Flow and Congestion Control For High Speed Networks

Wide Area Network

Prof. Taieb Znati Department Computer Science Telecommunication Program

Congestion Control in High Speed Networks

- The congestion control problem is more <u>acute</u> in high speed networks supporting QoS, than in "best-effort" networks
- Faster link speeds mean that congestion can happen <u>faster</u> than before
 - e.g., 64 kilobyte buffer
 - @ 64 kbps: 8 seconds
 - @ 10 Mbps: 52 milliseconds
 - @ 1 Gbps: 0.52 milliseconds

Buffering: A Solution?

- Buffering in switches can help alleviate <u>short term</u> or <u>transient</u> congestion problems, <u>but</u>...
- Under sustained overload, buffers will still fill up, and packets will be lost
 - > Only <u>defers</u> the congestion problem
- More buffers means more queuing delay
 - Beyond a certain point, more buffering makes the congestion problem <u>worse</u>, because of increased delay and retransmission

Buffering Impact on Delay

- To achieve a worst-case delay of 1 second, buffer requirements increases with link speeds
 - @ 64 kbps \rightarrow 8 kilobytes buffer
 - @ 10 Mbps \rightarrow 1.25 Mbytes buffer
 - @ 1 Gbps \rightarrow 125 Mbytes buffer

Traffic Characteristics

- Traffic is <u>bursty</u>
 - High peak-to-mean ratio, peak rates
 - Data traffic \rightarrow 10-to-1, for a peak rate of 1-10 Mbps
 - Video traffic \rightarrow 20-to-1, for a peak rate 5-100 Mbps
- <u>Traffic Aggregation</u>, through statistically multiplexing several channels
 - Average behavior is achievable
 - If the aggregate rate of the active traffic flows exceeds the capacity of the channels over a certain period of time, congestion is inevitable

High Speed Network Traffic Control DESIGN ISSUES

Traffic Control Approaches (I)

- Two fundamental approaches to congestion control, reactive and preventive, are possible
- Reactive → <u>feedback-based</u>
 - Attempt to detect congestion, or the onset of congestion, and take action to resolve the problem before things get worse
- Preventive \rightarrow <u>reservation-based</u>
 - Prevent congestion from ever happening, by reserving resources

Traffic Control Approaches (II)

- Current Internet approaches to traffic control are mostly based on reactive schemes
 - > TCP Slow Start
 - Source Quench
- The large "Delay"Bandwidth" is such that most of these approaches are <u>not</u> applicable to high speed networks
- Preventive, reservation-based congestion control strategies are better suited for high-speed networks, with large "Delay*Bandwidth" product

Congestion Control in High Speed Network Traffic Levels of Control

Congestion control can be applied at different levels:

- Infrastructure Level Control
 - Network provisioning to meet the long term traffic and QoS requirements of a community – Over-engineering?
- <u>Call Level</u> Control Also known as session level control
 - Prevent congestion by not allowing new calls or connections into the network unless the network has sufficient capacity to support the new calls
 - A typical approach to call-level congestion control is call admission control
- Roundtrip Level Control
 - Enforce congestion control on a propagation delay scale
- > Packet Level Control Also known as input rate control
 - Control the input rate of traffic sources to prevent, reduce, or control the level of congestion

Traffic Control Mechanisms – Time Scale

Call-Level Control

- At time of call setup (connection establishment), a connection (or a flow) requests the resources that it needs for the duration of the call and specifies its QoS requirements
 - Resource include bandwidth, buffers,
 - QoS include upper bounds on packet-loss, delay, jitter, …
- If resource are available to meet QoS requirements
 - Call accepted
- Else
 - Call rejected

Call-Level Control Strategies

- The objective is to control traffic so that the QoS requirements of currently accepted calls and new calls are met
 - > Accept enough new calls to achieve high network resources,
 - But just enough calls to ensure that the probability of network congestion remains low
- Call-level Control Strategies
 - Conservative reservation accounts for worst case traffic scenario
 - > Aggressive reservation only considers average behavior

Call-Level Control Challenges

- Hard to specify resource requirements and QOS parameters precisely
 - QoS requirements may not be known,
 - QoS may be difficult to measure
 - Congestion can still occur
- Hard to achieve fairness among calls
 - > What policy must be in place to accept and reject calls?
 - Is FIFO good enough?
 - Long access delay, and possibly denial of service

Packet Level Control

- Control the input rate of traffic sources to prevent, reduce, or control the level of congestion
- A wide range of mechanisms can be used
 - Traffic shaping and traffic policing,
 - Leaky Bucket and Token Bucket
 - Input traffic tagging (coloring) and traffic discarding
 - Packet scheduling disciplines

Achieving Traffic Control in High Speed Networks

- A combination of various flow control mechanisms must in place to achieve traffic control in high speed networks
 - Call Admission Control Scheme
 - Overly conservative schemes, based on worst case scenario, are resource wasteful.
 - Overly optimistic schemes may violate QoS guarantees.
 - Traffic Descriptor necessary to specify the input traffic and used to determine the amount of resources to be reserved
 - A universal descriptor for different types of applications is not like
 - Traffic Shaping and Policing necessary to guarantee that traffic does not deviate from its traffic specification
 - > Scheduling Discipline at Intermediate Nodes.
 - Tradeoff between efficiency, simplicity and capability of supporting delay bounds.

Traffic Descriptors

Traffic descriptor can be viewed as a behavior envelope

- It describes the traffic behavior at different levels
- Exact behavior very difficult to achieve
- Typically used to describe worst or average case behavior
- It forms the basis of a traffic contract Service Level Agreement (SLA)
 - Source agrees not to violate traffic descriptor.
 - Network guarantees the negotiated level of QoS
- Traffic policing mechanism is used to verify that the source adheres to its traffic specification.

Traffic Descriptors Properties

- Usability, the source must be able to describe its traffic easily, and the network must be able to perform feasibility test for admission control easily.
- Verifiability, the policing mechanism must be able to verify the source adheres to its traffic descriptor.
- Preservability, the network node must be able to preserve the traffic characteristics along the paths, if necessary.
- Three traffic descriptors are commonly used.
 - Peak Rate, Average Rate, and Linear Bounded Arrival Process.

Traffic Descriptor – Peak Rate

- Highest rate of traffic generation
 - For network with fixed size packets
 - Peak rate is the inverse of the closest spacing between the starting times of consecutive packets.
 - For network with variable size packets
 - Peak rate defines an upper bound on the total number of packets generated over all window intervals of the specified size.

Peak Rate

- Peak rate descriptor is easy to compute and police.
- It is an *extremal*, loose bound.
 - A single outlier can change the descriptor considerably.
- Only useful for sources with smooth traffic

Average Rate

- Objective is to reduce the effect of outliers
 - Transmission rate is averaged over a period of time
- Two parameters are defined
 - > t = time window over which rate is measured.
 - > a = number of bits to be sent over *t*.
- Two average rate mechanisms are used :
 - Jumping window
 - Moving window

Jumping Window

- Source claims that over t no more than a bits will be transmitted to the network
 - A new time interval starts immediately after the last one.
- Jumping window is sensitive to the starting time of the first window.

Moving Window

- Source claims that over all windows of size t no more than a bits will be submitted to the network.
 - > Time window moves continuously.
- Enforces tighter bounds on spikes in the input traffic.

Linear Bound Arrival Process

- LBAP constrained source bounds the number of bits it transmits in any interval of length t by linear function of t.
 - Number of bits transmitted over any interval of length $t \le \rho t + \sigma$, where
 - ρ is the long term average rate allocated by the network.
 - σ is the longest burst a source may sent, while still obeying the LBAP descriptor.
- A source has an intrinsic long-term average rate ρ, but can sometimes deviate from this rate, as specified by σ.

Policing and Traffic Shaping

- One of the main causes of the congestion is that traffic is often bursty
- To eliminate, or at least reduce, burstiness traffic shaping may be used
 - The objective is to "shape" traffic into a predictable pattern commensurate with the expected SLA traffic behavior
- Combined with traffic policing, traffic shaping is a useful technique to manage congestion

Traffic Shaping Properties

- Traffic Shaping rules should make description of traffic pattern easy.
 - Scheme should support the description of a wide range of behaviors.
- Traffic Shaping should make Traffic Policing easy to implement and enforce.
 - Allow the network to accept or reject traffic based on descriptor.
- Traffic Shaping and Policing Schemes
 - Leaky Bucket
 - Foken Bucket

Leaky Bucket

- One of the input rate traffic control mechanisms that has been proposed is the <u>leaky bucket</u>
 - Leaky Bucket as a Traffic Policing Mechanism
 - As a traffic policing mechanism, leaky bucket checks conformance of a source to its traffic descriptor
 - Leaky Bucket as a Traffic Shaper
 - As a traffic shaper, leaky bucket "rebuilds" incoming traffic to meet the expected shape according to traffic descriptor

Leaky Bucket

- Leaky Bucket Concept
 - > A bucket (pail), with a hole in the bottom, is filled with water
 - Water drips out the bottom at a constant rate
 - The size of the whole determines the rate at which the water drips
 - The dripping rate determines the rate at which packets enter the network
 - A packet is presented to the network at each drip
- The leaky-bucket provides the basis for flow control schemes to manage nework congestion by controlling what gets out of the bucket

Leaky Bucket Illustration

Leaky Bucket (Cont'd)

Leaky Bucket (Cont'd)

Storage Area for Drips waiting to Be Dropped

Isochronous Traffic Shaping Simple Leaky Bucket

- Purpose is to shape bursty traffic into a regular stream of packets.
 - > A flow is characterized by a rate ρ
 - > A bucket is characterized by a size β
- Rate is enforced by a regulator at the bottom of the bucket.

Simple Leaky Bucket Characterization

β represents the size of the Leaky Bucket

Leaky Bucket Effect

- Main effect is to coerce a bursty flow into a flow of equally spaced packets, typically of fixed size.
 - > Packets are drained out the bottom of the bucket and sent a rate ρ .
 - A packet is injected every $1/\rho$ units of time

Leaky Bucket Effect

- The effect of β is to :
 - Bound the amount of delay a packet can incur.
 - Limit the maximum bucket size
 - Burst bigger than β will be discarded.

Limitation of Isochronous Schemes

- Traffic shaping is limited to fixed rate data flows
 - Variable rate flows must request data rates equal to their peak rate.
 - Wasteful
- Isochronous shaping with priority (coloring)
 - Marking may be difficult.

Shaping Bursty Traffic Token Bucket

- Token bucket is an enhanced form of leaky bucket to allow for burstiness
 - > Buckets no longer hold flow's data.
 - Buckets hold tokens
 - > Tokens are used to regulate flow's data.
 - A token is required for the transmission of a unit of data
 - A unit of data can be bit, byte or a fixed size packet

Token Bucket Scheme

- Token are placed at rate ρ in the bucket.
 - If the bucket fills, newly arriving tokens are discarded.
- To transmit a packet, the regulator removes from the bucket a packet size worth of tokens.

Token Bucket Traffic Control

- Input traffic must obtain tokens in order to proceed into the network
- If no token available, then input traffic is discarded
 - Constrains the rate at which input traffic can enter the network to be the rate negotiated at the time of call setup
 - Shapes traffic, and reduces "burstiness"

Buffered Token Bucket

- Arriving input traffic that finds a token waiting can proceed directly into the network
- Arriving input traffic that finds no token ready must <u>wait in queue</u> for a token
- Input traffic that arrives to a full queue are lost
- Tokens that arrive to a full token pool are simply discarded

Buffered Token Bucket Operation

- Incoming input traffic rate: X
- Token rate: r
- If X > r, then input traffic must wait in buffer until tokens are available
 - > Output traffic is r packets/sec, "nicely" paced
 - Shape typically confirms to traffic specification
- If X < r, then tokens always ready</p>
 - Output traffic rate is X (< r)

Buffered Token Bucket

- A station can "store" at most M tokens
 - Station can send at most M packets back to back, if the transfer unit is a packet
 - Limits the maximum burst size in the network to M packets
- The buffer size, B, can be set to balance the tradeoff between packet loss and packet delay
 - The worst case delay packet is a factor of B and the rate at which tokens are generated

Token Bucket Traffic Control

- The token rate r is set based on the rate declared at the time of call setup
 - The Token Bucket ensures that each source obeys the rate that was specified during the call admission phase
 - Traffic descriptor
- A single Token Bucket can be used to police the peak rate
 - > A measure a burstiness
- A Dual Token Bucker can be used to police both peak rate and average rate
 - > Allow burstiness but enforce average rate on the long run

Token Bucket – Unit Impact

- Sending unit can be expressed in bits, bytes, fixed size cells,
- Assuming a sending unit of one byte, to send a packet of size b bytes:
 - If token bucket full, packet is sent and b tokens are removed.
 - If token bucket empty, packet must wait for b tokens.
 - > If token partially full ($\leq b$), packet waits for difference.
- The burstiness is controlled at the byte level
 - > Up to token-size worth of bytes can be sent back-to-back.

LBAP Regulator Token-bucket

- A token-bucket can be used to regulate LBAP descriptor.
 - It shapes incoming traffic to conform a LBAP specification.
- Regulator collects tokens in a bucket of size σ which fills at a steady rate, ρ .
 - A token allows a source to send a predetermined number of bits, bytes, packets, etc.
 - If bucket fills, excess tokens are discarded.
- Regulator submits a packet only if the bucket has enough tokens.
 - Packet waits if not enough tokens.

Token Bucket and LBAP

- A token bucket limits the size of a transmitted burst to the bucket's depth.
 - Actually, slightly more as tokens may arrive while the bucket's worth of data is being transmitted.
- Over a long term, the rate at which packets depart is limited by the rate at which tokens are added to the bucket.
- Can a minimal LBAP be achieved?

LBAP Parameter Selection

- An LBAP descriptor is said to be minimal if no other descriptor has both a smaller σ and a smaller ρ .
 - Minimal descriptors are likely to be cheaper, if resources are paid for.
- Unfortunately, the minimal LBAP descriptor is not unique.
- Given the size of the data buffer at the regulator and the maximum loss allowed, each of the choice of the token arrival rate has a corresponding minimum burst size so that the loss parameter is met.

LBAP Minimality

- A source with peak rate, *P*, and average rate, $A \ge \rho$, causes the regulator buffer to grow without bound.
 - > Avoiding packet losses requires σ to be infinite.
- If ρ ≥ P, then there are always tokens available when a packet arrives.
 - > σ can be as small as one maximal-sized packet.
- As ρ increases in the range [A, P], the minimum σ needed to meet the loss bounds decreases.
 - > Any ρ and its corresponding σ is a minimal bound.

Token Bucket Variations

- There are several different variations of the basic leaky bucket concept described in the literature, such as the virtual leaky bucket, spacer, others
- The schemes differ on how strictly are rates enforced
 - Rather than strictly enforcing rates, schemes allow senders to occasionally exceed their prescribed rate, as long as they mark or <u>tag the excess input</u> <u>traffic</u>

Conclusion

Traffic control for high speed networks

- Call level control
- Input rate traffic control
- Traffic Descriptors
 - Moving Window
 - Jumping Window
 - Linear Bounded Arrival Process
- Traffic Shaping and policing
 - Leaky Bucket
 - > Token Bucket
 - Variations
- LBAP Minimality