 4: Results of SWSD: effect of subjectivity features on SWSD

contextual classifiers: (1) contextual polarity classifier labeling clue instances in text as con-

textually negative/positive/neutral, (2) contextual S/O classifier labeling clue instances in

text as contextually subjective/objective. We incorporate SWSD information into these con-

textual subjectivity classifiers in a straight-forward fashion: outputs are modified according

to simple, intuitive rules. In addition, we also integrate SWSD to a sentence-level rule-based

classifier which labels sentences as subjective or objective with high precision and low recall.

We compare original classifiers with sense-aware versions on senMPQA and draw conclusions

according to McNemar’s test for statistical significance [Dietterich, 1998].

Note that, for the SWSD experiments, the number of words does not limit the amount

of data, as SENSEVAL provides data for each word. However, the only parts of the MPQA

corpus for which SWSD could affect performance is the subset containing instances of the

words in the SWSD system’s coverage. Thus, for the classifiers in this section, the data used

is the SenMPQA dataset, which consists of the sentences in the MPQA Corpus that contain

at least one instance of the 39 keywords. There are 689 such sentences (containing, in total,

723 instances of the 39 keywords).
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Acc OP OR OF SP SR SF

ORB 27 50 4.1 7.6 92.7 36 51.8

SE 28.3 62.1 9.3 16.1 92.7 35.8 51.6

RE 27.6 48.4 7.7 13.3 92.6 35.4 51.2

Table 5: Effect of SWSD on the Rule-based Classifiers.

3.4.3.2 Rule-based Classifier We first apply SWSD to a rule-based classifier from

[Riloff and Wiebe, 2003]. The classifier, which is a sentence-level S/O classifier, has low

subjective and objective recall but high subjective and objective precision. It is useful

for creating training data for subsequent processing by applying it to large amounts of

unannotated data.

The classifier is a good candidate for directly measuring the effects of SWSD on contex-

tual subjectivity analysis, because it classifies sentences only by looking for the presence of

subjectivity keywords. Performance will improve if false hits can be ignored.

The classifier labels a sentence as S if it contains two or more strongsubj clues. On the

other hand, it considers three conditions to classify a sentence as O: there are no strongsubj

clues in the current sentence, there are together at most one strongsubj clue in the previous

and next sentence, and there are together at most 2 weaksubj clues in the current, previous,

and next sentence.

The rule-based classifier is made sense aware by making it blind to the target word in-

stances labeled O by the SWSD system, as these represent false hits of subjectivity keywords.

We compare this sense-aware method (SE), with the original classifier (ORB), in order to see

if SWSD would improve performance. We also built another modified rule-based classifier

RE to demonstrate the effect of randomly ignoring subjectivity keywords. RE ignores a
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keyword instance randomly with a probability of 0.429, the expected value of false hits in

the MPQA corpus. The results are listed in Table 5.

The rule-based classifier looks for the presence of the keywords to find subjective sen-

tences and for the absence of the keywords to find objective sentences. It is obvious that a

variant working on fewer keyword instances than ORB will always have the same or higher

objective recall and the same or lower subjective recall than ORB. That is the case for both

SE and RE. The real benefit we see is in objective precision, which is substantially higher for

SE than ORB. For our experiments, OP gives a better idea of the impact of SWSD, because

most of the keyword instances SWSD disambiguates are weaksubj clues, and weaksubj key-

words figure more prominently in objective classification. On the other hand, RE has both

lower OP and SP than ORB.

The overall low accuracy for all systems is due to the fact that all ”unknown“ predictions

are considered false. Both SE and RE have higher accuracy than ORB, because they both

make less ”unknown“ predictions. The improvement in accuracy for SE is slightly better

than RE. Although we think that the benefit with this classifier is reflected in objective

precision, the larger improvement in accuracy for SE also indicates that SE is ignoring the

right keyword instances - false hits. We cannot provide a significance test for accuracy, as we

do for the other classifiers, because there are two gold labels (subj/obj) but three predicted

labels (subj/obj/unknown).

These findings suggest that SWSD does a good job on disambiguating keyword instances

in MPQA,2 and demonstrates a positive impact of SWSD on sentence-level subjectivity

classification.

2which we cannot evaluate directly, as MPQA is not sense tagged.
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3.4.3.3 Contextual Subjective/Objective Classifier We now move to more fine-

grained expression-level subjectivity classification. Since sentences often contain multiple

subjective expressions, expression-level classification is more informative than sentence-level

classification.

The contextual subjective/objective classifier is an implementation of the neutral/polar

supervised classifier of (Wilson et al., 2005a) (using the same features), except that the

classes are S/O rather than neutral/polar. These classifiers label instances of lexicon entries.

The gold standard is defined on the MPQA Corpus as follows: If an instance is in a subjective

expression, it is contextually subjective. If the instance is in an objective expression, it is

contextually objective. We evaluate the system on the 723 clue instances in the SenMPQA

dataset.

We incorporate SWSD information into the contextual subjectivity classifier in a straight-

forward fashion: the output is modified according to simple and intuitive rules in a post-

processing step. Figure 9 demonstrates the general approach. Our strategy is defined by the

relation between sense subjectivity and contextual subjectivity as explained in section 3.2

and involves two rules, R1 and R2. We know that a keyword instance used with a S sense

must be in a subjective expression. R1 is to simply trust SWSD: If the contextual classifier

labels an instance as O, but SWSD determines that it has an S sense, then R1 flips the

contextual classifier’s label to S.

Things are not as simple in the case of O senses, since they may appear in both subjective

and objective expressions. We will state R2, and then explain it: If the contextual classifier

labels an instance as S, but (1) SWSD determines that it has an O sense, (2) the contextual

classifier’s confidence is low, and (3) there is no other subjective keyword in the same expres-

sion, then R2 flips the contextual classifier’s label to O. First, consider confidence: though a

keyword with an O sense may appear in either subjective or objective expressions, it is more
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R1 and R2 

“The alarm went off” 

“His alarm grew” 

“The alarm went off” S  

“His alarm grew” O  

“The alarm went off” O-Sense 

“His alarm grew” S-Sense 

“The alarm went off” S O 

“His alarm grew” O S 

S/O 
Classifier 

SWSD 
Module 

Post- 
processing 

Figure 9: SWSD integration to contextual subjectivity classifier.

likely to appear in an objective expression. We assume that this is reflected to some extent

in the contextual classifier’s confidence. Second, if a keyword with an O sense appears in

a subjective expression, then the subjectivity is not due to that keyword but rather due to

something else. Thus, the presence of another lexicon entry “explains away” the presence of

the O sense in the subjective expression, and we do not want SWSD to overrule the contex-

tual classifier. Only when the contextual classifier is not certain and only when there is not

another keyword does R2 flip the label to O.

Our definition of low confidence is in terms of the label weights assigned by BoosTex-

ter [Schapire and Singer, 2000], which is the underlying machine learning algorithm of the

contextual classifiers. We use the difference between the largest weight of any label and

the second largest label weight as a measure of confidence, as suggested in the BoosTex-

ter documentation. For the experiments on the subjective/objective classifier, we adopt the

threshold determined for the neutral/polar classifier in Section 3.4.3.4. Note, that we do not

experiment with other conditions than those incorporated in the rules.
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Acc OP OR OF SP SR SF

OS/O 75.4 68 62.9 65.4 79.2 82.7 80.9

R1 77.7 75.5 58.8 66.1 78.6 88.8 83.4

R2 79 67.3 83.9 74.7 89 76.1 82

CM 81.3 72.5 79.8 75.9 87.4 82.2 84.8

Table 6: Effect of SWSD on the Subjective/Objective Classifier.

We compare the performance of the original system (OS/O) and three sense-aware vari-

ants: one using only R1, one using only R2, and one using both (CM ). The results are

summarized in Table 6. The original classifier has an accuracy of 75.4%. The R1 variant

shows an improvement of 2.3 percentage points in accuracy to 77.7 (a 9.4% error reduction).

The R2 variant shows an improvement of 3.6 percentage points in accuracy to 79 (a 14.6%

error reduction). Applying both rules (CM ) gives an improvement of 5.9 percentage points

in accuracy to 81.3 (a 24% error reduction).

In our case, a paired t-test is not appropriate to measure statistical significance, as we

are not doing multiple runs. Thus, we apply McNemar’s test, which is a non-parametric

method for algorithms that can be executed only once, meaning training once and testing

once [Dietterich, 1998]. For R1, the improvement in accuracy is statistically significant at the

p < .05 level. For R2 and CM, the improvement in accuracy is statistically significant at the

p < .01 level. Moreover, in all cases, we see improvement in both objective and subjective

F-measure.

3.4.3.4 Contextual Polarity Classifier In this section, we apply SWSD to contex-

tual polarity classification (positive /negative/ neutral), in the hope that avoiding false hits
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of subjectivity keywords will also lead to performance improvement in contextual polarity

classification.

We use an implementation of the classifier of (Wilson et al., 2005a). This classifier labels

instances of lexicon entries. The gold standard is defined on the MPQA Corpus as follows:

If an instance is in a positive subjective expression, it is contextually positive (Ps); if in a

negative subjective expression, it is contextually negative (Ng); and if it is in an objective

expression or a neutral subjective expression, then it is contextually N(eutral). As above,

we evaluate the system on the keyword instances in the SenMPQA dataset.

Wilson et al. use a two step approach. The first step classifies keyword instances as

being in a polar (positive or negative) or a neutral context. The first step is performed

by the neutral/polar classifier mentioned above in 3.4.3.3. The second step decides the

contextual polarity (positive or negative) of the instances classified as polar in the first step,

and is performed by a separate classifier.

Neutral/Polar 
Step 

Polarity Step 

N 

Ng 

Ps 

SWSD 
Module 

R3 and R4 

Po
st-

 pr
oc

es
sin

g 

P 

N 

N 

Figure 10: SWSD integration to contextual polarity classifier.

To make a sense-aware version of the system, again we use rules to modify of the output

of the neutral/polar classifier. R3 flips neutral/polar classifier’s output from N to P. It is

almost analogous to R1. There is a small difference. We cannot simply trust SWSD and flip

the output to P when it labels a keyword as having an S sense, because an S sense might be

in a N(eutral) expression (since there are neutral subjective expressions). But, an S sense
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Acc NP NR NF PP PR PF

ON/P 79 81.5 92.5 86.7 65.8 40.7 50.3

R3 70 83.7 73.8 78.4 44.4 59.3 50.8

R4 81.6 81.7 96.8 88.6 81.1 38.6 52.3

Table 7: Effect of SWSD on the Neutral/Polar Classifier.

is more likely to appear in a P(olar) expression. Thus, we consider confidence (rule R3 ): If

the contextual classifier labels an instance as N, but SWSD determines it has an S sense and

the contextual classifier’s confidence is low, then R3 flips the contextual classifier’s label to

P.

Rule R4 is analogous to R2 in the previous section: If the contextual classifier labels an

instance as P, but (1) SWSD determines that it has an O sense, (2) the contextual classifier’s

confidence is low, and (3) there is no other subjective keyword in the same expression, then

R4 flips the contextual classifier’s label to N.

As mentioned before, our definition of ”low confidence” depends on the difference between

the largest weight of any label and the second largest label weight assigned by BoosTexter

[Schapire and Singer, 2000]. We tried three thresholds: 0.0007, 0.0008, and 0.0009. The

difference in accuracy when using different thresholds is slight: 0.0007 and 0.0009 both give

81.5 accuracy compared to 81.6 accuracy for 0.0008. Here, we report results for 0.0008. Note

that exactly the same significance test results apply to all the thresholds tried and we do

not try other conditions for both rules.

We compare the performance of the original neutral/polar classifier (ON/P ) and sense-

aware variants using R3 and R4. The results are summarized in Table 7. PP, PR, and
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Acc NP NR NF NgP NgR NgF PsP PsR PsF

OPs/Ng/N 77.6 80.9 94.6 87.2 60.4 29.4 39.5 52.2 32.4 40

R4 80.6 81.2 98.7 89.1 82.1 29.4 43.2 68.6 32.4 44

Table 8: Effect of SWSD on the Contextual Polarity Classifier.

PF stand for polar precision, recall and F-measure – analogous for the neutral class N. We

see that only R4 improves performance. This is consistent with the finding in (Wilson

et al., 2005a) that most errors are caused by subjectivity keywords with non-neutral prior

polarity appearing in phrases with neutral contextual polarity. R4 targets these cases. It is

promising to see that SWSD provides enough information to fix some of them. There is a

2.6 percentage point improvement in accuracy from 70% to 81,6% (a 12.4% error reduction).

The improvement in accuracy is statistically significant at the p < .01 level with McNemar’s

test. The improvement in accuracy is accompanied by improvements in both neutral and

polar F-measure.

We want to see if the improvements in the first step of Wilson et al’s system will prop-

agate to the output of the second step, yielding an overall improvement in positive /nega-

tive/neutral (Ps/Ng/N) classification. The sense-aware variant of the overall two-part system

is the same as the original except that we apply R4 to the output of the first step (flipping

some of the neutral/polar classifier’s P labels to N ). Thus, since the second step in Wilson

et al.’s classifier processes only those instances labelled P in the first step, in the sense-aware

system, fewer instances are passed from the first to the second step. Table 8 holds results.

NP, NR, and NF stand for neutral precision, recall and F-measure – analogous for the nega-

tive (Ng) and positive (Ps) class Note that these results are for the entire SenMPQA dataset,

not just those labeled P in the first step. We see that the accuracy improves 3 percentage
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points from 77.6 to 80.6 (a 13.4% error reduction). The improvement in accuracy is statisti-

cally significant at the p < .01 level with McNemar’s test. We see the real benefit when we

look at the precision of the positive and negative classes. Negative precision goes from 60.4

to 82.1 and positive precision goes from 52.2 to 68.6, with no loss in recall. This is evidence

that the SWSD system is doing a good job of removing some false hits of subjectivity clues

that harm the original version of the system.

3.5 SUMMARY AND DISCUSSION

In this chapter, we introduced the task of subjectivity word sense disambiguation (SWSD),

and evaluated a supervised method inspired by research in WSD. The system achieves high

accuracy, especially on highly ambiguous words. The results provide evidence for our first

hypothesis:

Hypothesis 1: S/O sense groupings are natural and both groups can be disambiguated

accurately by a supervised model.

We compared the SWSD accuracy to the WSD accuracy on the same dataset. SWSD

is substantially better than WSD. Moreover, SWSD provides in total two sense types S/O.

Thus, integration of the sense information to the underlying opinion system is uniform. It

does not suffer from the sparsity problem that will form by utilizing fine-grained senses, which

grow linearly in the number of the subjectivity clues we want to disambiguate. We investigate

two methods to train our SWSD classifiers: (1) the coarse-grained training and (2) the fine-

grained training. We observe that the coarse-grained training results in 15% error reduction

over the fine-grained training. This experiment also allows a more systematic comparison of

the sense information provided by SWSD to the sense information provided by WSD. Even
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after collapsing predicted fine-grained senses to coarse-grained senses, information provided

by a full WSD system is not as reliable as the system trained on coarse-grained senses.

Moreover, the fine-grained training has the disadvantage that it requires fully sense-tagged

data. The annotation effort to generate coarse-grained annotations is smaller. The results

support our second hypothesis:

Hypothesis 2: The subjectivity sense information provided by SWSD is more reliable

than the fine-grained sense information provided by WSD.

We explored the promise of SWSD for contextual subjectivity analysis. We showed that a

subjectivity lexicon can have substantial coverage of the subjective expressions in the corpus,

yet still be responsible for significant sense ambiguity. This demonstrates the potential ben-

efit to opinion analysis of performing SWSD. We then exploited SWSD in several contextual

subjectivity analysis systems, including positive/negative/neutral sentiment classification.

Improvements in performance were realized for all of the systems. These results are evidence

for our third hypothesis:

Hypothesis 3: SWSD can be exploited to improve the performance of contextual sub-

jectivity analysis systems via sense-aware analysis.

In addition, we evaluate the effect of subjectivity features on the SWSD performance.

The results show that subjectivity features alone are not enough to have accurate SWSD

suggesting that subjectivity of the surrounding context is not indicative of the sense sub-

jectivity. Moreover, we do not see any improvement when we combine wsd features with

subjectivity features.

In this chapter, we exclusively relied on expert annotations, which are limited in avail-

ability. Thus, the coverage of our SWSD system was not high. In addition, we utilized

41



manually crafted rules to integrate SWSD into the contextual subjectivity analysis, which

are ad hoc. We address these shortcomings in later chapters.

3.6 RELATED WORK

Several researchers exploit lexicons of subjectivity bearing words for contextual subjectivity

analysis. These systems typically look for the presence of lexicon clues in the text to be

analysed. There are two general approaches to utilize these lexicons. They are either used in

a knowledge-based approach where the information about all clue instances are aggregated

to the enclosing text (e.g. [Turney, 2002b, Yu and Hatzivassiloglou, 2003, Kim and Hovy,

2004,Hu and Liu, 2004,Ding et al., 2008,Zhai et al., 2011]) or they are utilized in a supervised

setting where they become features for a machine learning algorithm (e.g. [Riloff and Wiebe,

2003,Whitelaw et al., 2005,Wilson et al., 2005,Agarwal et al., 2009,Jiang et al., 2011]). Both

types of systems that rely on subjectivity lexicons can benefit from SWSD via sense-aware

analysis.

One related line of research is to automatically assign subjectivity and/or polarity labels

to word senses in a dictionary. [Esuli and Sebastiani, 2006b] and [Andreevskaia and Bergler,

2006] are the most prominent works on polarity labelling of word senses. Both works start

with positive and negative seed sets and expand polarity by traversing specific links in

WordNet. An extensive amount of work is also done on assigning subjectivity labels to word

senses. [Wiebe and Mihalcea, 2006] use a corpus based approach where subjectivity labels

are assigned based on a set of distributionally similar words in the MPQA Corpus. [Gyamfi

et al., 2009] and [Su and Markert, 2008] use supervised classifiers relying on features defined

on WordNet for subjectivity labelling. All these methods have the aim to assign labels to

word senses in a sense inventory automatically. In contrast, we automatically assign labels to
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word instances in context. A common point we have with [Wiebe and Mihalcea, 2006,Gyamfi

et al., 2009] is the annotation schema we use to manually label senses of a word, which is also

similar to the schema utilized by [Su and Markert, 2008]. Moreover, our work complements

findings in [Wiebe and Mihalcea, 2006] and [Gyamfi et al., 2009]. [Wiebe and Mihalcea, 2006]

demonstrate that subjectivity is a property that can be associated with word senses. We

show that subjectivity provides a natural grouping of word senses. [Wiebe and Mihalcea,

2006] also demonstrate that subjectivity can be utilized to improve WSD. We show that

a coarse-grained WSD variant (SWSD) improves contextual subjectivity analysis. [Gyamfi

et al., 2009] shows in a study that even in subjectivity lexicons, a large proportion – almost

50% – of the senses are objective. We demonstrate that ambiguity is also prevalent in a

corpus.

Recently, some researchers have exploited fine grained WSD in methods for subjectivity

analysis. They are [Ar et al., 2011], [Mart́ın-Wanton et al., 2010], and [Rentoumi et al.,

2009]. Their approaches are very different from ours. [Ar et al., 2011] benefit from WSD

for document-level polarity classification. They represent a document as a bag-of-senses

instead of a bag-of-words. This means a document consisting of words gets mapped to a

document consisting of corresponding word senses. In contrast to our work, [Ar et al., 2011]

do not disambiguate the subjectivity or polarity of a word explicitly. To be specific, their

approach lacks any special treatment of the underlying task that is subjectivity analysis.

When the bag-of-senses representations are created by oracle information, the system shows

a large improvement over the unigram bag-of-words model. But, when the bag-of-senses

representation is created automatically by fine-grained WSD, the improvement is not signif-

icant. The results indicate that fine-grained WSD is not accurate enough for this kind of

application, even though [Ar et al., 2011] concentrate on a single domain – travel reviews

– and utilize domain-specific WSD. In contrast, our work achieves significant improvement
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with automatic coarse-grained WSD. Our work is also more general in the sense that we

do not restrict ourselves to a single domain. Another difference is that our target tasks

are expression-level. [Rentoumi et al., 2009] deals with polarity classification of news head-

lines. [Rentoumi et al., 2009] first determines the sense of a word instance and then assign

polarity to the sense according to a polarity lexicon. They train a supervised classifier on

sense-level polarity information. Their approach is limited only to figurative expressions

where our approach is more general and can be applied to arbitrary text. [Mart́ın-Wanton

et al., 2010] deals with polarity classification of short newspaper quotes. They follow a

similar approach to [Rentoumi et al., 2009]. The only difference is that they aggregate the

polarity information of single word instances (senses) to the enclosing quote in an unsuper-

vised way. Both [Mart́ın-Wanton et al., 2010], and [Rentoumi et al., 2009] disambiguate

words for their polarity explicitly. Our work differs in that we disambiguate lexicon clues

for their subjectivity. None of this previous work investigates performing a coarse-grained

variation of WSD such as SWSD to improve their application results, as we do in our work.

A notable exception is [Su and Markert, 2010], who exploit SWSD to improve the per-

formance on a contextual NLP task, as we do. While our task is subjectivity analysis, their

task is English-Chinese lexical substitution. [Su and Markert, 2010] adopt our definition of

SWSD. As we do, they manually annotate word senses, and exploit SENSEVAL data as

training data for SWSD. They do not directly annotate words in context with S and O

labels, as we do in our work. Further, they do not separately evaluate a SWSD system

component. They incorporate SWSD information as a single feature to the base lexical

substitution classifier, as we do in one of our integration methods.

Many WSD systems use WordNet as their sense inventory. Although WordNet is an

established lexical resource, the fine grained sense distinctions in WordNet create an up-

perbound for the achievable performance of WSD systems. [Palmer et al., 2004] reports

44



an inter-annotator agreement of 72.5% for the English all-words test set at SENSEVAL 3.

Many groups worked on the grouping of WordNet senses. They aim for a more coarse-grained

sense inventory to overcome performance shortcomings related to fine-grained sense distinc-

tions. [Mihalcea and Moldovan, 2001] derived semantic and probabilistic rules to group sim-

ilar senses in WordNet in an unsupervised approach. Their efforts resulted in a new version

of WordNet with 26% less polysemy and minimal error rate as measured on a sense tagged

corpus. [Navigli, 2006] and [Palmer et al., 2004] map WordNet senses to a coarse-grained

sense inventory reporting improved inter-annotator agreement and system performance on

the coarse grained level. In the former work, the mapping is done via an automatic system

utilizing Lesk-like and complex semantic features. In the latter work, the mapping is done

manually - [Snow et al., 2007] integrates many previously proposed features based on Word-

Net similarity metrics, corpus statistics, and mappings to existing lexical resources, building

a supervised system for merging WordNet senses. The OntoNotes project [Pradhan and

Xue, 2009] is another important work in this field . Linguists and annotators work together

to group WordNet senses with the goal to have high-interannoter agreement. Our work is

similar in the sense that we reduce all senses of a word to two senses (S/O). The difference

is the criterion driving the grouping. Related work concentrates on syntactic and semantic

similarity between senses to group them. They usually move away from polysemous sense

distinctions and focus more on homonymous sense distinctions, which are easy to make. In

contrast, our grouping is driven by subjectivity, with a specific application area in mind,

namely subjectivity analysis.

45



4.0 NON-EXPERT ANNOTATIONS

In chapter 3, we see that supervised SWSD achieves high accuracy especially on highly am-

biguous words, and substantially outperforms WSD on the same dataset. More importantly,

the integration of SWSD results in substantial improvement for contextual subjectivity anal-

ysis. Although the results are very promising, there are three shortcomings. First, we are

not able to apply SWSD to contextual opinion analysis on a large scale, due to a shortage of

annotated data. Two questions arise: is it feasible to obtain greater amounts of the needed

data, and do SWSD performance improvements on contextual opinion analysis hold on a

larger scale. Second, the annotations in chapter 3 are piggy-backed on SENSEVAL sense-

tagged data, which are fine-grained word sense annotations created by trained annotators.

A concern is that SWSD performance improvements on contextual opinion analysis can only

be achieved using such fine-grained expert annotations, the availability of which is limited.

Third, in chapter 3, we define manual rules to integrate SWSD into contextual subjectivity

analysis. Although these rules have the advantage that they transparently show the effects

of SWSD, they are somewhat ad hoc. Likely, they are not optimal and are holding back the

potential of SWSD to improve contextual opinion analysis.

In this chapter, we investigate (1) the feasibility of obtaining a substantial amount of

annotated data and expand the coverage of our SWSD system (2) whether performance

improvements on contextual opinion analysis can be realized on a larger scale, and (3)

whether those improvements can be realized with subjectivity sense tagged data that is not
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built on expert full-inventory sense annotations. For this purpose, we obtain non-expert

annotations via Amazon Mechanical Turk (MTurk), a cheap and fast alternative to expert

annotations.

In section 4.1, we give general background information on Amazon Mechanical Turk

(MTurk). Section 4.2 describes how we set up the subjectivity sense tagging for the MTurk

environment and how we evaluate the quality of non-expert annotations. In Section 4.3, we

build a SWSD system on non-expert annotations and exploit non-expert SWSD for sense-

aware subjectivity analysis. In the same section, we also introduce new integration methods.

The research presented in this chapter is published in [Akkaya et al., 2010, Akkaya et al.,

2011]

4.1 AMAZON MECHANICAL TURK

Amazon Mechanical Turk (MTurk)1 is a marketplace for so-called “human intelligence tasks”

or HITs. MTurk has two kinds of users: providers and workers. Providers create HITs using

the Mechanical Turk API and, for a small fee, upload them to the HIT database. Workers

search through the HIT database, choosing which to complete in exchange for monetary

compensation. Anyone can sign up as a provider and/or worker. Each HIT has an associated

monetary value, and after reviewing a worker’s submission, a provider may choose whether

to accept the submission and pay the worker the promised sum or to reject it and pay

the worker nothing. HITs typically consist of tasks that are easy for humans but difficult

or impossible for computers to complete quickly or effectively, such as annotating images,

transcribing speech audio, or writing a summary of a video.

Recently researchers have been investigating Amazon Mechanical Turk (MTurk) as a

1http://mturk.amazon.com
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source of non-expert natural language annotation [Kaisser and Lowe, 2008,Mrozinski et al.,

2008]. The annotations obtained from MTurk workers are noisy by nature, because MTurk

workers are not trained for the underlying annotation task. It is understandable that not

every worker will provide high-quality annotations, depending on their background and in-

terest. Unfortunately, some MTurk workers do not follow the annotation guidelines and

carelessly submit annotations in order to gain economic benefits with only minimal effort.

We define this group of workers as spammers. One challenge for requesters using MTurk

is that of filtering out spammers and other workers who consistently produce low-quality

annotations. It is essential to distinguish between workers as well-meaning annotators and

workers as spammers who should be filtered out as a first step when utilizing MTurk.

MTurk provides several types of built-in statistics, known as qualifications, in order to

allow requesters to restrict the range of workers who can complete their tasks. One such

qualification is approval rating, a statistic that records a worker’s ratio of accepted HITs

compared to the total number of HITs submitted by that worker. Providers can require

that a worker’s approval rating be above a certain threshold before allowing that worker

to submit one of his/her HITs. Country of residence and lifetime approved number of

HITs completed also serve as built-in qualifications that providers may check before allowing

workers to access their HITs.2 In addition, MTurk allows providers to define their own

qualifications. Typically, provider-defined qualifications are used to ensure that HITs which

require particular skills are only completed by qualified workers. In most cases, workers

acquire provider-defined qualifications by completing an online test. Mturk also provides a

mechanism by which multiple unique workers can complete the same HIT. The number of

times a HIT is to be completed is known as the number of assignments for the HIT. By

2According to the terms of use, workers are prohibited from having more than one account, but to our

knowledge there is no method in place to enforce this restriction. Thus, a worker with a poor approval rating

could simply create a new account, since all accounts start with an approval rating of 100%.
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having multiple workers complete the same HIT, techniques such as majority voting among

the submissions can be used to aggregate the results for some types of HITs, resulting in a

higher-quality final answer. Previous work [Snow et al., 2008] demonstrates that aggregating

worker submissions often leads to an increase in quality.

4.2 AMAZON MECHANICAL TURK FOR SWSD

4.2.1 Subjectivity Sense Tagging via Amazon Mechanical Turk

In this section, we describe how subjectivity word sense tagging is done by MTurk workers.

We try to keep the annotation task for the worker as simple as possible. Thus, we do

not directly ask them if the instance of a target word has a subjective or an objective sense

(without any sense inventory), because the concept of subjectivity is fairly difficult to explain

to someone who does not have any linguistics background. Instead we show MTurk workers

two sets of senses – one subjective set and one objective set – for a specific target word and a

text passage in which the target word appears. Their job is to select the set that best reflects

the meaning of the target word in the text passage. The specific sense set automatically gives

us the subjectivity label of the instance. This makes the annotation task easier for them

as [Snow et al., 2008] shows that WSD can be done reliably by MTurk workers. This approach

presupposes a set of word senses that have been annotated as subjective or objective. The

annotation of senses in a dictionary for subjectivity is not difficult for an expert annotator.

Moreover, it needs to be done only once per target word, allowing us to collect hundreds of

subjectivity labelled instances for each target word through MTurk.

In this annotation task, we do not inform the MTurk workers about the nature of the

sets. This means the MTurk workers have no idea that they are annotating subjectivity
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Sense Set1 (Subjective)
{ look, appear, seem } – give a certain impression or have a certain outward aspect; ”She seems to be

sleeping”; ”This appears to be a very difficult problem”; ”This project looks fishy”; ”They appeared like

people who had not eaten or slept for a long time”

{ appear, seem } – seem to be true, probable, or apparent; ”It seems that he is very gifted”; ”It appears

that the weather in California is very bad”

Sense Set2 (Objective)
{ appear } – come into sight or view; ”He suddenly appeared at the wedding”; ”A new star appeared on

the horizon”

{ appear, come out } – be issued or published, as of news in a paper, a book, or a movie; ”Did your latest

book appear yet?”; ”The new Woody Allen film hasn’t come out yet”

{ appear, come along } – come into being or existence, or appear on the scene; ”Then the computer came

along and changed our lives”; ”Homo sapiens appeared millions of years ago”

{ appear } – appear as a character on stage or appear in a play, etc.; ”Gielgud appears briefly in this

movie”; ”She appeared in ‘Hamlet’ on the London

{ appear } – present oneself formally, as before a (judicial) authority; ”He had to appear in court last

month”; ”She appeared on several charges of theft”

Figure 11: Sense sets for target word “appear”.

of senses; they are just selecting the set which contains a sense matching the usage in the

sentence or being as similar to it as possible. This ensures that MTurk workers are not

biased by the contextual subjectivity of the sentence while tagging the target word instance.

Below, we describe a sample annotation problem. An MTurk worker has access to two

sense sets of the target word “appear” as seen in Figure 11. The information that the first

sense set is subjective and second sense set is objective is not available to the worker.

The worker is presented with the following text passage holding the target word “appear”.

The worker should be able to understand that “appeared” refers to the outward impression

given by “Charles”. This use of appear is most similar to the first entry in sense set one;

thus, the correct answer for this problem is Sense Set-1.

(4.1) It’s got so bad that I don’t even know what to say. Charles appeared somewhat

50



embarrassed by his own behavior. The hidden speech was coming, I could tell.

4.2.2 Annotation Quality

This section gives details on the conducted experiments to test if built-in methods for annota-

tion quality are enough to avoid spammers and if we can utilize MTurk to collect high-quality

annotations for SWSD.

4.2.2.1 Experimental Design We chose randomly 8 target words that have a distri-

bution of subjective and objective instances in senSWSD with less skew than 75%. That is,

no more than 75% of a word’s senses are subjective or objective. Our concern is that using

skewed data might bias the workers to choose from the more frequent label without thinking

much about the problem. Another important fact is that these words with low skew are

more ambiguous and responsible for more false hits. Thus, these target words are the ones

for which we really need subjectivity word sense disambiguation. For each of these 8 target

words, we select 40 passages from senSWSD in which the target word appears, to include in

our experiments. Table 9 summarizes the selected target words and their label distribution.

In this table, frequent label percentage (FLP) represents the skew for each word. A word’s

FLP is equal to the percent of the senses that are of the most frequently occurring type of

sense (subjective or objective) for that word.

We believe this annotation task is a good candidate for attracting spammers. This task

requires only binary annotations, where the worker just chooses from one of the two given

sets, which is not a difficult task. Since it is easy to provide labels, we believe that there will

be a distinct line, with respect to quality of annotations, between spammers and mediocre

annotators.

For our experiments, we created three different HIT groups each having different quali-
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Word FLP Word FLP

appear 55% fine 72.5%

judgment 65% solid 55%

strike 62.5% difference 67.5%

restraint 70% miss 50%

Average 62.2%

Table 9: Frequent label percentages of the target words in the MTurk experiment.

fication requirements but sharing the same data. To be concrete, each HIT group consists

of the same 320 instances: 40 instances for each target word listed in Table 9. Each HIT

presents an MTurk worker with four instances of the same word in a text passage – this

makes 80 HITs for each HIT group – and asks him to choose the set to which the activated

sense belongs. We know for each HIT the mapping between sense set numbers and subjec-

tivity. Thus, we can evaluate each HIT response on our gold-standard data senSWSD. We

pay seven cents per HIT. We consider this to be generous compensation for such a simple

task.

There are many builtin qualifications in MTurk. We concentrated only on three of

them: location, HIT approval rate, and approved HITs, as discussed in Section 4.1. In our

experience, these qualifications are widely used for quality assurance. As mentioned before,

we created three different HIT groups in order to see how well different built-in qualification

combinations do with respect to filtering spammers. These groups – starting from the least

constrained to the most constrained – are listed in Table 10.

Group1 required only that the MTurk workers are located in the US. This group is the
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Group1 Location: USA

Group2
Location: USA

HIT Approval Rate > 96%

Group3

Location: USA

HIT Approval Rate > 96%

Approved HITs > 500

Table 10: Constraints for each HIT group.

least constrained one. Group2 additionally required an approval rate greater than 96%.

Group3 is the most constrained one, requiring a lifetime approved HIT number to be greater

than 500, in addition to the qualifications in Group1 and Group2.

We believe that neither location nor approval rate and location together is enough to

avoid spammers. While being a US resident does to some extent guarantee English profi-

ciency, it does not guarantee well-thought answers. Since there is no mechanism in place

preventing users from creating new MTurk worker accounts at will and since all worker

accounts are initialized with a 100% approval rate, we do not think that approval rate is

sufficient to avoid serial spammers and other poor annotators. We hypothesize that the

workers with high approval rate and a large number of approved HITs have a reputation to

maintain, and thus will probably be careful in their answers. We think it is unlikely that

spammers will have both a high approval rate and a large number of completed HITs. Thus,

we anticipated that Group3’s annotations will be of higher quality than those of the other

groups.

Note that an MTurk worker who has access to the HITs in one of the HIT groups also has
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access to HITs in less constrained groups. For example, an MTurk worker who has access to

HITs in Group3 also has access to HITs in Group2 and Group1. We did not prevent MTurk

workers from working in multiple HIT groups because we did not want to influence worker

behavior, but instead simulate the most realistic annotation scenario.

In addition to the qualifications described above, we also required each worker to take a

qualification test in order to prove their competence in the annotation task. The qualification

test consists of 10 simple annotation questions identical in form to those present in the HITs.

These questions are split evenly between two target words, “appear” and “restraint”. There

are a total of five subjective and five objective usages in the test. We required an accuracy

of 90% in the qualification test, corresponding to a Kappa score of .80, before a worker

was allowed to submit any of our HITs. If a worker failed to achieve a score of 90% on an

attempt, that worker could try the test again after a delay of 4 hours.

We collected three sets of assignments within each HIT group. In other words, each HIT

was completed three times by three different workers in each group. This gives us a total

of 960 assignments in each HIT group. A total of 26 unique workers participated in the

experiment: 17 in Group1, 17 in Group2 and 8 in Group3. As mentioned before, a worker

is able to participate in all the groups for which he is qualified. Thus the unique worker

numbers in each group does not sum up to the total number of workers in the experiment,

since some workers participated in the HITs for more than one group. Figure 12 summarizes

how workers are distributed between groups.

We are interested in how accurate the MTurk annotations are with respect to gold-

standard data. We are also interested in how the accuracy of each group differs from the

others. We evaluate each group itself separately on the gold-standard data. Additionally, we

evaluate each worker’s performance on the gold-standard data and inspect their distribution

in various groups.
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Figure 12: Venn diagram illustrating worker distribution.

4.2.2.2 Group Evaluation As mentioned in the previous section, we collect three an-

notations for each HIT. They are assigned to respective trials in the order submitted by the

workers. The results are summarized in Table 11. Trials are labeled as TX and MV is the

majority vote annotation among the three trials. The final column contains the baseline

agreement where a worker labels each instance of a word with the most frequent label of

that word in the gold-standard data. High percentage agreement – frequent label percentage

is 62.2 – and kappa scores in all groups and trials provide evidence that subjectivity word

sense tagging can be done reliably by MTurk workers. This is very promising considering

the low cost and short time required to obtain MTurk annotations.

When we compare groups with each other, we see that the best trial result is achieved in

Group3. However, according to McNemar’s test [Dietterich, 1998], there is no statistically

significant difference between any trial of any group. On the other hand, the best majority

vote annotation is achieved in Group2, but again there is no statistically significant difference

between any majority vote annotation of any group. These results are surprising to us, since

we do not see any significant difference in the quality of the data throughout different groups.
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Group3 Group2 Group1

T1 T2 T3 MV T1 T2 T3 MV T1 T2 T3 MV

Accuracy 89.7 86.9 86.6 88.4 87.2 86.3 88.1 90.3 84.4 87.5 87.5 88.4

Kappa .79 .74 .73 .77 .74 .73 .76 .81 .69 .75 .75 .77

Table 11: Accuracy and kappa scores for each group of workers.

4.2.2.3 Worker Evaluation In this section, we evaluate all 26 workers and group them

as either spammers or well-meaning workers. All workers who deviate from the gold-standard

by a large margin beyond a certain threshold will be considered to be spammers. As dis-

cussed in Section 4.2.2.1, we require all participating workers to pass a qualification test

before answering HITs. Thus, we know that they are competent to do subjectivity sense

annotations, and providing consistently erroneous annotations means that they are probably

spammers. We think a kappa score of 0.6 is a good threshold to distinguish spammers from

well-meaning workers. For this threshold, we had 2 spammers participating in Group1, 2

spammers in Group2 and 0 spammers in Group3. Table 12 presents spammer count and

spammer percentage in each group for various threshold values. We see that Group3 has

consistently fewer spammers and a smaller spammer percentage. The lowest kappa scores

for Group1, Group2, and Group3 are .35, .40, and .69, respectively. The mean kappa scores

for Group1, Group2, and Group3 are .73, .75, and .77, respectively.

These results indicate that Group3 is less prone to spammers, apparently contradicting

Section 4.2.2.2. We see the reason when we inspect the data more closely. It turns out that

spammers contributed in Group1 and Group2 only minimally. On the other hand there are

two mediocre workers (Kappa of 0.69) who submit around 1/3 of the HITs in Group3. This
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Threshold 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

Spammer Count

G1 2 2 2 2 2 4 7 9

G2 1 2 2 2 2 3 5 8

G3 0 0 0 0 0 0 2 2

Spammer Percentage

G1 12% 12% 12% 12% 12% 24% 41% 53%

G2 6% 12% 12% 12% 12% 12% 29% 42%

G3 0% 0% 0% 0% 0% 0% 25% 25%

Table 12: Spammer representation in groups.

behavior might be a coincidence. In the face of contradicting results, we think that we need a

more extensive study to derive conclusions about the relation between spammer distribution

and built-in qualification.

4.2.2.4 Learning Effect Another important question about MTurk workers is whether

they learn to provide better annotations over time in the absence of any interaction and

feedback. The presence of a learning effect may support working with the same workers over

a long time and creating private groups of workers.

Expert annotators can learn to provide more accurate annotations over time. [Passonneau

et al., 2006] reports a learning effect early in the annotation process. This might be due to

the formal and informal interaction between annotators. Another possibility is that the

annotators might get used to the annotation task over time. This is to be expected if there

is not an extensive training process before the annotation takes place.

On the other hand, the MTurk workers have no interaction among themselves. They
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do not receive any formal training and do not have access to true annotations except a

few examples if provided by the requester. These properties make MTurk workers a unique

annotation workforce. We are interested if the learning effect common to expert annotators

holds in this unique workforce in the absence of any interaction and feedback. That may

justify working with the same set of workers over a long time by creating private groups of

workers.

We sort annotations of a worker after the submission date. This way, we get for each

worker an ordered list of annotations. We split the list into bins of size 40 and we test for

an increasing trend in the proportion of successes over time. We use the Chi-squared Test

for binomial proportions [Rosner, 2006]. Using this test, we find that all of the p-values

are substantially larger than 0.05. Thus, there is no increasing trend in the proportion of

successes and no learning effect. This is true for both mediocre workers and very reliable

workers. We think that the results may differ for harder annotation tasks where the input

is more complex and requires some adjustment.

4.3 SWSD ON NON-EXPERT ANNOTATIONS

We want to test if the non-expert annotations are reliable enough to train accurate SWSD

classifiers and if we can exploit them for successful sense-aware subjectivity analysis.

4.3.1 In Vivo Evaluation

In section 4.2.2.2, we see that MTurk annotations has a very good agreement with the expert

annotations. Now, we want to see if we can train accurate SWSD classifiers on them. For this

purpose, we compare the performance of a SWSD system trained on non-expert annotations
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Acc p-value

SWSDGOLD 79.2 -

SWSDMJL 78.4 0.542

SWSDMJC 78.8 0.754

Table 13: Comparison of SWSD systems

with a SWSD system trained on expert annotations.

We use Group3 data. Note that we gathered three labels for each instance. This gives us

two options to train the non-expert SWSD system: (1) training the system on the majority

vote labels (SWSDMJL) (2) training three systems on the three separate label sets and taking

the majority vote prediction (SWSDMJC). Additionally, we train an expert SWSD system

(SWSDGOLD) – a system trained on gold standard expert annotations. All these systems

are trained on 40 instances of the eight target words for which we have both non-expert

and expert annotations and are evaluated on the remaining instances of the gold-standard

corpus. This makes a total of 923 test instances for the eight target words with a majority

class baseline of 61.8.

Table 13 reports micro-average accuracy of each system and the two-tailed p-value be-

tween the expert SWSD system and the two non-expert SWSD systems. The p-value is

calculated with McNemar’s test. It shows that there is no statistically significant difference

between classifiers trained on expert gold-standard annotations and non-expert annotations.

These results provide evidence that non-expert annotations are as good as expert annota-

tions for training SWSD classifiers. We adopt SWSDMJL in all our following experiments,

because it is more efficient.
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4.3.2 In Vitro Evaluation

In section 4.3.1, we see that we can rely on non-expert annotations to train accurate SWSD

classifiers. Now, we take a larger annotation effort and test if we can exploit non-expert

SWSD for sense-aware subjectivity analysis. This section gives details on the conducted

experiments to test if we can exploit non-expert SWSD for successful sense-aware subjectivity

analysis and if learning based SWSD integration will perform better than rule-based SWSD

integration

4.3.2.1 Data Annotation For our experiments, we have multiple goals, which effect

our decisions on how to create the subjectivity sense-tagged corpus via MTurk. First, we

want to be able to disambiguate more target words. This way, SWSD will be able to

disambiguate a larger portion of the MPQA Corpus allowing us to evaluate the effect of

SWSD on contextual opinion analysis on a larger scale. This will also allow us to investigate

additional integration methods of SWSD into contextual opinion analysis rather than simple

ad hoc manual rules. Second, we want to show that we can rely on non-expert annotations

instead of expert annotations, which will make an annotation effort on a larger-scale both

practical and feasible, timewise and costwise. Optimally, we could have annotated via MTurk

senSWSD in order to compare the effect of a non-expert SWSD system on contextual opinion

analysis directly with the results reported for an expert SWSD system. But, this would have

diverted our resources to reproduce the same corpus and contradict our goal to extend the

subjectivity sense-tagged corpus to new target words. Moreover, we have already shown in

Section 4.3.1 that non-expert annotations can be utilized to train reliable SWSD classifiers.

It is reasonable to believe that similar performance on the SWSD task will reflect to similar

improvements on contextual opinion analysis. Thus, we decided to prioritize creating a

subjectivity sense-tagged corpus for a totally new set of words. We aim to show that the
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favourable results will still hold on new target words relying on non-expert annotations.

We chose our target words from the subjectivity lexicon of [Wilson et al., 2005], because

we know they have subjective usages. The contextual opinion systems we want to improve

rely on this lexicon. We call the words in the lexicon subjectivity clues. At this stage, we

want to concentrate on the frequent and ambiguous subjectivity clues. We chose frequent

ones, because they will have larger coverage in the MPQA Corpus. We chose ambiguous

ones, because these clues are the ones that are most important for SWSD. Choosing most

frequent and ambiguous subjectivity clues guarantees that we utilize our limited resources

in the most efficient way. We judge a clue to be ambiguous if it appears more than 25%

and less than 75% of the times in a subjective expression. We get these statistics by simply

counting occurrences in the MPQA Corpus inside and outside of subjective expressions.

There are 680 subjectivity clues that appear in the MPQA Corpus and are ambiguous.

Out of those, we selected the 90 most frequent that have to some extent distinct objective

and subjective senses in WordNet. We annotated the WordNet senses of those 90 target

words. For each target word, we selected approximately 120 instances randomly from the

GIGAWORD Corpus. In a first phase, we collected three sets of MTurk annotations for the

selected instances. In this phase, MTurk workers base their judgements on two sense sets

they observe. This way, we get training data to build SWSD classifiers for these 90 target

words.

The quality of these classifiers is important, because we will exploit them for contextual

opinion analysis. Thus, we evaluate them first by 10-fold cross-validation. We split the

target words into three groups. If the majority class baseline of a word is higher than 90%,

it is considered as skewed (skewed words have a performance at least as good as the majority

class baseline). If a target word improves over its majority class baseline by 25% in accuracy,

it is considered as good. Otherwise, it is considered as mediocre. This way, we end up with
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24 skewed, 35 good, and 31 mediocre words. There are many possible reasons for the less

reliable performance for the mediocre group. We hypothesize that a major problem is the

similarity between the objective and subjective sense sets of a word, thus leading to poor

annotation quality. To check this, we calculate the agreement between three annotation sets

and report averages. The agreement in the mediocre group is 78.68%, with a κ value of

0.57, whereas the average agreement in the good group is 87.51%, with a κ value of 0.75.

These findings support our hypothesis. Thus, we created usage inventories for the words

in the mediocre group. Usage inventories are basically lists of sample usages of a target

word. We group them into two sets according their subjectivity as we do with senses, from

which the worker can choose the most similar set. We initiated a second phase of MTurk

annotations. We collect for the mediocre group another three sets of MTurk annotations for

120 instances, this time utilizing usage inventories. The 10-fold cross-validation experiments

show that nine of the 31 words in the mediocre group shift to the good group. Only for

these nine words, we accept the annotations collected via usage inventories. For all other

words, we use the annotations collected via sense inventories. From now on, we will refer

to this non-expert subjectivity sense-tagged corpus consisting of the tagged data for all 90

target words as the MTurkSWSD Corpus (agreement on the entire MTurkSWSD corpus is

85.54%, κ:0.71). These 90 target words have 3737 instances in the MPQA Corpus. We refer

to this subset of the MPQA Corpus as MTurkMPQA. This subset makes up the coverage of

the SWSD trained on the MTurkSWSD Corpus. Note that MTurkMPQA is 5.2 times larger

than senMPQA.

4.3.2.2 Rule-Based SWSD Integration In this section, we train a SWSD system

on MTurkSWSD and evaluate its effect on the two expression-level contextual classifiers

introduced earlier via rule-based integration. The experiments are analogous to the ones
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Baseline Acc OF SF

MTurkMPQA 52.4% (O)
OS/O 67.1 68.9 65.0

R1R2 71.1 72.7 69.2

senMPQA 63.1% (O)
OS/O 75.4 65.4 80.9

R1R2 81.3 75.9 84.8

Table 14: S/O classifier with and without SWSD.

in Section 3.4.3.3 and 3.4.3.4. The only difference is that we train the SWSD system on

MTurkSWSD and evaluate its effect on MTurkMPQA.

We use the exact same rules and adopt the same confidence threshold. Table 14 holds

the comparison of the original contextual classifier and the classifier with SWSD support

on senMPQA and on MTurkMPQA. OS/O is the original S/O classifier; R1R2 is the system

with SWSD support utilizing both rules.

In Table 14 we see that R1R2 achieves 4% percentage points improvement in accuracy

over OS/O on MTurkMPQA. The improvement is statistically significant at the p < .01 level

with McNemar’s test. It is accompanied with improvements both in subjective F-measure

(SF) and objective F-measure (OF). It is not possible to directly compare improvements

on senMPQA and MTurkMPQA since they are different subsets of the MPQA Corpus.

SWSD support brings 24% error reduction on senMPQA over the original S/O classifier. In

comparison, on MTurkMPQA, the error reduction is 12%. We see that the improvements

on the large MTurkMPQA set still hold, but not as strong as on senMPOA. This might be

due to the brittleness of the rule-based integration.

Table 15 holds the comparison of the original N/P classifier with and without SWSD
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Baseline Acc NF PF

MTurkMPQA 70.6% (P)
ON/P 72.3 82.0 39.8

R4 74.5 84.0 37.8

senMPQA 73.9% (P)
ON/P 79.0 86.7 50.3

R4 81.6 88.6 52.3

Table 15: N/P classifier with and without SWSD

support on senMPQA and on MTurkMPQA. ON/P is the original N/P classifier; R4 is the

system with SWSD support utilizing rule R4. Since our main focus is not rule-based inte-

gration, we did not run the second step of the polarity classifier. We report the second step

result below for the learning-based SWSD integration in section 4.3.2.3.

In Table 15, we see that R4 achieves 2.2 percentage points improvement in accuracy

over ON/P on MTurkMPQA. The improvement is statistically significant at the p < .01 level

with McNemar’s test. It is accompanied with improvement only in objective F-measure

(OF). SWSD support brings 12.4% error reduction on senMPQA. On MTurkMPQA, the

error reduction is 8%. We see that the rule-based SWSD integration still improves both

contextual classifiers on MTurkMPQA, but the gain is again not as large as on senMPQA.

4.3.2.3 Learning SWSD Integration Now that we can disambiguate a larger portion

of the MPQA Corpus, we can investigate machine learning methods for SWSD integration to

deal with the brittleness of the rule-based integration. We introduce two learning methods

to apply SWSD to the contextual classifiers. For the learning methods, we rely on exactly

the same information as the rule-based integration: (1) SWSD output, (2) the contextual

classifier’s output, (3) the contextual classifier’s confidence, and (4) the presence of another
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Acc OF SF

OS/O 67.1 68.9 65.0

R1R2 71.1 72.7 69.2

EXTS/O 80.0 81.4 78.3

MERGERS/O 78.2 80.3 75.5

Table 16: S/O classifier with learned SWSD integration

clue instance in the same expression. The rationale is the same as for the rule-based integra-

tion, namely to relate sense subjectivity and contextual subjectivity. The learning methods

are as follows :

Method1 : In the first method, we extend the machine learning features of the un-

derlying contextual classifiers by adding (1) and (4) from above. We evaluate the extended

contextual classifiers on MTurkMPQA via 10-fold cross-validation. Tables 16 and 17 hold

the comparison of Method1 (EXTS/O, EXTN/P) to the original contextual classifiers (OS/O,

ON/P) and to the rule-based SWSD integration (R1R2, R4). We see substantial improve-

ment for Method1. It achieves 39% error reduction over OS/O and 25% error reduction over

ON/P. For both classifiers, the improvement in accuracy over the rule-based integration is

statistically significant at the p < .01 level with McNemar’s test.

Method2 : This method defines a third classifier that accepts as input the contextual

classifier’s output and the SWSD output and predicts what the contextual classifier’s output

should have been. We can think of this third classifier as the learning counterpart of the

manual rules from Section 4.3.2.2, since it actually learns when to flip the contextual clas-

sifier’s output considering SWSD evidence. Specifically, this merger classifier relies on four
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Acc NF PF

ON/P 72.3 82.0 39.8

R4 74.5 84.0 37.8

EXTN/P 79.1 85.7 61.1

MERGERN/P 80.4 86.7 62.8

Table 17: N/P classifier with learned SWSD integration

machine learning features (1), (2), (3), (4) from above (the exact same information used in

rule-based integration). Because it is a supervised classifier, we need training data where

we have clue instances with the corresponding contextual classifier and SWSD predictions

and also the actual contextual label. Fortunately, we can use senMPQA for this purpose.

We train our merger classifier on senMPQA (we get contextual classifier predictions via

10-fold cross-validation on the MPQA Corpus) and apply it to MTurkMPQA. We use an

SVM classifier from the Weka package [Witten and Frank., 2005] with its default settings.

Tables 16 and 17 hold the comparison of Method2 (MERGERS/O, MERGERN/P) to the

original contextual classifiers (Oo/s, ON/P) and the rule-based SWSD integration (R1R2,

R4). It achieves 29% error reduction over OS/O and 29% error reduction over ON/P. The

improvement on the rule-based integration is statistically significant at the p < .01 level with

McNemar’s test. Method2 performs better (statistically significant at the p < .05 level) than

Method1 for the N/P classifier but worse (statistically significant at the p < .01 level) for

the S/O classifier.

We see that Method2 is the best method to improve the N/P classifier, which is the

first step of the contextual polarity classifier. To assess the overall improvement in polarity
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Acc NF NgF PsF

MTurkMPQA
OPs/Ng/N 72.1 83.0 34.2 15.0

MERGERN/P 77.8 87.4 53.0 27.7

senMPQA
OPs/Ng/N 77.6 87.2 39.5 40.0

R4 80.6 89.1 43.2 44.0

Table 18: Polarity classifier with and without SWSD.

classification, we run the second step of the contextual polarity classifier after correcting

the first step with Method2. Table 18 summarizes the improvement propagated to Ps/Ng/N

classification. For comparison, we also include results on senMPQA. Method2 results in 20%

error reduction in accuracy over OPs/Ng/N (R4 achieves 13.4% error reduction on senMPQA).

The improvement on the rule-based integration is statistically significant at the p < .01 level

with McNemar’s test. More importantly, the F-measure for all the labels improves. This

indicates that non-expert MTurk annotations can replace expert annotations for our end-goal

– improving contextual subjectivity analysis – while reducing time and cost requirements by

a large margin. Moreover, we see that the improvements scale up to new subjectivity clues.

4.4 SUMMARY AND DISCUSSION

In this chapter, we utilized a large pool of non-expert annotators (MTurk) to collect subjec-

tivity sense-tagged data for SWSD. We presented our subjectivity sense annotation task to

MTurk workers in a very simple way. The annotation results show that subjectivity word

sense annotation can be done reliably by MTurk workers. This is very promising since the
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MTurk annotations can be collected for low costs in a short time period.

We showed that non-expert annotations are as good as expert annotations for training

SWSD classifiers. The additional subjectivity sense-tagged data enabled us to evaluate the

benefits of SWSD on contextual subjectivity analysis on a subset of MPQA that is five

times larger than senMPQA. We demonstrated that SWSD classifiers trained on non-expert

annotations can be exploited to improve contextual opinion analysis. The results support

our fourth hypothesis:

Hypothesis 4: Crowdsourcing can be utilized to collect high-quality SWSD annotations

in order to train SWSD classifiers with a good performance.

We also experimented with new learning strategies for integrating SWSD into contextual

subjectivity analysis. With the learning strategies, we achieved greater benefits from SWSD

than the rule-based integration strategies on all of the contextual subjectivity analysis tasks.

All these results imply that a large scale general SWSD component, which can help

with various subjectivity and sentiment analysis tasks, is feasible. Overall, we more firmly

demonstrated the potential of SWSD to improve contextual subjectivity analysis.

This chapter also contributes to ongoing work on crowdsourcing – to be specific MTurk –

to create data for human language technologies . We addressed the question of whether built-

in qualifications are enough to avoid spammers. The investigation of worker performances

indicates that the lesser constrained a group is the more spammers it attracts. On the other

hand, we did not find any significant difference between the quality of the annotations for

each group. It turns out that workers considered as spammers contributed only minimally.

We do not know if it is just a coincidence or if it is correlated to the task definition. We

need to do more extensive experiments before arriving at conclusions.

Another aspect we investigated is the learning effect. Our results show that there is no
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improvement in annotator reliability over time. We should not expect MTurk workers to

provide more consistent annotations over time. This will probably be the case in similar

annotation tasks. For harder annotation tasks (e.g. parse tree annotation) things may be

different. An interesting follow-up would be whether showing the answers of other workers

on the same HIT will promote learning.

Non-expert annotations acquired through MTurk can provide an alternative to expert

annotations for many NLP tasks. Although non-expert annotations are inexpensive and fast,

the collection process requires quality control mechanisms to ensure high-quality. In addition

to built-in qualifications MTurk provides, the providers can implement voting schemes, check

points and hidden gold units to screen out unreliable workers and improve quality. We think

that an incremental approach is very useful. To be specific, providers should send data in

subsequent iterations and let only reliable workers continue to the next iteration.

These mechanisms address only one side of the problem, namely unreliable workers.

Perhaps, a more important point is the task definition and design. If a task is too complex

and the instructions and design of a HIT are not clear, we cannot expect to collect reliable

annotations even from well-meaning workers. It is very important to represent a task in

a clear way with simple instructions. If the task is too complex or requires some amount

of expert knowledge, it is best to simplify the task as we did in our experiments or to

divide it in multiple less complex subtasks. [Negri et al., 2011] describes this as a divide and

conquer method. The authors are able to collect large-scale high-quality annotations for

a complex multilingual textual entailment task. They propose to split a complex problem

into self-contained and easy to explain subtasks that are easy to execute without much NLP

expertise and suitable for integration of a variety of control mechanisms discussed earlier. To

summarize, we believe that MTurk can be utilized to collect reliable data for even complex

NLP tasks and the success depends on the task design and quality mechanisms. There is a

69



trade-off, though. The effort put on simplifying a task and assuring quality might at some

point become more time-consuming and expensive than collecting expert annotations.

4.5 RELATED WORK

There has been recently an increasing interest in Amazon Mechanical Turk [Callison-Burch

and Dredze, 2010]. Many researchers have utilized MTurk as a source of non-expert natural

language annotation to create labeled datasets. In [Mrozinski et al., 2008], MTurk workers

are used to create a corpus of why-questions and corresponding answers on which QA systems

may be developed. [Kaisser and Lowe, 2008] work on a similar task. They make use of MTurk

workers to identify sentences in documents as answers and create a corpus of question-

answer sentence pairs. [Parent and Eskenazi, 2010] produces a new sense-tagged corpus

for WSD. MTurk is also considered in other fields than natural language processing. For

example, [Sorokin and Forsyth, 2008] utilizes MTurk for image labeling and [Le et al., 2010]

uses MTurk to collect handwritten text and their transcripts. Our ultimate goal is similar;

namely, to build training data (in our case for SWSD).

Several studies have concentrated specifically on the quality aspect of the MTurk anno-

tations. They investigated methods to assess annotation quality and to aggregate multiple

noisy annotations for high reliability. [Snow et al., 2008] report MTurk annotation quality

on various NLP tasks (e.g. WSD, Textual Entailment, Word Similarity) and define a bias

correction method for non-expert annotators. [Callison-Burch, 2009] uses MTurk workers for

manual evaluation of automatic translation quality and experiments with weighed voting

to combine multiple annotations. [Negri et al., 2011] defines a data collection methodol-

ogy on MTurk to ensure data quality. [Hsueh et al., 2009] define various annotation quality

measures and show that they are useful for selecting annotations leading to more accurate
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classifiers. Our work investigates the effect of built-in qualifications on the quality of MTurk

annotations.

[Hsueh et al., 2009] applies MTurk to get sentiment annotations on political blog snip-

pets. On a similar task, [Yano et al., 2010] applies MTurk to get political bias of blog snip-

pets. [Snow et al., 2008] utilizes MTurk for affective text annotation task. In these works,

MTurk workers annotated larger entities but on a more detailed scale than we do. [Snow

et al., 2008] also investigates a WSD annotation task which is similar to our annotation task.

The difference is the MTurk workers are choosing an exact sense not a sense set.

The strategy of presenting annotators with sets of usages rather than WordNet senses

as we did for a sample of words was inspired by [Erk et al., 2009]. They carry out studies

comparing, among other things, word sense judgments with respect to WordNet senses versus

judgments of word usage similarities, and concluded that both tasks are well defined.
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5.0 REDUCING ANNOTATION EFFORT: CLUSTER AND LABEL

In chapter 4, we see that MTurk can be utilized to collect high-quality annotations for

SWSD and that non-expert SWSD can improve contextual subjectivity analysis. Although

non-expert annotations are cheap and fast, they still incur some cost. In this chapter, we aim

to reduce the human annotation effort needed to generate the same amount of subjectivity

sense tagged data by using a small amount of labeled data and context clustering. We

hypothesize that we can obtain large sets of labeled data by labelling clusters of instances.

We are inspired by how lexicographers create sense inventories. They collect occurrences

of a word in a corpus and group different usages into coherent sets, which they later code

as dictionary definitions. Our goal is similar. We represent each word instance as a feature

vector (i.e. context vector) that describes its context. We try to group word instances into

coherent clusters. If the clusters are reasonably pure – in terms of the meanings of the word

instances they hold –, we can label clusters as a whole instead of labelling all the instances

of a word separately. Of course, such an approach will introduce noise in the labeled data

that we want to keep minimal. Thus, we experiment with novel techniques to achieve pure

clusters: (1) improving the context representation with the help of compositional semantic

models, (2) incorporating the notion of subjectivity into the context representation, and (3)

utilizing constrained clustering to incorporate prior subjectivity knowledge into the clustering

process. Part of the research presented in this chapter is published in [Akkaya et al., 2012]

In section 5.1, we introduce context clustering and distributional semantic models. Sec-
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tion 5.2 describes proposed methods to obtain expressive contextual representations and their

evaluation on the context clustering task. In Section 5.3, we give details on the “cluster and

label” approach and describe our semi-supervised clustering algorithm. In the same section,

we evaluate the quality of the semi-automatically generated subjectivity sense-tagged data.

5.1 CONTEXT CLUSTERING

The goal of context clustering is to cluster target word instances, so that the induced clusters

contain instances used with the same sense. Context clustering takes as input a set of word

instances represented as feature vectors – also called context vectors. The instances are

clustered based on the similarity of their feature vectors. [Schutze, 1998] and [Purandare and

Pedersen, 2004] are two prominent works in this field. The biggest difference between them

is how they represent of the context of a word instance. [Schutze, 1998] uses a distributional

semantic model (DSM) to create context vectors. In contrast, [Purandare and Pedersen,

2004] represents context vectors using local features common to supervised WSD (Table 7).

5.1.1 Distributional Semantic Models

Distributional semantic models (DSMs) [Turney and Pantel, 2010,Sahlgren, 2006,Bullinaria

and Levy, 2007] provide a means for representing word meaning. They are based on the

assumption that the meaning of a word can be inferred from its distribution in text.

A DSM is basically a co-occurrence matrix – also called semantic space – such that each

row vector represents the distribution of a target word across contexts. The context can be a

document, a sentence, or a word window around the target word. In this work, we focus on

the latter one. In that setting, the dimensions of the vector represent co-occurring context
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computer cheese button cat

−−−−→mouse 22 8 16 13

−−→
click 23 0 18 0

−−−→
catch 0 2 0 11

Table 19: A hypothetical word-word co-occurrence matrix

words and hold some score based on the occurrence frequency of the context word near the

target word in the specified window. This co-occurrence vector builds the semantic signature

of the target word. Basically, each target word is described in terms of co-occurring words

in its textual proximity. Table 19 represents a hypothetical word-word co-occurrence matrix

(i.e. semantic space) for the words “mouse”, “click” and “catch”. The dimensions of the

semantic space are “computer”, “cheese”, “button” and “cat”. The co-occurrence vector of

the word “cat”,
−→
cat, is [22, 8, 17, 13], co-occurrence vector of the word “catch”,

−−−→
catch, is

[0, 2, 0, 11] and co-occurrence vector for the word “click”,
−−→
click, is [23, 0, 18, 0]. In this

example, the matrix holds simple co-occurrence frequencies but it can be defined to have

an association score between the target word and context words such as point-wise mutual

information.

Note that DSMs model meanings of words out of context. This means that the rows of the

co-occurrence matrix represent word types rather than word tokens. All contexts and senses

of a target word are accumulated into one vector. For a token-based treatment, [Schutze,

1998] utilizes a second-order representation. That is, [Schutze, 1998] represents each target

word token by averaging type vectors – rows of the semantic space – of the neighbouring

words that occur in its context. For example, the word mouse in the sentence “He caught
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the mouse” will be represented as

−−−→
catch+−−−−→mouse

2
= [11 5 8 12].

5.2 COMPOSITIONAL MODELS

Compositional Models [Erk and Padó, 2008,Mitchell and Lapata, 2008,Thater et al., 2009]

offer a powerful tool to represent words in context. They build on top of conventional DSMs.

The meaning of a word in context (i.e., word token) is computed through composition opera-

tions applied to the target word and its context. [Mitchell and Lapata, 2008] evaluate a good

amount of composition operations. Vector summation and element-wise vector multiplica-

tion are two sample composition operations from [Mitchell and Lapata, 2008]. To illustrate,

Table 20 gives compositional vectors for the word “mouse” in the context of “click” and

“catch” for both operations. click+mouse is computed by summing co-occurrence vectors

of “click” and “mouse” from the semantic space in Table 19. click·mouse is computed by

element-wise multiplication of the co-occurrence vectors of “click” and “mouse” from the

same semantic space. The same is true for catch+mouse and catch·mouse. Note that the

vectors in Table 19 and in Table 20 have the same dimensions. The difference is that the se-

mantic space in Table19 is type-based, where the semantic space in Table 20 is token-based.

In the token-based semantic space, “mouse” will have a different semantic vector depending

on its context. From now on, we will refer to the co-occurrence vectors in the type-based

semantic space as type vectors and the co-occurrence vectors in the token-based semantic

space as token vectors.

From a linguistic perspective, it is appealing that the multiplicative model allows one

vector to pick out the relevant content of the other. Indeed, [Mitchell and Lapata, 2008]

show that element-wise multiplication performs overall better than vector addition and other
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computer cheese button cat

−−→
click +−−−−→mouse 45 8 35 13

−−−→
catch+−−−−→mouse 22 10 17 13

−−→
click ∗ −−−−→mouse 506 0 306 0

−−−→
catch ∗ −−−−→mouse 0 16 0 143

Table 20: Additive and multiplicative composition of co-occurrence vectors

composition operations on a phrase similarity task without the need of parameter tuning.

Thus, in our work, we rely on element-wise multiplication to derive contextual meaning of

words, but there are some obstacles we need to address first. First of all, [Mitchell and

Lapata, 2010] apply their models in a constrained setting applying it to word-pairs related

with specific dependency relations (e.g. verb-object). It is not clear how to apply this

model in longer context. Consider the example in Figure 13. Taking into account only the

verb-object relation and computing begin·strike as the compositional meaning of “strike”

is not sufficient in this context. The words that are most informative for disambiguating

“strike” are “workers” and “mines”. “workers” is related to strike over a “nsubj←|dobj→”

dependency path and “mines” is connected to “strike” over a “prep–at←| nsubj←|dobj→”

dependency path. That simple example shows that we need to utilize longer dependency

paths to reach informative and discriminative context words. Thus, we propose to extend

the model proposed in [Mitchell and Lapata, 2008] to include longer arbitrary dependency

paths.

A simple strategy would be to utilize all possible context words connected to the target

word through a dependency path to compute the compositional representation of the target
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Figure 13: Example for compositional representation

word. But, that might introduce too much noise, since we can reach every word in the

sentence if we fully traverse the dependency tree. Thus, we propose to investigate methods

to filter out uninformative dependency paths (i.e. context words).

5.2.1 Exploiting Richer Contexts

In this section, we introduce the methods we use to choose informative context words of a

target word to incorporate into the compositional representation of that target word.

From now on, we will refer to context words that are related to the target word over

a dependency path as context clues. The most important question is how to filter out the

uninformative context clues. We try four different methods for this purpose. The first two

of them are simple in nature. They define constraints on the type of the context clue :

• content : the context clue should be a content word (i.e., noun, verb, adjective, or

adverb).

• nostop : the content clue cannot be a stop word.

The next two are more elaborate filtering mechanisms. We define two scoring functions

to assign an importance score to each context clue. Our intuition is that context clues which
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carry more information to disambiguate the sense of the target word token should get a

higher score and be chosen to contribute to the compositional representation of the target

word (e.g. “workers” and “mines” in the figure 13 rather than “began”).

The first scoring function keeps track of the change of the type vector of the target word

after applying the type vector of the context clue to it. The hypothesis is that a context

clue which selects out a specific sense of the target word will zero out a substantial amount

of dimensions of the type vector of the target word (i.e., the more dimensions the context

clue zeros out, the better the disambiguation should be). We count the dimensions of the

type vector of the target word which become zero after applying the context clue. In order

to avoid very infrequent context words getting high scores (since they will have lots of zero

dimensions), we put a normalizing factor, the number of zero dimensions of the context clue.

The scoring function, maxzero, is as follows: (zero is a function which returns the number

of zero dimensions in a vector).

maxzero(target, clue) =
zero(target)− zero(target · clue)

zero(clue)

The second scoring function takes into account distributional substitutes of the target

word based on the dependency path and the context clue. By distributional substitutes, we

mean the set of words which are connected to the context clue via the same dependency

relation in our corpus (described in Section 5.2.2.1). Our hypothesis is that the substitute

sets can provide us useful information about the discriminative power of the corresponding

context clues. If one of the substitutes related to a context clue is similar to one of the

senses of the target word more strongly than other senses, we can conclude that the context

clue is discriminative and should be scored high. For this purpose, we make use of WordNet

similarity measure introduced by [Leacock and Chodorow, 1998]. First we assume that
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Figure 14: Example for distributional substitutes

each sense of a target word is equally probable and find the similarity of a substitute to

different senses of the target word. Then, we normalize the similarity score over the senses

and obtain a probability distribution over the senses of the target word. We apply the

Kullback Leibler (KL) divergence to determine how much the new distribution differs from

the uniform distribution. The context clues with substitution sets which have high maximum

KL divergence scores are also scored high. Below is the formula for the discsubs scoring

function. subs is a function which returns the set of distributional substitutes of a target

word in context of a dependency path and context word. disc is a function which computes

the KL divergence value as described above.

discsubs(target, clue, path) = max
s∈subs(target,clue,path)

disc(s, target)

disc(s, target) = DKL(P (tsenses|s)||P (tsenses)

To illustrate, in Figure 14, we see examples of distributional substitutes of strike for

two context clues “workers” and “begin”. One of the substitutes derived from the context

clue “workers” is “protest”, which is strongly related to the “work stoppage” meaning of
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“strike” in WordNet. On the other hand, substitutes derived from the context clue “began”

(e.g. “eating”) are more general in nature and do not favour a specific sense of “strike”

in WordNet. As a consequence, “workers” will get a higher score than “began”, which is

exactly what we want.

These two scoring functions give us two filtering mechanisms where we accept the best

scoring context clues. We can choose more than one context clue to apply to the target

word. By “applying” we mean element-wise multiplication of the type vector of the context

clue with the type vector of the target word. We apply each chosen context clue separately

to the target word resulting in multiple token vectors for the target word. We average these

token vectors to obtain an ultimate single token vector of the target word. Our intuition

is that each context clue chooses out some relevant dimensions of the target word and by

averaging them, we smooth the contribution of the various context clues to create the final

representation.

5.2.2 Experiments

This section gives details on the conducted experiments to evaluate the application of our

extended compositional model for context clustering and compare it to existing popular

context representations. In Section 5.2.2.1, we introduce the semantic space we rely on.

Section 5.2.2.2 gives more detail on the context representations we experiment with. In

Section, we measure the effect of using longer dependencies and filtering mechanisms on our

development set 5.2.2.4 and compare all context representations for context clustering task

on our test set in Section 5.2.2.5 to each other.

5.2.2.1 Semantic Space In this work, all approaches making use of a DSM – including

our extended compositional model – use the same semantic space. The semantic space we use
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in our experiments is built from a text corpus consisting of 120 billion tokens. We compile

the corpus from various resources in order to have a balanced corpus. The corpus consists

of news articles from GIGAWORD and editorials from NewYorker, NewYork Times, Slate,

Townhall, BBC and Guardian. It also consists Open American National Corpus.

The rows of our semantic space correspond to word forms and the columns of the semantic

space correspond to word lemmas present in the corpus. We adopt the parameters of our

semantic space from [Mitchell and Lapata, 2010]: window size of 10 and dimension size of

2000 (i.e., the 2000 most frequent lemmas). [Mitchell and Lapata, 2010] found that setting

to be optimal for a similar lexical semantic task. We do not filter out stop words, since

they have been shown to be useful for various semantic similarity tasks in [Bullinaria and

Levy, 2007]. We use positive point-wise mutual information to compute values of the vector

components, which has also been shown to be favourable in [Bullinaria and Levy, 2007].

5.2.2.2 Context Representations [Schutze, 1998] represents each target word token

by averaging type vectors of the neighbouring words that occur in its context. Note that it

is similar to an additive model since all type vectors are added together. The model does

not consider the syntactic dependencies in the context.

Our approach is similar to [Schutze, 1998], except that, instead of averaging type vectors,

we average the token vectors of the neighbouring words that we compute with our extended

compositional model. In our experiments we consider dependency paths of length up to

four. For the maxzero and the discsubs filtering strategies, we need to specify how many

context clues we want to choose. We try following variants : choosing highest ranking context

clue, choosing two highest ranking context clues and choosing three highest ranking context

clues. We also try a variant where we let all context clues contribute to the compositional

representation of the target word, but we weight them by the inverse of their rank.
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In contrast, [Purandare and Pedersen, 2004] utilize feature vectors similar to the ones

common in supervised WSD. Specifically, we use the following features in Figure 15 from

[Mihalcea, 2002b] to build the local feature representation. Note that we leave out global

context features (i.e. SK ), since they are extracted for each sense separately and require

label information.

CW : the target word itself : nominal {1}
CP : the part of speech of the target word : nominal {1}
CF : the surrounding context of 3 words and their POS : nominal {12}
HNP : the head of the noun phrase to which the target word belongs : nominal {1}
NB : the first noun before the target word : nominal {1}
VB : the first verb before the target word : nominal {1}
NA : the first noun after the target word : nominal {1}
VB : the first verb before the target word : nominal {1}
VA : the first verb after the target word : nominal {1}

Figure 15: WSD features for SWSD

5.2.2.3 Clustering Algorithm and Evaluation Metric We use the same clustering

algorithm for all context representations: agglomerative hierarchical clustering with average

linkage criteria. In all our experiments throughout the paper, we fix the cluster size to 7

as it is done in [Purandare and Pedersen, 2004]. We think that is reasonable number since

SENSEVAL III reports that the average number of senses per word is 6.47.

We choose cluster purity as our evaluation metric. To compute cluster purity, we assign

each cluster to a sense label, which is the most frequent one in the cluster. The number of

the correctly assigned instances divided by the number of all the clustered instances gives

us cluster purity.
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5.2.2.4 Effect of Longer Dependencies and Filtering Strategies Our first goal

is to measure the effect of utilizing longer paths and the effect of the proposed filtering

strategies. We want choose the best combination before comparing our extended model to

other context representations. For this purpose, we did not want to use part of senSWSD

as our development set, since we do not have many words in that set to begin with. We

opted to use words from SENSEVAL II and SENSEVAL III that are not in senSWSD. Since

we have ony fine-grained sense-tagged data for this set of words, we will evaluate our model

for context clustering on fine-grained senses. This allows us to have a huge development set

consisting of 96 words in total.

We use the same clustering algorithm for all context representations : agglomerative

hierarchical clustering with average linkage criteria. We require 7 clusters as it is done

in [Purandare and Pedersen, 2004]. We choose cluster purity as our evaluation metric. To

compute cluster purity, we assign each cluster to a sense label, which is the most frequent

one in the cluster. The number of the correctly assigned instances divided by the number of

all the clustered instances gives us cluster purity. Following [Purandare and Pedersen, 2004],

we assign each sense label to at most one cluster so that the assignment leads to a maximally

accurate mapping of senses to clusters. The evaluation is done separately for each word.

The results are reported in Table 21. The rows are the dependency path lengths (e.g.

L2 means we are using dependency paths of length at most 2) and the columns are the

filtering strategies. For maxzero and discsubs, we have additional sub-columns that inform

the number of highest scoring context clues we use. W means that we use a weighted average

of all context clues based on their score.

The results show that using longer dependency paths can improve cluster purity. The

best result is obtained when we consider dependency paths up to length 4 and utilize maxzero

filtering strategy choosing only the highest scoring context clue. The results illustrate the
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nofilter con stop maxzero discsubs

1 2 3 W 1 2 3 W

L1 41.29 41.23 43.11 41.51 41.27 40.94 40.87 43.98 42.98 42.07 43.19

L2 39.34 41.18 43.01 44.75 41.70 40.68 40.57 44.28 42.12 42.26 42.49

L3 40.30 40.15 42.15 46.10 43.31 42.01 41.23 44.59 43.01 42.15 42.31

L4 40.30 40.26 42.23 47.65 44.49 42.19 41.07 44.66 43.10 43.80 43.12

Table 21: Effect of the various dependency path lengths and filtering techniques used to

compute the contextual representation on the clustering performance

benefit of using longer dependency paths. Among the filtering strategies, maxzero, discsubs

are consistently better than using no filtering, when we only use the highest scoring context

clue. nostop also achieves better performance than no filtering. On the other hand, content

is not better than using no filtering. If we do not utilize a filtering strategy and increase the

path length, the purity suffers slightly. This provides evidence that filtering non-informative

context clues is essential.

For comparison, we also evaluate the other context representations on our develop-

ment set. The results are summarized in Table 23. type averaging is the system based

on [Schutze, 1998], local features represents the system utilizing local feature representation

and token averaging in bold is our system relying on the extended compositional model using

the best parameter setting – path length up to four with maxzero filtering considering only

highest scoring context clue. The result show that our model improves over both represen-

tations for the context clustering task. The improvement is statistically significant at the p

< .05 level based on a paired t-test. It is interesting to see that even without using longer
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Cluster Purity

token averaging 47.65

type averaging 39.01

local features 41.85

Table 22: Comparison of context representations for context clustering on SENSEVAL

paths and multiplicative model does better than type averaging.

5.2.2.5 Comparison of Context Representations In this section, we compare our

extended model to previous models for the context clustering task on the coarse-grained

senses. For this purpose, we use senSWSD dataset. It use all 39 words in this set. The

results are summarized in Table 22. We use the same evaluation metric except that this

time each sense label (e.g S and O) can be assigned to multiple clusters. The majority label

baseline is 79.9.

Again, type averaging is the system based on [Schutze, 1998], local features represents the

system utilizing local feature representation and token averaging in bold is our system relying

on the extended compositional model with the best parameter setting from Section 5.2.2.4.

The result show that our model improves over both representations. The improvements are

statistically significant at the p < .05 level based on a paired t-test. The results indicate

that our extended model provides a better representation of the meaning of a word instance

that we want to improve as much as possible for our end goal.

5.2.2.6 Merging Context Representations When we look at the context clustering

results for single words separately on the development set, we observe that the performance

85



Cluster Purity

token averaging 83.53

type averaging 80.49

local features 80.49

Table 23: Comparison of context representations for context clustering on senSWSD

of different representations vary (Table 25). There is not a single winner among all words.

token averaging performs best for 59 of the words, local features performs best for 36 of the

words and type averaging performs best for only 6 of the words. We want to get the best

possible context representation. Thus, perhaps choosing one single representation for all the

words is not optimal. Having that in mind, we try to merge local features and type averaging.

We leave out token averaging, since both token averaging and type averaging rely on the

same type of semantic information (i.e. DSM). Moreover, token averaging performs mostly

worse than the other two. We believe that the two representations, type averaging and

local features, one relying on a semantic space and the other one relying on local WSD

features may complement each other.

We merge local features and type averaging to one single representation. We could have

simply concatenated two feature vectors to one feature vector. But, there is an issue with this

approach. The feature vectors of local features and type averaging have different scales and

thus they will have different contributions to the final distance. To avoid this problem, we

normalize each feature vector to unit length. This way, we make sure that the contribution

of each underlying representation type is normalized. We call this method mix rep.

In Table 24, we see that mix rep performs better than all other three representation

both on the development set (fine-grained) and test set (coarse-grained). The improvement
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Dev (SENSEVAL) Test (senSWSD)

token averaging 47.65 83.53

type averaging 39.01 80.49

local features 41.85 80.49

mix context 51.07 85.23

Table 24: Effect of merging context representations

is statistically significant at the p < .05 level on both sets. When we look at the results for

some sample words from the development set in Table 25, we observe that even if mix rep

does not perform always the best, it is never terrible either. It is consistently good and

reliable. Thus, in later chapters mix rep will be our choice as the context representation.

5.2.3 Incorporating Subjectivity into DSMs

Another extension we propose is modifying the underlying semantic space so that it mediates

subjectivity. We hypothesize that building the subjective vs. objective distinction into the

DSM will result in more discriminative context representation and thereby in purer context

clusters in terms of subjectivity.

Distributional hypothesis dictates that words that occur in similar contexts tend to have

similar meanings. Thus, the columns of the word-context matrix (i.e. dimensions of the

semantic space) are essential for the similarity judgement. Using different set of dimensions

will result in different similarity judgements and thus different clustering of word instances.

We aim to modify dimensions of the underlying semantic space to incorporate subjectivity

treatment. For this purpose, we experiment with two methods.

87



type averaging local features token averaging mix rep

activate-v 45.54 48.51 64.58 79.76

add-v 43.15 42.64 53.05 47.97

degree-n 43.08 62.40 56.14 62.40

dyke-n 37.28 55.93 55.93 59.32

provide-v 41.95 40.00 74.63 79.02

rule-v 37.08 44.94 51.68 47.19

wander-v 57.33 62.00 62.00 78.00

Table 25: Comparison of context representations for context clustering on SENSEVAL on

sample words

In the first method, we want to use lexicon clues as dimensions of the semantic space,

since subjectivity clues are associated with subjective language. We also consider intensifiers

and valence shifters as dimensions of the semantic space. An intensifier is a word that has

little semantic content of its own but that serves to intensify the meaning of the word or

phrase that it modifies (e.g. “awfully” in the phrase “awfully sorry”). A valence shifters is

a word that reverses the polarity of the phrase it modifies (e.g., little truth, little threat).

Although intensifiers and valence shifters do not have subjectivity they are good clues that

subjectivity has been expressed.

In the second method, we try to choose the dimensions of a semantic space based on their

discriminative power between subjective and objective context of a target word. This means

the dimensions of the semantic space will be tailored for the target word itself. We will have

a different semantic space for each target word and use it for its context representation. The
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important question is how do we find discriminative context words of a target word. We

basically need some annotated instances of the target word in order to disambiguate between

its subjective and objective context. Unfortunately, we do not have that information, since

that is what we are trying to generate. [Riloff and Wiebe, 2003] uses a high-precision rule-

based classifier (Section 3.4.3.2) to train a sentence-level subjectivity classifier. We use

the same approach. We accept the sentence subjectivity as a signal for the word being

subjective. We assume the probability of a word being is used with a subjective sense is

higher if it occurs in a subjective sentence. We tag the sentences in our text corpus (Section

5.2.2.1) with the rule-based classifier. This gives us two smaller corpora, one subjective and

the other one objective. For each target word, we find the context words in a window size

of 10 in each corpus. Then, we compute Pointwise Mutual Information (PMI) between the

target word and its context words in each corpus separately, PMIsubj and PMIobj. Our

idea is that context words that have a large difference between PMIsubj and PMIobj are

discriminative and should be chosen as dimensions of the semantic space. For this purpose

we score the context words by |PMIsubj−PMIobj| score and choose highest ranking context

word as dimensions. We consider only the context words that appear at least 300 times in

our corpus in order to avoid that very infrequent words are chosen as dimensions

Cluster Purity

Orig 83.53

Method1 82.68

Method2 83.11

Table 26: Effect of DSM modification
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We evaluate the effect of both methods on context clustering task. For this purpose, we

create our extended compositional model based on DSMs whose dimensions are chosen as

described. We use the evaluation setting as in Section 5.2.2.5. Table 26 summarizes context

clustering results on our test set. Orig is the original semantic space we use 5.2.2.1. Method1

is the method where we choose lexicon clues, intensifiers and valenceshifters as dimensions.

Method2 is the method where we choose the dimensions based on their discriminative power.

Note that for all three variants, the dimensionality of the semantic space is 2000. We see

that both methods to incorporate subjectivity into the semantic space do not improve over

the original semantic space. The results are very similar no matter which method we choose

to create the dimensions of the semantic space.

5.3 LABELING CLUSTERS

Our ultimate goal is to reduce human effort to create training data for SWSD. We want to

accomplish that using context clustering in a semi-automatic way. This annotation process

has following steps:

• Cluster context vectors of word instances

• Label the induced clusters as S or O.

• Propagate the given label to all the instances in a cluster.

In this chapter, until now, we introduced our methods to improve the underlying context

representation. Our methods result in a more informative context representation and thus

in purer clusters, which will directly effect the quality of the semi-automatically generated

SWSD data. There is an important question remaining. How do we label clusters? For

a practical use of the “cluster and label” strategy, we need a way to label the clusters.
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A straightforward strategy is to sample some instances from a cluster and label them.

Then, we accept the majority label in the cluster as its label and propagate the chosen

label back to all the instances in the cluster. This means we need to label some instances,

preferably a small amount.

Since we will need a small amount of labeled data, we propose to use semi-supervised

clustering to build the clusters. If we label some instances prior to clustering and we can use

them to incorporate prior subjectivity knowledge into the clustering process. The provided

labels will guide the clustering algorithm to generate the clusters that are more suitable for

our end task, namely clusters where subjective and objective instances are grouped together.

We do not have such an option if we utilize unsupervised clustering. Again, after the clusters

are generated, we can propagate the majority label in a cluster back to all the instances in

the cluster.

5.3.1 Constrained Clustering

Constrained clustering [Grira et al., 2004] also known as semi-supervised clustering is a recent

development in the clustering literature. In contrast to unsupervised clustering, constrained

clustering requires pairwise constraints. There are basically two types of constraints: (1)

must-link and (2) cannot-link constraints. A must-link constraint dictates that two instances

should be in the same cluster and a cannot-link dictates that two instances should not be

in the same cluster. These constraints can be hard or soft. Hard constraints are those that

we want definitely hold. In contrast, soft constraints do not have to be satisfied strictly.

The constraints act as a guide for the clustering algorithm that will attempt to find clusters

that satisfy the specified must-link and cannot-link constraints. The constraints can be

obtained from domain knowledge or from available instance labels. There are generally two

different strategies to incorporate constraints into the clustering. First strategy is to adapt
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the underlying distance metric [Xing et al., 2002, Klein et al., 2002]. Second strategy is

modifying the clustering algorithm itself so that search is biased towards a partitioning for

which the constraints hold [Wagstaff and Cardie, 2000,Basu et al., 2002,Demiriz et al., 1999].

5.3.2 Iterative Constrained Clustering

Previous work report substantial improvement in the clustering accuracy with the usage of

instance-level constraints. But, it is very important how to choose the constraints. [Davidson

et al., 2006] show that even if the constraints are generated from gold-standard data, it is

very common that some constraint sets can decrease clustering accuracy. The results are

reported on the UCI datasets, which are not as hard as SWSD. Considering the difficulty

of the SWSD task, choosing a good set of constraints becomes more important. Thus, we

would like to choose constraints which we believe will have maximum impact on the clus-

tering accuracy. For this purpose, we define a novel active selection strategy for constrained

clustering. In order to choose most helpful constraints, we borrow ideas from active learning

for classification. We call our algorithm iterative constrained clustering (ICC). As its name

tells, we utilize an iterative process to create constraints actively. In each iteration the al-

gorithm queries the most informative instance and acquires its label. The constraints are

derived from the labels. Note that n labels result in
(
n
2

)
constraints. An important question

is how we define informativeness of an instance for clustering.

5.3.2.1 Informativeness We consider an instance to be informative if there is a high

probability that the knowledge of its label will change the cluster boundaries. The more

probable that change is, the more informative the instance is. Our basic idea is that if an

instance is in a cluster holding instances of type a and it is close to another cluster holding

instances of type b, that instance is most likely mis-clustered. Thus, it should be queried.
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For this purpose, we define a scoring function, which is used to score each data point on its

goodness, the lower the score the likely it is that the instance is mis-clustered. Choosing the

data point with the lowest score, will likely change clustering borders in the next iteration.

Our scoring function is based on silhouette coefficient. Silhouette coefficient is a popular

unsupervised cluster validation metric to measure goodness [Tan et al., 2005] of a cluster

member. It gives a score between -1 and 1. A higher score is better. [Tan et al., 2005] defines

it as follows:

• for an instance i, compute its average distance from the other instances in its cluster xi

• for an instance i, compute its average distance from the clusters in which the instance is

not present and take the minimum of these averages yi. Note that the average distance

of an instance to a cluster is the average distance to all members of that cluster.

• compute the silhouette coefficient as (yi-xi) / max(yi,xi)

Basically, silhouette score assigns a cluster member that is close to another cluster a

lower score and a cluster member that is closer to the cluster center a higher score. That

is partly what we want. In addition, we do not want to penalize a cluster member that is

close to another cluster having members with the same label. For this purpose, we calculate

silhouette score only over clusters with an opposing label (i.e. holding members with an

opposing label). In addition, we consider only so far labeled instances when computing the

score. We call this new coefficient silhconst. It is computed as follows:

• for an instance i, compute its average distance from the other instances in its cluster xi

which are already labeled

• for an instance i, compute its average distance from the labeled instances of the clusters

from an opposing label and take the minimum of these averages yi

• compute silhinst as (yi-xi) / max(yi,xi)
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Figure 16: Behaviour of selection function

The silhconst coefficient has favourable properties. First of all, it will score members

that are close to a cluster with an opposing label lower than the members that are close

to a cluster with the same label. According to our definition, these members are more

informative. Figure 16 holds a sample cluster setting. The shape of a member denotes its

label and filling denotes that it is has been queried. In this example, silhconst will score

members 2 and 3 lower than 1. Thus, member 1 will not be selected, which is the right

decision in this example. Both members 2 and 3 are close to clusters with an opposing

label. In this example silhconst scores member 3 lower, which is farther away from already

labeled members in the cluster. Thus, member 3 will be selected to be labeled. This type of

behaviour results in an explorative strategy.

5.3.2.2 Imposing Constraints Our hypothesis is that in each iteration the algorithm

will choose the most problematic instance, which will end up changing cluster boundaries.

In order for that to happen, we need a mechanism to impose constraints. For this pur-
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pose, we use distance metric learning similar to [Xing et al., 2002]. We use the method

described in [Davis et al., 2007] to learn a new metric after each iteration. [Davis et al.,

2007] presents an information-theoretic approach to learning a Mahalanobis distance func-

tion. The authors formulate the problem as minimizing the differential relative entropy

between two multivariate Gaussians under constraints. The reason we choose the distance

metric learning function [Davis et al., 2007] over [Xing et al., 2002] is that we believe it is

more scalable.

In each iteration, the learned metric helps to rearrange the instances from opposing labels

so that they are more distant from each other and the cluster boundaries are morphed.

There is an issue though. A learned metric does not enforce that labels from opposing

labels should not be assigned the same cluster. We can consider them as imposing soft

constraints. But, we need these hard constraints. This means that the cluster should hold

instances from one type, since our selection strategy requires it and our goal is to propagate

a unique label to the unlabeled members of the cluster. In order to impose hard cannot-link

constraints, we implement the mechanism by [Klein et al., 2002]. We set the distance between

two cannot-linked instances to the maximum distance in the dataset and use agglomerative

hierarchical clustering with complete-linkage. Complete-linkage step imposes hard cannot-

link constraints.

5.3.2.3 Complete Algorithm ICC starts by simply clustering the instances without

any constraints. The algorithms asks for labels of the prototypical members of each cluster.

Then, the algorithm derives constraints from the labels and then the iterations begin. Algo-

rithm 1 contains specific steps. For our problem, we only consider cannot-links, because of

the definition of our SWSD task. For example, two instances can be labeled as subj, but that

does mean that they should be similar to each other. They can be totally different usages
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Algorithm 1 Iterative Constrained Clustering

X ... target clue instances

T = cluster(X)

L = labelprototypes(T)

while queries left do

C = createconstraints(L)

X = learnmetric(X,C)

T = clusterwithhardconstraints(X,C)

L = labelmostinformative(L,T)

end while

L = propagatelabels(L,T)

having subjective meaning. On the other hand, if two instances are labeled having opposing

labels, we do not want them to be in the same cluster, since they are different usages. Thus,

we only make use of cannot-link constraints.

5.3.3 Experiments

This section gives details on the conducted experiments to evaluate the purity of the semi-

automatically generated subjectivity sense tagged data by our “cluster and label” strategy.

We carry out detailed analysis to quantify the effect of metric learning (e.g. soft constraints)

and proposed active selection strategy on the purity of the generated data and compare it

to competitive baselines.

5.3.3.1 Compared Methods We implement the constrained clustering algorithm de-

scribed in [Klein et al., 2002] as a baseline. Their algorithm operates on the distance matrix
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between instances. It can handle both must-links and cannot-links. It imposes constraints

by changing the distance matrix according the given constraints. Basically, the distances

between must-linked instances are set to 0. That is not enough by itself, since if a is must-

linked to b, instances close to a should become closer to b and also instances close to b should

get closer to a. There is a need to propagate the constraint. This is done by calculating

shortest path between all the instances and updating the distance matrix accordingly. To

impose cannot-links, the distance between two cannot-linked instances is set to some large

number. Complete-linkage step indirectly propagates the cannot-link constraints. To our

knowledge, there have been only two previous work selecting constraints for constrained clus-

tering actively [Basu et al., 2004, Klein et al., 2002]. The method described in [Basu et al.,

2004] uses the farthest-first traversal scheme for informative selection of pairwise constraints.

That strategy is not suitable for our setting, since we have only two labels. After sampling

just one instance from both labels, this method becomes the same as random selection of

constraints. The method described in [Klein et al., 2002] is simple. At first, the hierar-

chical clustering algorithm follows in a unconstrained fashion until some moderate number

of clusters are remaining. Then the algorithm starts to request constraints between roots

whenever two clusters are merged. We change the method slightly and provide labels of the

roots instead of constraint between them. Since we have a binary task querying labels makes

more sense than providing single constraints.

Our ICC method is closely related to the constrained clustering method described in

[Klein et al., 2002]. We share the same backbone: the exact same hierarchical clustering

algorithm and mechanism to impose hard constraints. There are two differences. We utilize

a different active selection method, which makes our algorithm iterative, where [Klein et al.,

2002] is a single pass algorithm. Second difference is that we have the capability of imposing

soft constraints via metric learning.
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In all the experiments, our proposed method and the baselines have the same values for

the shared parameters. We utilize the mix rep context representation. We require 7 clusters

as in previous sections. We use accuracy as our evaluation metric. We assign a label to each

cluster based on the labeled instances it holds. A cluster holding instances labeled as S will

be labeled as S and vice versa. Then, the label is propagated to all of its instances. After

this, it is straightforward to compute accuracy. This evaluation setting reflects a real-world

scenario where we actually utilize ICC to generate data for SWSD. In our experiments, we

only consider cannot-links, since even two instances are labeled with the same sense (S/O),

the usages may be so different that forcing them in the same cluster will have negative effect

on the clustering quality. Note that, we create more than 2 clusters for each target word.

5.3.3.2 Effect of Active Selection Strategy In this section, we evaluate ICC on

senSWSD dataset. To be specific, we use SENSEVAL II and SENSEVAL III subsets of

senSWSD, since we used SENSEVAL I subset as a development set while working on our

active selection strategy. We report the accuracy of the semi-automatically generated data

for different percentages of the queried data (e.g. 10% means that the algorithm queried

10% of the data to create constraints). This way, we obtain a learning curve. We report

percentages, since the words in our test dataset have different number of instances.

Figure 17 holds the comparison of ICC with silhconst selection to a random selection

baseline. “majority” stands for majority label frequency in the word set. We are interested

in how well the system would perform on more and less ambiguous words. Thus, we split the

words into three subsets according to their majority-class baselines – [50%,70%) , [70%,90%),

and [90%,100%). We see that silhconst performs better than the random selection for all

subsets of words. By providing labels to only 25% of the data, we can achieve 87.67%

accurate fully labeled data.
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Figure 17: Accuracy of generated subjectivity sense tagged data – ICC vs. random selection
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Figure 18: Accuracy of generated subjectivity sense tagged data – ICC without soft-

contraints vs. Klein
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For comparison, we also evaluate the performance of [Klein et al., 2002] with their active

constraint selection strategy as described before. [Klein et al., 2002] does not use any soft

constraints. Thus, we run our algorithm without soft constraints, in order to be able to

compare the effectiveness of both active selection strategies. In Figure 18, we see that

silhconst performs better than the active selection strategy described in [Klein et al., 2002]

for all subsest of words.

5.3.3.3 Effect of Metric Learning We also wanted to investigate the effect of using

soft-constraints via metric learning. For this purpose, we run our algorithm with and with-

out metric learning. Figure 19 holds the results. For comparison, we also include [Klein

et al., 2002]. We see that soft-constraints results in a big improvement. In addition, metric

learning results in a smoother learning curve. That is a favourable property for a real-world

application.

If we refer to Figure 17, we will see that our algorithm with metric learning even with

random selection does better than both algorithms without metric learning.

5.3.3.4 Effect of Oracle Cluster Assignment For evaluation, we assign a label to

each cluster based on the labeled instances it holds. The label is propagated to all of its

instances and then accuracy is computed. Labelling clusters based on the instances they hold

might introduce some error. If we had a human in the loop who can examine the clusters

and assign the correct label to it, we might avoid these errors. In this section, we aim to

answer the question “if we had a way to correctly label the clusters, what accuracy could

we achieve?”. For this purpose, we run our algorithm on senSWSD again, but this time we

simulate an oracle who assigns a cluster the label that most of the members in the cluster

share. Figure 20 holds the comparison of oracle evaluation to our original evaluation. We
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Figure 19: Accuracy of semi-automatically created data by ICC with and without soft-

constraints
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Figure 20: Accuracy of semi-automatically created data by ICC with oracle cluster assign-

ment
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see that we lose a fair amount of accuracy because of the errors we make while labelling

the clusters. This error gets smaller over the iterations, since we get more labeled data and

better evidence to judge the label of a cluster based on the labeled instances it holds. By

providing labels to 25% of the data, ICC with oracle cluster assignment can achieve 89.42%

accurate fully labeled data, which was 87.67 when we assign cluster labels based on the

labeled instances they contain.

5.3.3.5 SWSD on semi-automatically generated annotations Now that we have

a tool to generate training data for SWSD, we want to evaluate it on the actual SWSD task.

We want to see if the obtained purity is enough to create reliable SWSD classifiers. In this

section, we conduct our experiments on the MTurkSWSD dataset. There are two reasons for

that. First one is that the MTurkSWSD dataset is more balanced in terms of the number

of instances each word has. Second, it will allow us to see if we can combine two approaches

– MTurk and ICC – to reduce annotation time and cost. Note that we do not use oracle

cluster assignment in these experiments.

We conduct for each word in our dataset 10-fold cross-validation experiments. In each

iteration, we apply ICC to training folds and label the instances semi-automatically. We train

SWSD classifiers on the semi-automatically labeled training fold labels and test the classifiers

on the corresponding test fold. When we train our classifiers we distinguish between queried

instances and propagated labels. We weight the instances with propagated labels by their

silhconst score, since that measure gives the goodness of an instance. The score is defined

between -1 and 1. We normalize this score between 0 and 1, before using it as a weight. As

our classifiers, we use the SVM classifier from the Weka package [Witten and Frank., 2005]

with its default settings.

We implement two baselines. First one is simple random sampling and second one is
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Figure 21: Accuracy of semi-automatically created data by ICC and baselines

105



Accuracy 75 76 77 78 79 80 80.5 80.98

ICC 10% 11% 16% 20% 25% 38% 44% 59%

Random 26% 31% 41% 47% 64% 72% 74% 100%

Tong 30% 34% 43% 48% 64% 73% 84% 92%

Reduction 62% 65% 61% 57% 61% 47% 41% 36%

Table 27: Annotation Reduction with ICC over Uncertainty and Random Sampling

uncertainty sampling, which is an active learning (AL) method. We use “simple margin”

selection described in [Tong and Koller, 2001]. Simple margin technique selects in each

iteration the instance closest to the decision boundary of the trained SVM. We run each

method until it reaches the accuracy of training fully on the gold-standard data. ICC reaches

that boundary when provided only 59% of the labels in the dataset. For uncertainty sampling

and random sampling these values are 92% and 100% respectively. In Figure 21, we see the

SWSD accuracy for different queried data percentages. “full” stands for training fully on

gold-standard data. We see that training SWSD on semi-automatically labeled data by ICC

does consistently better than uncertainty sampling and random sampling.

Table 27 holds a summary of the learning curves in Figure 21 for various accuracy points.

We also report the annotation reduction we achieve over the best of the two baselines. It is

surprising to see that uncertainty sampling overall does not do better than random sampling.

We believe that it might be because of sampling bias. During AL, as more and more labels are

obtained, the training set quickly diverges from the underlying data distribution. [Schütze

et al., 2006] states that AL can explore the feature space in such a biased way that it

can end up ignoring entire clusters of unlabeled instances. We think that SWSD is highly
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prone for the mentioned missed cluster problem because of its unique nature. As mentioned,

SWSD is a binary task where we distinguish between subjective and objective usages of a

subjectivity word. Although the classification is binary, the underlying usages are grouped

into multiple clusters corresponding to senses of the word. It is possible that two groups

of usages represented very differently in the feature space are both subjective or objective.

Moreover, one usage group might be closer to a usage group from opposing label than to a

group with the same label.

We see that our method reduces the annotation amount by 36% in comparison to uncer-

tainty sampling and by 41% in comparison to random sampling to reach the performance of

the SWSD system trained on fully annotated data. As a last step, we want to see if at this

threshold the improvements on the contextual classifiers still hold. We apply SWSD trained

on semi-automatically generated training data to contextual S/O classifier and to the first

step (N/P classifier) of the contextual polarity classifier. In Tables 29 and 28, we see that

by labeling only 59% percent of the data we can achieve almost the same results.

Acc

SWSDfull 80.0

SWSDICC−59% 79.7

SWSDAL−92% 79.9

Table 28: S/O classifier with SWSD trained on semi-automatically generated annotations
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Acc

SWSDfull 80.4

SWSDICC−59% 80.2

SWSDAL−92% 80.2

Table 29: N/P classifier with SWSD trained on semi-automatically generated annotations

5.4 SUMMARY AND DISCUSSION

In this chapter, we explore a “cluster and label” strategy to reduce the human annotation

effort needed to generate subjectivity sense-tagged data. The basic idea is to label clusters of

instances as a whole instead of labelling the instances of a word separately. In order to keep

the noise in the semi-automatically labeled data minimal, we experiment with novel tech-

niques to improve cluster purity by (1) improving the context representation with the help

of compositional semantic models, (2) incorporating the notion of subjectivity into the con-

text representation, and (3) utilizing constrained clustering to incorporate prior subjectivity

knowledge into the clustering process.

We extended element-wise multiplication model introduced in [Mitchell and Lapata,

2008] to effectively incorporate richer contexts. Our experiments showed that longer de-

pendency paths introduce useful information and that filtering mechanisms are essential.

The context representation based on our extended model outperformed other context repre-

sentations on the context clustering task.

We hypothesized that building the subjective vs. objective distinction into the semantic

space will result in more discriminative context representation and thereby in purer context

clusters in terms of subjectivity. We tried to modify a semantic space so that it mediates sub-
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jectivity. We defined a method where we choose lexicon clues, intensifiers and valenceshifters

as dimensions and another one where we choose the dimensions based on their discriminative

power. We see that both methods do not improve over the original semantic space.

We define a new algorithm called iterative constrained clustering (ICC) with an ac-

tive constraint selection strategy. We show that the active selection strategy we propose

outperforms previous approach by [Klein et al., 2002], when we utilize them to generate sub-

jectivity sense-tagged data. We also showed that training an SWSD classifier on the semi-

automatically acquired data improves over random sampling and uncertainty sampling [Tong

and Koller, 2001]. We achieve on MTurkSWSD at least 39% reduction in annotation to train

SWSD classifiers of the same accuracy over both sampling strategies. We also represented

that the improvements in contextual subjectivity analysis still hold, if we train our SWSD

classifiers on semi-automatically generated non-expert labeled data. Overall, the results

support our fifth hypothesis:

Hypothesis 5: A “cluster and label” strategy together with some prior knowledge can

be utilized to reduce annotation effort to train reliable SWSD classifiers.

5.5 RELATED WORK

Distributional semantic models (DSMs) [Turney and Pantel, 2010,Sahlgren, 2006,Bullinaria

and Levy, 2007] have been an important area of research. They have been successfully applied

to many NLP tasks. Some examples are word sense discrimination [Schutze, 1998], para-

phrase recognition [Lin and Pantel, 2001], thesaurus compilation [Rapp, 2004] and language

tests [Landauer and Dutnais, 1997]. DSMs representation word meanings out of context.

Recently, several researchers have investigated composition in distributional semantic mod-
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els [Erk and Padó, 2008, Reisinger and Mooney, 2010, Mitchell and Lapata, 2010, Rudolph

and Giesbrecht, 2010,Grefenstette and Sadrzadeh, 2011]. They demonstrate so far promise

paraphrase ranking and phrase similarity rating tasks and offer a powerful tool to represent

word meaning in context. Composition is usually achieved through algebraic operations

on word vectors or word matrices. Our work relies on the multiplicative model introduced

in [Mitchell and Lapata, 2010]. [Mitchell and Lapata, 2010] defines composition between

specific word pairs – adjective-noun, noun-noun, verb-object – related over a grammatical

dependency relation. We extend their multiplicative model to arbitrary words and gram-

matical dependencies for general application.

Constrained clustering [Grira et al., 2004] also known as semi-supervised clustering is

a recent development in the clustering literature. There are two types of constraints: (1)

must-link and (2) cannot-link constraints. There are generally two different strategies to

incorporate constraints into the clustering. First strategy is to adapt the underlying distance

metric [Xing et al., 2002,Klein et al., 2002] and second strategy is modifying the clustering

algorithm itself so that search is biased towards a partitioning for which the constraints

hold [Wagstaff and Cardie, 2000, Basu et al., 2002, Demiriz et al., 1999]. Our algorithm

is a member of the first strategy and is closely related to [Klein et al., 2002]. [?] imposes

constraints by changing the distance matrix according to the given constraints. Basically,

the distances between must-linked instances are set to 0. We adopt the same strategy to

impose hard constraints. In addition, we utilize metric learning to impose soft constraints.

Active selection of constraints for semi-supervised clustering is another related research

area. To our knowledge, there have been two previous work selecting constraints for con-

strained clustering actively [Basu et al., 2004, Klein et al., 2002]. The method described

in [Basu et al., 2004] uses the farthest-first traversal scheme for informative selection of pair-

wise constraints. [Klein et al., 2002] queries constraints between roots of two clusters during

110



the merging step of hierarchical clustering. In contrast, our active selection strategy queries

instance labels and then generate constraints from the labels.

Automatic acquisition of sense-tagged corpora has been investigated in WSD commu-

nity before. Two main approaches are obtaining training examples via direct Web searching

(e.g. [Agirre and Martinez, 2004, Leacock et al., 1998, Mihalcea and Moldovan, 1999, Mi-

halcea, 2002a]) and via cross-language evidence [Diab, 2004, Chan and Ng, 2005]. To our

knowledge, we are the first ones to apply context clustering [Schutze, 1998, Purandare and

Pedersen, 2004] for semi-automatic acquisition of coarse-grained sense-tagged data. Web

approaches search the Web for instances of a word sense. The search queries are gener-

ated based on a dictionary like WordNet. Generally, search queries rely on monosemous

– having only one sense – relatives and patterns built from sense definition and synonyms

in the dictionary. Although the retrieved examples in this way are high precision, they do

not often lead to good supervised WSD performance. [Agirre et al., 2000] explains it with

the lack of diversity in the retrieved examples and the distribution of senses in the among

the retrieved examples. An notable exception is the work in [Mihalcea, 2002a]. [Mihalcea,

2002a] merges web queries with a bootstrapping approach similar to [Yarowsky, 1995] and

achieves performance comparable to manually sense-tagged data, but requires a sense-tagged

seed set. Methods on cross-language evidence utilize parallel corpora to obtain sense-tagged

examples. For example, [Diab, 2004] groups words which translate to the same target word

in a parallel corpora and then map groups to dictionary senses and assign corresponding

sense tags to the instances in the corpus. The approaches based on parallel corpora have

the disadvantage that parallel corpora are also scarce resources. Our proposed approach is

different from previous approaches for automatic acquisition of sense-tagged corpora in the

sense that we do not need a dictionary like WordNet. This allows us to handle novel and

rare usages of a word as long as they are present in the corpus from which we extract our

111



examples.

Another related work is on incorporating sentiment content into distributional semantic

models [Yessenalina and Cardie, 2011, Maas et al., 2011]. It is a very recent research area.

Our work is similar to these approaches in the sense that we try to build external information

into the underlying semantic space. Our proposed approach is incorporating subjectivity –

subjective vs. objective distinction – while previous work concentrates on polarity – positive

vs. negative distinction. Moreover, our proposed approach is unsupervised, while previous

work makes use of polarity labelled corpora.
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6.0 CONCLUSIONS AND FUTURE DIRECTIONS

This thesis explores methods to utilize sense information to improve contextual subjectivity

analysis via sense aware classification. For this purpose, we define a new task Subjectiv-

ity Word Sense Disambiguation (SWSD) that disambiguates two senses of a word: (1) a

subjective sense and (2) an objective sense and feed this information to contextual subjec-

tivity analysis. SWSD aims to capture the right semantic granularity specific to subjectivity

analysis. The dissertation is shaped around five main hypotheses.

Hypothesis 1: S/O sense groupings are natural and both groups can be disambiguated

accurately by a supervised model.

To test this hypothesis, we introduced the task of subjectivity word sense disambiguation

(SWSD), and evaluated a supervised method inspired by research in WSD. The system

achieves high accuracy, especially on highly ambiguous words.

Hypothesis 2: The subjectivity sense information provided by SWSD is more reliable

than the fine-grained sense information provided by WSD.

To confirm our second hypthesis, we compared the SWSD accuracy to the WSD accuracy

on the same dataset. SWSD performs significantly better than WSD. Moreover, SWSD has

the advantage to avoid sparsity which will form by utilizing fine-grained senses and also to

avoid the dependence on fine-grained sense-tagged data.
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Hypothesis 3: SWSD can be exploited to improve the performance of contextual sub-

jectivity analysis systems via sense-aware analysis.

To test our third hypothesis, we applied SWSD in several contextual subjectivity analy-

sis systems, including positive/negative/neutral sentiment classification experimenting with

various integration strategies. Significant improvements in performance are realized for all

of the target systems.

Hypothesis 4: Crowdsourcing can be utilized to collect high-quality SWSD annotations

in order to train SWSD classifiers with a good performance.

To support our fourth hypothesis, we utilized a large pool of non-expert annotators

(MTurk) to collect subjectivity sense-tagged data for SWSD. The annotation results sup-

port that subjectivity word sense annotation can be done reliably by MTurk workers. In

addition, we showed that non-expert annotations are as good as expert annotations for

training SWSD classifiers. We demonstrated that SWSD classifiers trained on non-expert

annotations improve contextual opinion analysis.

Hypothesis 5: A “cluster and label” strategy together with some prior knowledge can

be utilized to reduce annotation effort to train reliable SWSD classifiers.

To confirm our fifth hypothesis, we explored the application of constrained clustering to

generate subjectivity sense-tagged data. In order to keep the noise in the semi-automatically

labeled data minimal, we experimented with novel techniques to improve cluster purity

by improving the context representation and also improving the seed selection strategy for

constrained clustering. We achieve 41% reduction in annotation size to train SWSD classifiers

of the same accuracy. We also represented that the improvements in contextual subjectivity

analysis still hold, if we train our SWSD classifiers on semi-automatically generated non-

expert labeled data.
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Detailed contributions of this dissertation are summarized below:

• We are the first ones to conceptualize the task Subjectivity Word Sense Disambiguation

and use it for sense-aware subjectivity classification. We showed that SWSD is a feasible

variant of WSD tailored for our needs.

• We demonstrated that sense-aware analysis enabled by SWSD improves over conventional

subjectivity analysis. Our research is a representative of application-specific WSD, which

is considered a promising next step in WSD.

• We explored general strategies for SWSD integration. The integration of SWSD informa-

tion to contextual subjectivity analysis is important. How we do the integration depends

on the properties of the underlying system.

• We utilized a large pool of non-expert annotators (MTurk) to collect subjectivity sense-

tagged data for SWSD. The annotation results showed that subjectivity word sense

annotation can be done reliably by MTurk workers.

• We showed that non-expert annotations are as good as expert annotations for training

SWSD classifiers. The additional subjectivity sense-tagged data enabled us to evaluate

the benefits of SWSD on contextual subjectivity analysis on a subset of MPQA that

is five times larger than senMPQA. We demonstrated that SWSD classifiers trained on

non-expert annotations can be exploited to improve contextual opinion analysis.

• We explored the question of whether built-in qualifications are enough to avoid spammers.

We had evidence that using more built-in qualification helped to avoid spammers, but

our results were not conclusive.

• We investigated the learning effect for workers. Our results showed that there is no

improvement in annotator reliability over time for subjectivity sense labeling. For harder

annotation tasks (e.g. parse tree annotation) results may be different.
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• We explored a “cluster and label” strategy to reduce the human annotation effort needed

to generate subjectivity sense-tagged data. We showed that we can achieve a substantial

reduction in annotation effort to train SWSD classifiers of the same accuracy over random

sampling and uncertainty sampling. The proposed method is not limited to SWSD. We

think it is also applicable for the general WSD task.

• We represented that the improvements in contextual subjectivity analysis still hold, if

we train our SWSD classifiers on semi-automatically generated non-expert labeled data.

• We extended element-wise multiplication model introduced in [Mitchell and Lapata,

2008] to effectively incorporate richer contexts. Our experiments showed that longer

dependency paths introduce useful information and that filtering mechanisms are essen-

tial. When we utilize this representation for context clustering, we achieve significant

improvement over previous approaches. These results have implications for various lexi-

cal disambiguation tasks such as word sense discrimination, paraphrase recognition, and

textual entailment.

• We defined a new algorithm called iterative constrained clustering (ICC) for active selec-

tion of constraints. We showed that ICC outperforms previous approach by [Klein et al.,

2002] on active selection of constraints.

Several questions remain to be answered by future research. Our results are constrained

by the coverage of our SWSD system. They imply that a large scale general SWSD com-

ponent, which can help with various subjectivity and sentiment analysis tasks, is feasible.

The natural next step is to obtain training data for remaining subjectivity clues prefer-

ably starting with frequent ones. One remaining bottleneck is the generation of subjectivity

sense labeled sense inventories, which we show to MTurk workers. Thus, it is worthwhile

to evaluate, if MTurk workers can conduct subjectivity sense tagging without the need of

subjectivity sense labeled sense inventories. For this purpose, we can give the workers for-
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mal online training outside of the MTurk environment and may work with the same set of

workers over a long time by creating private groups of workers.

We hypothesized that building the subjective vs. objective distinction into the semantic

space will result in more discriminative context representations and thereby in purer context

clusters in terms of subjectivity. The methods we tried were not successful. We think there

is still hope in this line of research, especially for the second method. Our motivation was

to choose the dimensions of a semantic space based on their discriminative power between

subjective and objective context of a target word. We utilized automatically generated sub-

jective and objective corpora to provide the signal of the subjective and objective context

of the target word. There are a couple of issues with this approach. First of all the auto-

matically generated corpora lack diversity. Second the sentence subjectivity is not a good

signal for sense subjectivity for the cases if the word is used with an objective sense. We

basically need some annotated instances of the target word in order to disambiguate between

its subjective and objective context. It will be a promising step to integrate this dimension

selection idea into the ICC. In each iteration, we can select the most discriminative dimen-

sions based on the queried instances we have. This way we will get a more discriminative

representation in each iteration.

In our ICC experiment, we fixed the number of cluster to 7 for all target clues. A

promising direction will be to learn the number for each target clue separately. There can

be a big difference between the numbers of senses two words have. For example, the verb

“decide” and the adjective “solid” – two clues in our dataset – have 4 and 14 senses in

WordNet, respectively. We think that adjusting cluster number with the usage variety of a

word might help to generate more accurate clusters. For this purpose, we can use simple

unsupervised cluster evaluation metrics (e.g. silhouette), information criteria (e.g. bayesian

information criterion) or non-parametric clustering approaches [Azran and Ghahramani,
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2006,Li et al., 2007].

In this research, we strictly work on news documents. It will be interesting to measure

the impact of SWSD in other domains or media. We think an important application area is

the social networking and micro blogging platforms such as Twitter and Facebook. There is

a lot of commercial interest to mine such platforms. These platforms usually pose problems

for subjectivity analysis, since the text is usually short and not always grammatical. It will

interesting to see if SWSD can help in this context.
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[Erk and Padó, 2008] Erk, K. and Padó, S. (2008). A structured vector space model for

word meaning in context. In EMNLP, pages 897–906.

[Esuli and Sebastiani, 2006a] Esuli, A. and Sebastiani, F. (2006a). Determining term sub-

jectivity and term orientation for opinion mining. In 11th Meeting of the European Chapter

of the Association for Computational Linguistics (EACL 2006).

121



[Esuli and Sebastiani, 2006b] Esuli, A. and Sebastiani, F. (2006b). SentiWordNet: A pub-

licly available lexical resource for opinion mining. In Proceedings of LREC-06, the 5th

Conference on Language Resources and Evaluation, Genova, IT.

[Gamon and Aue, 2005] Gamon, M. and Aue, A. (2005). Automatic identification of senti-

ment vocabulary: Exploiting low association with known sentiment terms. In Proceedings

of the ACL-05 Workshop on Feature Engineering for Machine Learning in Natural Lan-

guage Processing, Ann Arbor, US.

[Grefenstette and Sadrzadeh, 2011] Grefenstette, E. and Sadrzadeh, M. (2011). Experimen-

tal support for a categorical compositional distributional model of meaning. Proceedings

of the 2011 Conference on Empirical Methods in Natural Language Processing.

[Grira et al., 2004] Grira, N., Crucianu, M., and Boujemaa, N. (2004). Unsupervised and

semi-supervised clustering: a brief survey. In in A Review of Machine Learning Tech-

niques for Processing Multimedia Content, Report of the MUSCLE European Network of

Excellence.

[Gyamfi et al., 2009] Gyamfi, Y., Wiebe, J., Mihalcea, R., and Akkaya, C. (2009). Inte-

grating knowledge for subjectivity sense labeling. In Proceedings of Human Language

Technologies: The 2009 Annual Conference of the North American Chapter of the Associ-

ation for Computational Linguistics (NAACL-HLT 2009), pages 10–18, Boulder, Colorado.

Association for Computational Linguistics.

[Hatzivassiloglou and McKeown, 1997] Hatzivassiloglou, V. and McKeown, K. (1997). Pre-

dicting the semantic orientation of adjectives. In Proceedings of the 35th Annual Meeting of

the Association for Computational Linguistics (ACL-97), pages 174–181, Madrid, Spain.

[Hsueh et al., 2009] Hsueh, P.-Y., Melville, P., and Sindhwani, V. (2009). Data quality from

crowdsourcing: a study of annotation selection criteria. In HLT ’09: Proceedings of the

NAACL HLT 2009 Workshop on Active Learning for Natural Language Processing, pages

27–35, Morristown, NJ, USA. Association for Computational Linguistics.

[Hu and Liu, 2004] Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews.

In Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining

2004 (KDD 2004), pages 168–177, Seattle, Washington.

[Jiang et al., 2011] Jiang, L., Yu, M., Zhou, M., Liu, X., and Zhao, T. (2011). Target-

dependent twitter sentiment classification. In Proceedings of the 49th Annual Meeting

122



of the Association for Computational Linguistics: Human Language Technologies - Vol-

ume 1, HLT ’11, pages 151–160, Stroudsburg, PA, USA. Association for Computational

Linguistics.

[Kaisser and Lowe, 2008] Kaisser, M. and Lowe, J. (2008). Creating a research collection

of question answer sentence pairs with amazons mechanical turk. In Proceedings of the

Sixth International Language Resources and Evaluation (LREC’08). http://www.lrec-

conf.org/proceedings/lrec2008/.

[Kilgarriff, 1997] Kilgarriff, A. (1997). I dont believe in word senses. Computers and the

Humanities, 31(2):91–113.

[Kilgarriff and Palmer, 2000] Kilgarriff, A. and Palmer, M., editors (2000). Computer and

the Humanities. Special issue: SENSEVAL. Evaluating Word Sense Disambiguation pro-

grams, volume 34.

[Kim and Hovy, 2004] Kim, S.-M. and Hovy, E. (2004). Determining the sentiment of opin-

ions. In Proceedings of the Twentieth International Conference on Computational Linguis-

tics (COLING 2004), pages 1267–1373, Geneva, Switzerland.

[Klein et al., 2002] Klein, D., Toutanova, K., Ilhan, I., Kamvar, S., and Manning, C. (2002).

Combining heterogeneous classifiers for word-sense disambiguation. In Proceedings of the

ACL Workshop on ”Word Sense Disambiguatuion: Recent Successes and Future Direc-

tions, pages 74–80.

[Landauer and Dutnais, 1997] Landauer, T. K. and Dutnais, S. T. (1997). A solution to

platos problem: The latent semantic analysis theory of acquisition, induction, and repre-

sentation of knowledge. Psychological review, pages 211–240.

[Le et al., 2010] Le, A., Ajot, J., Przybocki, M., and Strassel, S. (2010). Document image

collection using amazon’s mechanical turk. In Proceedings of the NAACL HLT 2010 Work-

shop on Creating Speech and Language Data with Amazon’s Mechanical Turk, CSLDAMT

’10, pages 45–52, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Leacock and Chodorow, 1998] Leacock, C. and Chodorow, M. (1998). Combining local con-

text and WordNet sense similarity for word sense identification. In WordNet, An Electronic

Lexical Database. The MIT Press.

[Leacock et al., 1998] Leacock, C., Chodorow, M., and Miller, G. (1998). Using corpus statis-

tics and WordNet relations for sense identification. Computational Linguistics, 24(1):147–

165.

123



[Li et al., 2007] Li, J., Ray, S., and Lindsay, B. G. (2007). A nonparametric statistical

approach to clustering via mode identification. J. Mach. Learn. Res., 8:1687–1723.

[Lin and Pantel, 2001] Lin, D. and Pantel, P. (2001). Discovery of inference rules for question

answering. Journal of Natural Language Engineering, 7(3).

[Maas et al., 2011] Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts,

C. (2011). Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual

Meeting of the Association for Computational Linguistics: Human Language Technologies,

pages 142–150, Portland, Oregon, USA. Association for Computational Linguistics.

[Mart́ın-Wanton et al., 2010] Mart́ın-Wanton, T., Pons-Porrata, A., Montoyo-Guijarro, A.,

and Balahur, A. (2010). Opinion polarity detection - using word sense disambiguation to

determine the polarity of opinions. In ICAART 2010 - Proceedings of the International

Conference on Agents and Artificial Intelligence, Volume 1, pages 483–486.

[Mihalcea, 2002a] Mihalcea, R. (2002a). Bootstrapping large sense tagged corpora. In Pro-

ceedings of the Third International Conference on Language Resources and Evaluation

LREC 2002, pages 1407–1411, Canary Islands, Spain.

[Mihalcea, 2002b] Mihalcea, R. (2002b). Instance based learning with automatic feature

selection applied to Word Sense Disambiguation. In Proceedings of the 19th International

Conference on Computational Linguistics (COLING 2002), Taipei, Taiwan.

[Mihalcea and Edmonds, 2004] Mihalcea, R. and Edmonds, P., editors (2004). Proceedings

of SENSEVAL-3, Association for Computational Linguistics Workshop, Barcelona, Spain.

[Mihalcea and Moldovan, 1999] Mihalcea, R. and Moldovan, D. (1999). An automatic

method for generating sense tagged corpora. In Proceedings of AAAI-99, pages 461–466,

Orlando, FL.

[Mihalcea and Moldovan, 2001] Mihalcea, R. and Moldovan, D. (2001). EZ.WordNet: prin-

ciples for automatic generation of a coarse grained WordNet. In Proceedings of FLAIRS-

2001, pages 454–458, Key West.

[Miller, 1995] Miller, G. (1995). Wordnet: A lexical database. Communication of the ACM,

38(11):39–41.

[Mitchell and Lapata, 2008] Mitchell, J. and Lapata, M. (2008). Vector-based models of

semantic composition. In Proceedings of ACL-08: HLT, pages 236–244, Columbus, Ohio.

Association for Computational Linguistics.

124



[Mitchell and Lapata, 2010] Mitchell, J. and Lapata, M. (2010). Composition in distribu-

tional models of semantics. Cognitive Science, 34(8):1388–1429.

[Mrozinski et al., 2008] Mrozinski, J., Whittaker, E., and Furui, S. (2008). Collecting a

why-question corpus for development and evaluation of an automatic QA-system. In Pro-

ceedings of ACL-08: HLT, pages 443–451, Columbus, Ohio. Association for Computational

Linguistics.

[Navigli, 2006] Navigli, R. (2006). Meaningful clustering of senses helps boost word sense

disambiguation performance. In Proceedings of the Annual Meeting of the Association for

Computational Linguistics, Sydney, Australia.

[Negri et al., 2011] Negri, M., Bentivogli, L., Mehdad, Y., Giampiccolo, D., and Marchetti,

A. (2011). Divide and conquer: Crowdsourcing the creation of cross-lingual textual en-

tailment corpora. In Proceedings of the 2011 Conference on Empirical Methods in Natural

Language Processing, pages 670–679, Edinburgh, Scotland, UK. Association for Compu-

tational Linguistics.

[Palmer et al., 2004] Palmer, M., Babko-Malaya, O., and Dang, H. T. (2004). Different sense

granularities for different applications. In HLT-NAACL 2004 Workshop: 2nd Workshop

on Scalable Natural Language Understanding, Boston, Massachusetts.

[Parent and Eskenazi, 2010] Parent, G. and Eskenazi, M. (2010). Clustering dictionary defi-

nitions using amazon mechanical turk. In Proceedings of the NAACL HLT 2010 Workshop

on Creating Speech and Language Data with Amazon’s Mechanical Turk, pages 21–29, Los

Angeles. Association for Computational Linguistics.

[Passonneau et al., 2006] Passonneau, R., Habash, N., and Rambow, O. (2006). Inter-

annotator agreement on a multilingual semantic annotation task. In Proceedings of the

Fifth International Conference on Language Resources and Evaluation (LREC).

[Pradhan and Xue, 2009] Pradhan, S. S. and Xue, N. (2009). Ontonotes: The 90% solution.

In Proceedings of Human Language Technologies: The 2009 Annual Conference of the

North American Chapter of the Association for Computational Linguistics, Companion

Volume: Tutorial Abstracts, pages 11–12, Boulder, Colorado. Association for Computa-

tional Linguistics.

[Preiss and Yarowsky, 2001] Preiss, J. and Yarowsky, D., editors (2001). Proceedings of

SENSEVAL-2, Association for Computational Linguistics Workshop, Toulouse, France.

125



[Purandare and Pedersen, 2004] Purandare, A. and Pedersen, T. (2004). Word sense dis-

crimination by clustering contexts in vector and similarity spaces. In Proceedings of the

Conference on Computational Natural Language Learning (CoNLL 2004), Boston.

[Quirk et al., 1985] Quirk, R., Greenbaum, S., Leech, G., and Svartvik, J. (1985). A Com-

prehensive Grammar of the English Language. Longman, New York.

[Rapp, 2004] Rapp, R. (2004). A freely available automatically generated thesaurus of related

words, pages 395–398.

[Reisinger and Mooney, 2010] Reisinger, J. and Mooney, R. J. (2010). Multi-prototype

vector-space models of word meaning. In HLT-NAACL, pages 109–117.

[Rentoumi et al., 2009] Rentoumi, V., Giannakopoulos, G., Karkaletsis, V., and Vouros,

G. A. (2009). Sentiment analysis of figurative language using a word sense disambiguation

approach. In Proceedings of the International Conference RANLP-2009, pages 370–375,

Borovets, Bulgaria. Association for Computational Linguistics.

[Riloff and Wiebe, 2003] Riloff, E. and Wiebe, J. (2003). Learning extraction patterns for

subjective expressions. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing (EMNLP-2003), pages 105–112, Sapporo, Japan.

[Riloff et al., 2005] Riloff, E., Wiebe, J., and Phillips, W. (2005). Exploiting subjectivity

classification to improve information extraction. In Proc. 20th National Conference on

Artificial Intelligence (AAAI-2005), pages 1106–1111, Pittsburgh, PA.

[Rosner, 2006] Rosner, B. (2006). Fundamentals of Biostatistics. Thompson Brooks/Cole.

[Rudolph and Giesbrecht, 2010] Rudolph, S. and Giesbrecht, E. (2010). Compositional

matrix-space models of language. In ACL, pages 907–916.

[Sahlgren, 2006] Sahlgren, M. (2006). The Word-Space Model: using distributional analysis

to represent syntagmatic and paradigmatic relations between words in high-dimensional

vector spaces. PhD thesis, Stockholm University.

[Schapire and Singer, 2000] Schapire, R. E. and Singer, Y. (2000). BoosTexter: A boosting-

based system for text categorization. Machine Learning, 39(2/3):135–168.

[Schutze, 1998] Schutze, H. (1998). Automatic word sense discrimination. Computational

Linguistics, 24(1):97–124.

126



[Schütze et al., 2006] Schütze, H., Velipasaoglu, E., and Pedersen, J. O. (2006). Performance

thresholding in practical text classification. In Proceedings of the 15th ACM international

conference on Information and knowledge management, CIKM ’06, pages 662–671, New

York, NY, USA. ACM.

[Snow et al., 2008] Snow, R., O’Connor, B., Jurafsky, D., and Ng, A. Y. (2008). Cheap

and fast—but is it good?: evaluating non-expert annotations for natural language tasks.

In EMNLP ’08: Proceedings of the Conference on Empirical Methods in Natural Lan-

guage Processing, pages 254–263, Morristown, NJ, USA. Association for Computational

Linguistics.

[Snow et al., 2007] Snow, R., Prakash, S., Jurafsky, D., and Ng, A. (2007). Learning to merge

word senses. In Proceedings of the Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),

Prague, Czech Republic.

[Sorokin and Forsyth, 2008] Sorokin, A. and Forsyth, D. (2008). Utility data annotation

with amazon mechanical turk. pages 1 –8.

[Stoyanov et al., 2005] Stoyanov, V., Cardie, C., and Wiebe, J. (2005). Multi-Perspective

Question Answering using the OpQA corpus. In Proceedings of the Human Language

Technologies Conference/Conference on Empirical Methods in Natural Language Process-

ing (HLT/EMNLP-2005), pages 923–930, Vancouver, Canada.

[Su and Markert, 2008] Su, F. and Markert, K. (2008). From word to sense: a case study of

subjectivity recognition. In Proceedings of the 22nd International Conference on Compu-

tational Linguistics (COLING-2008), Manchester.

[Su and Markert, 2009] Su, F. and Markert, K. (2009). Subjectivity recognition on word

senses via semi-supervised mincuts. In Proceedings of Human Language Technologies:

The 2009 Annual Conference of the North American Chapter of the Association for Com-

putational Linguistics, pages 1–9, Boulder, Colorado. Association for Computational Lin-

guistics.

[Su and Markert, 2010] Su, F. and Markert, K. (2010). Word sense subjectivity for cross-

lingual lexical substitution. In Human Language Technologies: The 2010 Annual Con-

ference of the North American Chapter of the Association for Computational Linguistics,

pages 357–360, Los Angeles, California. Association for Computational Linguistics.

127



[Tan et al., 2005] Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data

Mining, (First Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA.

[Thater et al., 2009] Thater, S., Dinu, G., and Pinkal, M. (2009). Ranking paraphrases in

context. In Proceedings of the 2009 Workshop on Applied Textual Inference, TextInfer ’09,

pages 44–47, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Tong and Koller, 2001] Tong, S. and Koller, D. (2001). Support vector machine active

learning with applications to text classification. Journal of Machine Learning Research,

2:45–66.

[Turney, 2002a] Turney, P. (2002a). Thumbs up or thumbs down? Semantic orientation

applied to unsupervised classification of reviews. In Proceedings of the 40th Annual Meeting

of the Association for Computational Linguistics (ACL-02), pages 417–424, Philadelphia,

Pennsylvania.

[Turney, 2002b] Turney, P. (2002b). Thumbs up or thumbs down? semantic orientation

applied to unsupervised classification of reviews. In (ACL 2002), pages 417–424, Philadel-

phia.

[Turney and Pantel, 2010] Turney, P. D. and Pantel, P. (2010). From frequency to meaning:

Vector space models of semantics.

[Wagstaff and Cardie, 2000] Wagstaff, K. and Cardie, C. (2000). Clustering with instance-

level constraints. In Proceedings of the Seventeenth International Conference on Machine

Learning (ICML-2000), pages 1103–1110.

[Whitelaw et al., 2005] Whitelaw, C., Argamon, S., and Garg, N. (2005). Using appraisal

taxonomies for sentiment analysis. In Proceedings of the First Computational Systemic

Functional Grammar Conference.

[Wiebe, 1994] Wiebe, J. (1994). Tracking point of view in narrative. Computational Lin-

guistics, 20(2):233–287.

[Wiebe, 2002] Wiebe, J. (2002). Instructions for annotating opinions in newspaper articles.

Department of Computer Science Technical Report TR-02-101, University of Pittsburgh.

[Wiebe et al., 1999] Wiebe, J., Bruce, R., and O’Hara, T. (1999). Development and use of

a gold standard data set for subjectivity classifications ann. In Proceedings of the 37th

128



Annual Meeting of the Association for Computational Linguistics (ACL-99), pages 246–

253, College Park, Maryland.

[Wiebe and Mihalcea, 2006] Wiebe, J. and Mihalcea, R. (2006). Word sense and subjectivity.

In Proceedings of the 21st International Conference on Computational Linguistics and

44th Annual Meeting of the Association for Computational Linguistics, pages 1065–1072,

Sydney, Australia. Association for Computational Linguistics.

[Wiebe and Riloff, 2005] Wiebe, J. and Riloff, E. (2005). Creating subjective and objec-

tive sentence classifiers from unannotated texts. In Proceedings of the 6th International

Conference on Intelligent Text Processing and Computational Linguistics (CICLing-2005)

(invited paper), Mexico City, Mexico.

[Wiebe et al., 2004] Wiebe, J., Wilson, T., Bruce, R., Bell, M., and Martin, M. (2004).

Learning subjective language. Computational Linguistics, 30(3):277–308.

[Wiebe et al., 2005a] Wiebe, J., Wilson, T., and Cardie, C. (2005a). Annotating expressions

of opinions and emotions in language. Language Resources and Evaluation, 39(2-3):165–

210.

[Wiebe et al., 2005b] Wiebe, J., Wilson, T., and Cardie, C. (2005b). Annotating expres-

sions of opinions and emotions in language ann. Language Resources and Evaluation,

39(2/3):164–210.

[Wilson, 2007] Wilson, T. (2007). Fine-grained Subjectivity and Sentiment Analysis: Rec-

ognizing the Intensity, Polarity, and Attitudes of private states. PhD thesis, Intelligent

Systems Program, University of Pittsburgh.

[Wilson et al., 2005] Wilson, T., Wiebe, J., and Hoffmann, P. (2005). Recognizing contex-

tual polarity in phrase-level sentiment analysis. In Proceedings of the Human Language

Technologies Conference/Conference on Empirical Methods in Natural Language Process-

ing (HLT/EMNLP-2005), pages 347–354, Vancouver, Canada.

[Witten and Frank., 2005] Witten, I. and Frank., E. (2005). Data Mining: Practical Machine

Learning Tools and Techniques, Second Edition. Morgan Kaufmann.

[Xing et al., 2002] Xing, E. P., Ng, A. Y., Jordan, M. I., and Russell, S. J. (2002). Distance

metric learning with application to clustering with side-information. In NIPS, pages 505–

512.

129



[Yano et al., 2010] Yano, T., Resnik, P., and Smith, N. A. (2010). Shedding (a thousand

points of) light on biased language. In Proceedings of the NAACL HLT 2010 Workshop

on Creating Speech and Language Data with Amazon’s Mechanical Turk, pages 152–158,

Los Angeles. Association for Computational Linguistics.

[Yarowsky, 1995] Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling

supervised methods. In Proceedings of the 33rd Annual Meeting of the Association for

Computational Linguistics (ACL 1995), Cambridge, MA.

[Yessenalina and Cardie, 2011] Yessenalina, A. and Cardie, C. (2011). Compositional

matrix-space models for sentiment analysis. In Proceedings of the 2011 Conference on

Empirical Methods in Natural Language Processing, pages 172–182, Edinburgh, Scotland,

UK. Association for Computational Linguistics.

[Yu and Hatzivassiloglou, 2003] Yu, H. and Hatzivassiloglou, V. (2003). Towards answering

opinion questions: Separating facts from opinions and identifying the polarity of opinion

sentences. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing (EMNLP-2003), pages 129–136, Sapporo, Japan.

[Zhai et al., 2011] Zhai, Z., Liu, B., Zhang, L., Xu, H., and Jia, P. (2011). Identifying

evaluative sentences in online discussions. In Burgard, W. and Roth, D., editors, AAAI.

AAAI Press.

130


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Results of SWSD with coarse-grained training on senSWSD.
	2. Results of SWSD with fine-grained training on senSWSD.
	3. Results of SWSD: fine-grained training vs. coarse-grained training
	4. Results of SWSD: effect of subjectivity features on SWSD
	5. Effect of SWSD on the Rule-based Classifiers.
	6. Effect of SWSD on the Subjective/Objective Classifier.
	7. Effect of SWSD on the Neutral/Polar Classifier.
	8. Effect of SWSD on the Contextual Polarity Classifier.
	9. Frequent label percentages of the target words in the MTurk experiment.
	10. Constraints for each HIT group.
	11. Accuracy and kappa scores for each group of workers.
	12. Spammer representation in groups.
	13. Comparison of SWSD systems
	14. S/O classifier with and without SWSD.
	15. N/P classifier with and without SWSD
	16. S/O classifier with learned SWSD integration
	17. N/P classifier with learned SWSD integration
	18. Polarity classifier with and without SWSD.
	19. A hypothetical word-word co-occurrence matrix
	20. Additive and multiplicative composition of co-occurrence vectors
	21. Effect of the various dependency path lengths and filtering techniques used to compute the contextual representation on the clustering performance
	22. Comparison of context representations for context clustering on SENSEVAL
	23. Comparison of context representations for context clustering on senSWSD
	24. Effect of merging context representations
	25. Comparison of context representations for context clustering on SENSEVAL on sample words 
	26. Effect of DSM modification
	27. Annotation Reduction with ICC over Uncertainty and Random Sampling
	28. S/O classifier with SWSD trained on semi-automatically generated annotations
	29. N/P classifier with SWSD trained on semi-automatically generated annotations

	LIST OF FIGURES
	1. WordNet senses for the noun ``alarm''
	2. Subjectivity sense labels – subjective examples
	3. Subjectivity sense labels – objective examples
	4. Sense-aware subjectivity analysis relying on WSD.
	5. WordNet senses for the noun ``pain''
	6. Sense-aware subjectivity analysis relying on SWSD.
	7. WSD features for SWSD
	8. Subjectivity features for SWSD
	9. SWSD integration to contextual subjectivity classifier.
	10. SWSD integration to contextual polarity classifier.
	11. Sense sets for target word ``appear''.
	12. Venn diagram illustrating worker distribution.
	13. Example for compositional representation
	14. Example for distributional substitutes
	15. WSD features for SWSD
	16. Behaviour of selection function
	17. Accuracy of generated subjectivity sense tagged data – ICC vs. random selection
	18. Accuracy of generated subjectivity sense tagged data – ICC without soft-contraints vs. Klein
	19. Accuracy of semi-automatically created data by ICC with and without soft-constraints
	20. Accuracy of semi-automatically created data by ICC with oracle cluster assignment
	21. Accuracy of semi-automatically created data by ICC and baselines

	LIST OF ALGORITHMS
	1. Iterative Constrained Clustering

	1.0 INTRODUCTION
	1.1 Motivation for Sense-Aware Subjectivity Analysis
	1.2 Research Summary
	1.3 General Hypotheses
	1.4 Main Contributions
	1.5 Outline

	2.0 BACKGROUND
	2.1 Subjectivity
	2.1.1 MPQA Corpus and Subjectivity Lexicon

	2.2 Word Senses
	2.2.1 WordNet

	2.3 Subjectivity Sense Labeling
	2.4 Subjectivity Sense Tagging

	3.0 SUBJECTIVITY WORD SENSE DISAMBIGUATION
	3.1 Potential of Sense-Aware Subjectivity Analysis
	3.2 Task Definition
	3.3 SWSD Method
	3.3.1 WSD features for SWSD
	3.3.2 Subjectivity features for SWSD
	3.3.3 Training

	3.4 Experimental Design
	3.4.1 Data Creation
	3.4.2 In Vivo Evaluation
	3.4.2.1 Results on Coarse-grained Training
	3.4.2.2 Results on Fine-grained Training
	3.4.2.3 Extending SWSD with Subjectivity Features

	3.4.3 In Vitro Evaluation
	3.4.3.1 MPQA Coverage
	3.4.3.2 Rule-based Classifier
	3.4.3.3 Contextual Subjective/Objective Classifier
	3.4.3.4 Contextual Polarity Classifier


	3.5 Summary and Discussion
	3.6 Related Work

	4.0 NON-EXPERT ANNOTATIONS
	4.1 Amazon Mechanical Turk
	4.2 Amazon Mechanical Turk for SWSD
	4.2.1 Subjectivity Sense Tagging via Amazon Mechanical Turk
	4.2.2 Annotation Quality
	4.2.2.1 Experimental Design
	4.2.2.2 Group Evaluation
	4.2.2.3 Worker Evaluation
	4.2.2.4 Learning Effect


	4.3 SWSD on Non-expert Annotations
	4.3.1 In Vivo Evaluation
	4.3.2 In Vitro Evaluation
	4.3.2.1 Data Annotation
	4.3.2.2 Rule-Based SWSD Integration
	4.3.2.3 Learning SWSD Integration


	4.4 Summary and Discussion
	4.5 Related Work

	5.0 REDUCING ANNOTATION EFFORT: CLUSTER AND LABEL
	5.1 Context Clustering
	5.1.1 Distributional Semantic Models

	5.2 Compositional Models
	5.2.1 Exploiting Richer Contexts
	5.2.2 Experiments
	5.2.2.1 Semantic Space
	5.2.2.2 Context Representations
	5.2.2.3 Clustering Algorithm and Evaluation Metric
	5.2.2.4 Effect of Longer Dependencies and Filtering Strategies
	5.2.2.5 Comparison of Context Representations
	5.2.2.6 Merging Context Representations

	5.2.3 Incorporating Subjectivity into DSMs

	5.3 Labeling Clusters
	5.3.1 Constrained Clustering
	5.3.2 Iterative Constrained Clustering
	5.3.2.1 Informativeness
	5.3.2.2 Imposing Constraints
	5.3.2.3 Complete Algorithm

	5.3.3 Experiments
	5.3.3.1 Compared Methods
	5.3.3.2 Effect of Active Selection Strategy
	5.3.3.3 Effect of Metric Learning
	5.3.3.4 Effect of Oracle Cluster Assignment
	5.3.3.5 SWSD on semi-automatically generated annotations


	5.4 Summary and Discussion
	5.5 Related Work

	6.0 CONCLUSIONS AND FUTURE DIRECTIONS
	BIBLIOGRAPHY

