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Abstract 

Dynamic slicing algorithms can greatly reduce the de- 
bugging effort by focusing the attention of the user on a rele- 
vant subset of program statements. In this paper we present 
the design and evaluation of three precise dynamic slicing 
algorithms called the full preprocessing (FP), no prepro- 
cessing (NP) and limited preprocessing (LP) algorithms. 
The algorithms differ in the relative timing of construct- 
ing the dynamic data dependence graph and its traversal 
for computing requested dynamic slices. Our experiments 
show that the LP algorithm is a fast and practical precise 
slicing algorithm. In fact we show that while precise slices 
can be orders of magnitude smaller than imprecise dynamic 
slices, for small number of slicing requests, the LP algo- 
rithm is faster than an imprecise dynamic slicing algorithm 
proposed by Agrawal and Horgan. 

1. Introduction 

The concept of program slicing was first introduced by 
Mark Weiser [10]. He introduced program slicing as a de- 
bugging aid and gave the first static slicing algorithm. Since 
then a great deal of research has been conducted on static 
slicing and an excellent survey of many of the proposed 
techniques and tools can be found in [8] and [5]. Other 
works on slicing have explored the applications of slicing 
in greater depth. Some examples of such works include the 
use of slicing in debugging sequential and distributed pro- 
grams as well as testing sequential programs [2, 6]. 

It is widely recognized that for programs that make ex- 
tensive use of pointers, the highly conservative nature of 
data dependency analysis leads to highly imprecise and con- 
siderably larger slices. For program debugging, where the 
objective of slicing is to reduce the debugging effort by fo- 
cusing the attention of the user on the relevant subset of pro- 
gram statements, conservatively computed large slices are 
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clearly undesirable. Recognizing the need for accurate slic- 
ing, Korel and Laski proposed the idea of dynamic slicing 
[7]. The data dependences that are exercised during a pro- 
gram execution are captured precisely and saved. Dynamic 
slices are constructed upon users requests by traversing the 
captured dynamic dependence information. An exception 
to this approach is various works on forward computation 
of dynamic slices [11, 12] which precompute all dynamic 
slices prior to users requests. While no experimental data 
is reported in [11, 12], the execution times of this approach 
can be expected to be high. Therefore in this paper we take 
the standard approach of computing only the dynamic slices 
requested by the user. 

It has been shown that precise dynamic slices can be 
considerably smaller than static slices [9, 5]. The data in 
Table 1 shows the effectiveness of dynamic slicing. For 
each of the benchmark programs, we computed 25 distinct 
dynamic slices half way through the program's execution 
(@Midpoint) and another 25 at  the end of program's ex- 
ecution (0End). The average (AVG), minimum (MIN) and 
maximum (MAX) precise dynamic slice sizes that were ob- 
served are given in the precise dynamic slices PDS column. 
In addition, the number of distinct statements in the pro- 
gram (Static) and the number of distinct statements that a r e  

executed (Executed) are also given. For example, program 
12 6.  g c c  contains 585491 static instructions and, during 
the collection of the execution trace, 170135 of these in- 
structions were executed at least once. When 25 precise dy- 
namic slices were computed, they had average, minimum 
and maximum sizes of 6614, 2, and 11860 instructions re- 
spectively. As we can see, the PDS values are much smaller 
that the Static and Executed values. Thus, dynamic slices 
greatly help in focusing the attention of the user to a small 
subset of statements during debugging. 

While precise dynamic slices can be very useful, it is also 
well known that computing them is expensive. Therefore 
researchers have proposed imprecise dynamic slicing algo- 
rithms that trade-off precision of dynamic slicing with the 
costs of computing dynamic slicing. However, while such 
algorithms have the potential of reducing the cost of slicing, 
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Program 

126 . g c c  @ End 585491 
12 6.  g c c  @ Midpoint 585491 
099 .  g o  @ End 95459 
09 9.  g o  @ Midpoint 95459 
134 . p e r 1  @ End 116182 
3.34 . p e r 1  @ Midpoint 116182 
130. li @ End 31829 
130 .  l i  @ Midpoint 31829 
008. espresso @ End 74039 
008. espresso @ Midpoint 74039 

Average 

Table 1. Effectiveness of Dynamic Slicing. 
Static ] Instructions PDS IDS-n/PDS IDS-I/PDS ] 

Executed AVG MIN MAX AVG [ M I N I  MAX AVG M I N I  MAX 

170135 6614 2 11860 2.01 1 5188.25 3.82 
144504 2325.8 2 7405 2.69 1 1953.25 6.60 
61350 5382 4 8449 1.20 1 946.30 2.27 
55538 3560 2 6900 1.43 1 1321.83 2.55 
21451 765 2 2208 3.43 1 96.15 4.26 
20934 601 2 2208 3.04 1 813.5 4.80 
10958 834 2 834 5.96 1 41.9 12.87 
10429 48 2 584 17.33 1 1036.00 53.40 
27333 350 2 1304 3.90 1 48.57 i 5.54 
21027 295 2 1114 3.65 1 300.25 i 9.78 

1.75 13759.5 
1 4804.75 
1 3328.04 
I 5353.50 
1 973.75 
1 953.25 
1 ! 667.5 
4.35 1339.5 
1 1273.8 
1 1133.75 

I 4.46 i 1 I 1174"6 II 10.59 1.41 [3358.7 I 

they have also been found to greatly increase reported slice 
sizes thus diminishing their effectiveness. In [3], Atkinson 
et al. use dynamic points-to data to improve the accuracy 
of slicing. Unfortunately, their studies indicate that "im- 
proved precision of points-to data generally did not trans- 
late into significantly reduced slices". In [4], Gupta and 
Sofia proposed hybrid slicing technique which uses limited 
amounts of control flow information. However, it does not 
address the imprecision in data dependency computation in 
presence of pointers. We implemented two imprecise algo- 
rithms, Algorithm 1 and Algorithm H, proposed by Agrawal 
and Horgan [1] and compared the sizes of the imprecise 
dynamic slices (IDS-I and IDS-II) with corresponding pre- 
cise dynamic slices (PDS). The ratios IDS-I/PDS and IDS- 
II/PDS are given in Table 1. As we can see, imprecise slices 
can be many times larger than precise dynamic slices. In the 
worst case, for program gee ,  the imprecise dynamic slice 
IDS-H was over 5188 times larger than the precise dynamic 
slice. The IDS-I sizes are even larger. Therefore, so far, all 
attempts to address the cost issue of dynamic slicing have 
yielded unsatisfactory results. Given the inaccuracy of im- 
precise slicing algorithms, we conclude that it is worthwhile 
to spend effort into designing efficient precise dynamic slic- 
ing algorithms. 

We observe that once a program is executed and its exe- 
cution trace collected, precise dynamic slicing typically in- 
volves two tasks: [preprocessing] which builds a depen- 
dence graph by recovering dynamic dependences from the 
program's execution trace; and [slicing] which computes 
slices for given slicing requests by traversing the dynamic 
dependence graph. We present three precise dynamic slic- 
ing algorithms that differ in the degree of preprocessing they 
carry out prior to computing any dynamic slices. The full 
preprocessing (FP) algorithm builds the entire dependence 
graph before slicing. The no preprocessing (NP) does not 
perform any preprocessing but rather during slicing it uses 
demand driven analysis for recovering dynamic dependen- 
cies and caches the recovered dependencies for potential 
future reuse. Finally the limited preprocessing (LP) algo- 
rithm performs some preprocessing to first augment the ex- 

ecution trace with summary information that allows faster 
traversal of the trace and then during slicing it uses demand 
driven analysis to recover the dynamic dependences from 
the compacted execution trace. Our experience with these 
algorithms shows: 

• The FP algorithm is impractical for real programs be- 
cause it runs out of memory during the preprocessing 
phase as the dynamic dependence graphs are extremely 
large. The NP algorithm does not run out of memory 
but is slow. The LP algorithm is practical because it 
never runs out of memory and is also fast. 

• The execution time of the practical LP algorithm com- 
pares well with that of the imprecise Algorithm H pro- 
posed by Agrawal and Horgan. The LP algorithm is 
even faster than Algorithm H if a small number of 
slices are computed. Also, the latency of computing 
the first slice using LP is 2.31 to 16.16 times less than 
the latency for obtaining the first slice by Algorithm H. 

Thus, this paper shows that while imprecise dynamic slicing 
algorithms are too imprecise and therefore not attractive, a 
carefully designed precise dynamic slicing algorithm such 
as the LP algorithm is practical as it provides precise dy- 
namic slices at reasonable space and time costs. 

The remainder of the paper is organized as follows. In 
section 2 we present the precise slicing algorithms. In sec- 
tion 3 we present our experimental studies. Related work is 
discussed in section 4. Conclusions are given in section 5. 

2 Precise Dynamic Slicing 

The basic approach to dynamic slicing is to execute the 
program once and produce an execution trace which is pro- 
cessed to construct dynamic data dependence graph that in 
turn is traversed to compute dynamic slices. 

The execution trace captures the complete runtime in- 
formation of the program's execution that can be used by 
a dynamic slicing algorithm - in other words, there is suf- 
ficient information in the trace to compute precise dynamic 
slices. The information that the trace holds is the full control 

320 



flow trace and memory reference trace. Therefore we know 
the complete path followed dunng execution and each point 
where data is referenced through pointers we know the ad- 
dress from which data is accessed. 

A slicing request can be specified both in terms of a pro- 
gram variable and in terms of a memory address. The lat- 
ter is useful if the slice is to be computed with respect to a 
field of a specific instance of a dynamically allocated object. 
Data slices are computed by taking closure over data depen- 
dences while full slices are computed by taking closure over 
both data and control dependences. 

For a dynamic slice to be computed, dynamic depen- 
dences that are exercised during the program execution 
must be identified by processing the trace. The precise algo- 
rithms that we present differ in the degree to which depen- 
dences are extracted from the trace prior to dynamic slicing. 
The full preprocessing (FP) algorithm follows an approach 
that is typical of precise algorithms proposed in the liter- 
ature [7, 1]. The execution trace is fully preprocessed to 
extract all dependences and the full dynamic dependence 
graph is constructed. Given this graph, any dynamic slicing 
request can be handled by appropriate traversal of the graph. 
The no preprocessing (NP) algorithm does not precompute 
the full dynamic data dependence graph. Instead, dynamic 
data dependences are extracted in a demand-driven fash- 
ion from the trace during the handling of dynamic slicing 
requests. Therefore each time the execution trace is exam- 
ined, only dependences relevant to the slice being computed 
are extracted from the trace. Finally the limitedpreprocess- 
ing (LP) algorithm differs from the NP algorithm in that it 
augments the execution trace with trace-block summaries 
to enable faster traversal of the execution trace during the 
demand-driven extraction of dynamic dependences. Next 
we describe the above algorithms in detail. Our discussion 
primarily focuses on data dependences because the presence 
of pointers primarily effects the computation of data depen- 
dences. 

2.1 Full Preprocessing 

In developing our slicing algorithms one goal that we set 
out to achieve was to develo p a dynamic data dependence 
graph representation that would not only allow for compu- 
tation of precise dynamic slices, but, in addition, support 
computation of a dynamic slice for any variable or memory 
address at any execution point. This property is not sup- 
ported by the precise dynamic slicing algorithm of Agrawal 
and Horgan [1]. We take the statement level control flow 
graph representation of the program and add to it edges 
corresponding to the data dependences extracted from the 
execution trace. The execution instances of  the statements 
involved in a dynamic data dependence are explicitly indi- 
cated on the dynamic data dependence edges thus allowing 
the above goal to be met. 

Consider a situation of memory dependences between 
stores and loads. A statically distinct load/store instruction 
may be executed several times during program execution. 
When this happens different instances of a load instruction 
may be dependent upon different store instructions or dif- 
ferent instances of the same store instruction. For precise 
recording of data dependences we associate the instances of 
load and store instructions among which dependences exist. 
A slicing request not only identifies the use of a variable by 
a statement for which the slice is needed, but also the spe- 
cific instance of the statement for which the slice is needed. 

Consider the example shown below in which we assume 
that the load instruction is executed twice. The first instance 
of the load reads the value stored by the store on the left and 
the second instance of the load reads the value stored by the 
store on the right. In order to remember this information 
we label the edge from the load to the store on the left/right 
with (1,1)/(2,1) indicating that the first/second instance of 
the load's execution gets its value from first instance of ex- 
ecution of the store on the left/right respectively. Therefore 
when we include the load in the dynamic slice, we do not 
necessarily include both the stores in the dynamic slice. If 
the dynamic slice for the first instance of the load is being 
computed, then the store on the left is added to the slice 
while if the dynamic slice of the second instance of the load 
is being computed then the store on the right is added to the 
slice. 

Store R, addr Store R', addr' 

J, 
(1.1) ",, , "  (2,1) 

Load R", addr" 

Thus, in summary this precise dynamic slicing algorithm 
first preprocesses the execution trace and introduces labeled 
dependence edges in the dependence graph. During slicing 
the instance labels are used to traverse only relevant edges. 
We refer to this algorithm as thefullpreprocessing (FP) al- 
gorithm as it fully preprocesses the execution trace prior to 
carrying out slice computations. 

The example in Figure 1 illustrates this algorithm. The 
dynamic data dependence edges, from a use to its corre- 
sponding definition, for a given run are shown. For read- 
ability we have omitted the dynamic data dependence edges 
for uses in branch predicates as computation of data slices 
do not require these edges; only the edges for all non- 
predicate uses are shown. Edges are labeled with the ex- 
ecution instances of statements involved in the data de- 
pendences. The precise dynamic slice for the value of z 
used in the only execution of statement 16 is given. The 
data dependence edges traversed during this slice computa- 
tion include: (161,143), (143,132), (132,122), (132,153), 
(153, 31), (153,152), (152, 31), (152,151), (151,31), and 
(151,41). 
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Note that it is equally easy to compute a dynamic slice at 
any earlier execution point. For example, let us compute the 
slice corresponding to the value of x that is used during the 
first execution of statement 15. In this case we will follow 
the data dependence edge from statement 15 to statement 4 
that is labeled (1, 1); thus giving us the slice that contains 
statements 4 and 15. 

c a l l  f (&v, &v) 

14,11 

12, 

F i g u r e  1. The path taken by the program on input x = 6 is 
{11213141516171911011111411515~62121131142152536a7292 
102112 153546412213214315455161}. The precise dynamic 
slice for use of z by the only execution of statement 16 is 
{16,14,13,12,4,15,3}. 

2.2 No Preprocessing 
The FP algorithm first carries out all the preprocessing 

and then begins slicing. For large programs with long exe- 
cution runs it is possible that the dynamic dependence graph 
requires too much space to store and too much time to build. 
In fact our experiments show that too often we run out of 
memory since the graphs are too large. For this reason we 
propose another precise algorithm that does not perform any 
preprocessing. We refer to this algorithm as the no prepro- 
cessing (NP) algorithm. 

In order to avoid a priori preprocessing we employ de- 
mand driven analysis of the trace to recover dynamic de- 
pendences. When a slice computation begins we traverse 
the trace backwards to recover the dynamic dependences 
required for the slice computation. For example, if we need 
the dynamic slice for the value of some variable v at the end 
of the program, we traverse the trace backwards till the def- 
inition of v is found and include the defining statement in 

the dynamic slice. If  v is defined in terms of value of an- 
other variable w, we resume the traversal of the trace start- 
ing from the point where traversal had stopped upon finding 
the definition of v and so on. Note that since definitions we 
are interested will always appear earlier than the uses, we 
never need to traverse the same part of the trace twice dur- 
ing a single slice computation. 

In essence this algorithm performs partial preprocessing 
for extracting dynamic dependences relevant to a slicing re- 
quest as part of the slice computation. It is possible that two 
different slicing requests involve common dynamic depen- 
dences. In such a situation, the demand driven algorithm 
will recover the common dependences from the trace dur- 
ing both slice computations. To avoid this repetitive work 
we can cache the recovered dependences. Therefore at any 
given point in time, all dependences that have been com- 
puted so far can be found in the cache. Therefore when 
a dependence is required during a slice computation, the 
cache is first checked to see if the dependence is already 
known. If  the dependence is cached we can directly access 
it; otherwise we must recover it from the trace. Thus, at the 
cost of maintaining a cache, we can avoid repeated recovery 
of same dependences from the execution trace. 

We will refer to the two versions of this demand driven 
algorithm, that is, without caching and with caching, as 
no preprocessing without caching (NPwoC) and no prepro- 
cessing with caching (NPwC) algorithms. 

As an illustration of this algorithm let us reconsider the 
example of Figure 1. When the NP algorithm is used, ini- 
tially the flow graph does not contain any dynamic data de- 
pendence edges. Now let us say the slice for z at the only 
execution of statement 16 is computed. This will cause a 
single backward traversal of the trace through which the 
data dependence edges (161,143), (143,132), (132,122), 
(132,153), (153,31), (153,152), (152,31), (152,151), 
(151,31), and (151,41) are extracted. When caching is 
used, in addition to obtaining the slice, these edges are 
added to the program flow graph. Now if the slice for the 
use of x in the 3rd instance of statement 14 is computed, all 
dependences required are already present in the graph and 
thus the trace in not reexamined. On the other hand, if the 
slice for the use of x by the 2nd instance of statement l0 is 
requested, the trace is traversed again to extract additional 
dynamic data dependences. 

2.3 Limited Preprocessing 

While the NP algorithm described above addresses the 
space problem of the FP algorithm, this comes at the cost 
of increased time for slice computations. The time required 
to traverse a long execution trace is a significant part of the 
cost of slicing. While the FP algorithm traverses the trace 
only once for all slicing requests, the NP algorithm often 
traverses the same part of the trace multiple times, each 
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Table 2. Benchmark Characteristics 
Program Lines of [ Num. of Code Size 

C Code I Funcs (Bytes) 

12 6. gec 207483 2001 283070464 
09 9. go 29629 372 27512832 
13 4. perl 27044 277 87438967 
130. li 7741 357 796n,~ 
008. espresso 14850 361 22432108 

Instructions Execu~d Trace Size(Bytes) 
(1) (2) (3) (1) (2) (3) 

103156356 112037569 104650291 500000391 500000757 500000215 
117503888 120467852 62271885 500000788 500000747 250000022 
32729474 55416461 111023934 132807387 250000192 500000438 
122017736 21590453 109323294 581574086 99999705 500000365 
1142979 37512537 20203629 4665571 124988145 79512147 

time recovering different relevant dependences for a differ- 
ent slicing request. 

In light of the above discussion we can say that NP al- 
gorithm does too little preprocessing leading to high slic- 
ing costs while FP algorithm does too much preprocessing 
leading to space problems. For example, during our exper- 
iments we found that a run of FP over a trace of around 
one hundred million instructions for 12 6.  g c c  is expected 
to generate a graph of size five gigabytes. Therefore next 
we propose an algorithm that strikes a balance between pre- 
processing and slicing costs. In this precise algorithm we 
first carry out limited preprocessing of the execution trace 
aimed at augmenting the trace with summary information 
that allows faster traversal of the augmented trace. Then we 
use demand driven analysis to compute the slice using this 
augmented trace. We refer to this algorithm as the limited 
preprocessing (LP) algorithm. 

This algorithm speeds up trace traversal as follows: the 
trace is divided into trace blocks such that each trace block 
is of a fixed size. At the end of each trace block we store 
a summary of all downward exposed definitions of variable 
names and memory addresses. During the backward traver- 
sal for slicing, when looking for a definition of a variable 
or a memory address, we first look for its presence in the 
summary of downward exposed definitions. If  a definition 
is found, we traverse the trace block to locate the definition; 
otherwise using the size information we skip right away to 
the start of the trace block. 

Since the summary information contains only downward 
exposed definitions, the number of checks performed to lo- 
cate the definition being sought is smaller when the sum- 
mary information is used in contrast with using the trace 
itself. Thus, if the block is skipped, the net effect is fewer 
comparisons between the address of the variable whose def- 
inition is being sought and addresses defined within the 
trace block. On the other hand, if the block is not skipped, 
more comparisons are needed because both the summary 
information and the trace block are examined till the def- 
inition is located. Note that the cost of comparisons, and 
the size of the summary information, can also be reduced 
by representing the summary information using bit vectors. 
Moreover, since the dynamic slices are quite small in com- 
parison to the trace size, it is expected that many of the tra- 
versed trace blocks will not contribute to the dynamic slice 

and would therefore be skipped after examination of the 
summary information. Thus, fewer address comparisons 
will be performed in practice, and e v e ,  more importantly, 
the I/O cost during trace traversal will be greatly reduced. 

3 Experimental Evaluation 

3.1 I m p l e m e n t a t i o n  

For our experimentation we used the Trimaran system 
that takes a C program as its input and produces a lower 
level intermediate representation (IR) which is actually the 
machine code for an EPIC style architecture. This interme- 
diate representation is used as the basis for slicing by our 
implementations of the algorithms. In other words, when 
slicing is performed, we compute the slices in terms of a set 
of statements from this IR. Our implementation supports 
computation of both data slices as well as full slices that are 
based both upon data and control dependences. However, 
when computing slices for C programs, the key source of 
imprecision is the presence of pointers. Therefore in our 
experiments we focus primarily upon computation of dy- 
namic data slices. 

In the low level IR the usage of registers and presence of 
memory references has been made explicit by the introduc- 
tion of load and store instructions. An interpreter for the IR 
is available which is used to execute instrumented versions 
of the IR for obtaining execution traces consisting of both 
the control flow trace and memory trace. In our implemen- 
tation we read the execution trace in blocks and buffer it to 
reduce the I/O cost. Some of the programs we use make 
use of longjmps which makes it difficult to keep track of 
the calling environment when simulating the call stack. We 
handle this problem by instrumenting the program to ex- 
plicitly indicate changes in calling environment as part of 
the trace. This additional information in the trace is used 
during traversal of the trace. 

To achieve a fair comparison among the various dynamic 
slicing algorithms, we have taken great care in implement- 
ing them. The dynamic slicing algorithms that are imple- 
mented share code whenever possible and use the same ba- 
sic libraries. 
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Table 3. Precise Dynamic Slice Sizes for Additional Inputs. 

Pro~n 

126.gcc @ End 
0 9 9 . g o  @ End 
134.perl @ End 
130.ii @ End 
008.espresso @ End 

Static Instructions PDS(2) Instructions PDS(3) 
Executed(2) AVG MIN MAX Executed(3) AVG MIN MAX 

585491 136269 1268 2 10702 194162 7359 2 15388 
95459 56051 4982 2 6934 46497 1268 2 5178 
116182 15327 98 2 611 22897 151 2 599 
31829 8462 21 2 232 8854 19 2 323 
74039 22897 448 4 1443 19356 227 2 1229 

3.2 Benchmark Characteristics 

The programs used in our experiments include 
008.espresso from the Specint92 suite, and 
130.ii, 134.perl, 099.go and 126.gcc from the 
Specint95 suite. The attributes of the programs, includ- 
ing the number of lines of C code, number of functions, 
and the generated code size are given in Table 2. Each of 
the programs were 6xecuted on three different inputs and 
execution traces for the three inputs were collected. The 
number of instructions executed and the sizes of execution 
traces for these program runs are also given in Table 2. We 
can see that both the programs and the execution traces 
collected are quite large. 

The system used in our experiments is a 2.2 GHz Pen- 
tium 4 linux workstation with 1.0 GB RAM and 1.0 GB of 
swap space. 

3.3 Precise Slicing Algorithms 

In order to study the behaviors of the proposed pre- 
cise dynamic slicing algorithms we computed the follow- 
ing slices. We collected execution traces on 3 different in- 
put sets for each benchmark. For each execution trace, we 
computed 25 different slices. These slices were performed 
for latest executions of 25 distinct values loaded using load 
instructions by the program. That is, these slices were com- 
puted with respect to the end of program's execution (0 
End). For the first program input, in addition, we computed 
25 slices at an additional point in program's execution: @ 
midpoint - after half of the execution. 

Slice sizes. Let us first examine the sizes of slices to es- 
tablish the relevance of dynamic slicing for program debug- 
ging. In Table 1, in the introduction, the precise dynamic 
slice sizes of the programs on the first input for both 0 End 
and @ m i d p o i n t  were given and it was observed that the 
number of statements in the dynamic slice is a small fraction 
of the distinct statements that are actually executed. Thus, 
they are quite useful during debugging. In Table 3, the pre- 
cise dynamic slice sizes for the other two program inputs 
for 0 End are given. As we can see, similar observations 
hold for different inputs for each of the benchmarks. Thus, 
dynamic slicing is effective across different inputs for these 
pointer intensive benchmarks. 

Slice computat ion times, Next we consider the execution 
times of FP, NPwoC, NPwC, and LP algorithms. Our im- 
plementation of the LP algorithm does not use caching. Fig- 
ure 2 shows the cumulative execution time in seconds as 
slices are computed one by one. The three columns in Fig- 
ure 2 correspond to the three different inputs. These graphs 
include both the preprocessing times and slice computation 
times. Therefore for algorithms which perform preprocess- 
ing the time at which the first slice is available is relatively 
high as before the slice is computed preprocessing must be 
performed. 

First we note that in very few cases the FP runs to com- 
pletion, more often it runs out-of-memory (OoM) even with 
1 GB of swap space available to the program and therefore 
no slices are computed. Clearly this latter situation is un- 
acceptable. This is not surprising when one considers the 
estimated graph sizes for these program runs given in Ta- 
ble 4 (the estimates are based upon the number of dynamic 
dependences). 

Table 4. Estimated Full Graph Sizes. 

Program I] Size (MB) 
(1) (2) I (3) 

12 6 .  g e c  @ End 4931.4 50643 5055.9 
099 .  g o  @ End 2366.6 2276,5 1076.2 
134.perl @ End 1975.8 5629.2 8977.5 I 
130 .  l i  @ End 1808.6 316.2 1614.3 
008. espresso @ End 26.4 755.5 409.3 

When we consider the other precise algorithms, that is, 
NPwoC, NPwC and LP algorithms, we find that they all 
successfully compute all of the slices. Therefore clearly 
these new algorithms make computation of precise dynamic 
slices feasible. 

Now let us consider the no preprocessing algorithms in 
greater detail. We note that for the NPwoC algorithm there 
is a linear increase in the cumulative execution time with the 
number of slices. This is to be expected as each slicing oper- 
ation requires some traversal of the execution trace. More- 
over we notice that for NPwC that uses caching, the cumu- 
lative execution time increases less rapidly than NPwoC, 
which does not use caching, for some programs but not 
for others. This is because in some cases dependences are 
found in the cache while in other cases they are not present 
in the cache. In fact when there are no cache hits, due to 
the time spent on maintaining the cache, NPwC runs slower 
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than NPwoC. Since the impact of caching was minimal for 
the first input, we did not run the NPwC version on the other 
two inputs. 

When we look at the results of using LP algorithm we 
find that the limited preprocessing indeed pays off. The LP 
cumulative execution time rises much more slowly than the 
NPwoC and NPwC curves. Since limited preprocessing re- 
quires only a single forward traversal of the trace, its prepro- 
cessing cost is small in comparison to the savings it provides 
during slice computations. The execution times of the LP 
algorithm are 1.13 to 3.43 times less than the NP algorithm 
for the first input set (see Table 5). This is not surprising 
when one considers the percentage of trace blocks that are 
skipped by the LP algorithm (see Table 6). Each trace block 
consisted of the trace of 200 basic blocks. Varying the trace 
block size makes little difference as the percentage of trace 
blocks skipped is quite large. 

Table 5. Cumulative times: NP vs LP. 
Program N P / L P 

(1) (2) (3) 
12 6. gec  @ End 1.43 1.833 1.58 
099.  go @ End 1.13 i.31 2.09 
134 .pe r ] .  @ End 3.19 1.25 1.14 
130.33i @ End 1.95 1.25 i 1.53 
008. espresso @ End 2.67 3.43 I 2.65 

Average II 2.o7 rs1 I 1.8°1 

Table 6. Trace Blocks Skipped by LP. 

Program I % Blocks Skipped 
~ (1) (2) (3) 

126. g e e  @ End 90.43 97.63 89.39 
099.  go @ End 57.52 65.38 91.7 
134 .pa r ] .  @ End 92.42 98.99 98.26 
130.33i @ End 99.02 99.51 99.70 
008. espresso @ End 96.6 97.15 98.68 

Awage II 87"20191"73 I 95.65 

3.4 LP vs. Imprecise Algorithm II 

In this section we compare the performance of our best 
precise dynamic slicing algorithm, the LP algorithm, with 
Agrawal and Horgan's Algorithm H. We do not include data 
for Algorithm I because as shown by the data presented in 
Table 1, Algorithm 1 is extremely imprecise even in com- 
parison to Algorithm I1. 

Before describing the results it is important to under- 
stand the differences between the LP algorithm and Algo- 
rithm H. Both algorithms do not run out of memory and 
hence solve the problem of large graph sizes. The LP algo- 
rithm solves this problem by demand-driven construction of 
relevant part of the precise dynamic dependence graph. Al- 
gorithm H solves the same problem by constructing an im- 
precise dynamic dependence graph where the instances of 
statements among which dependences exist are not remem- 
bered. This approximation greatly reduces the size of the 

graph which is constructed in a single pass over the trace. 
Thus all the preprocessing is carried out once in the be- 
ginning and then slices can be computed very quickly by 
traversing this graph. 

A question that may arise is whether the performance 
of Algorithm H can be further improved by applying the 
demand-driven approach and limited preprocessing used by 
the LP algorithm. Since the approximate dynamic depen- 
dence graph constructed by Algorithm H is already small, 
there is no point in building it in a demand-driven fashion. 
Moreover, given the approach taken by Algorithm H, the 
demand-driven construction of the approximate dynamic 
dependence graph will only further slow down Algorithm 
IL This is because Algorithm H constructs the complete ap- 
proximate dynamic dependence graph in a single pass over 
the trace. If demand-driven approach is used, to extract sub- 
set of dependences from the trace, the entire trace may have 
to be traversed for extracting these dependences. Thus, re- 
peated passes over the trace would have to be carried out 
to extract different subsets of dependences which will fur- 
ther slow down Algorithm H. On the other hand, the LP 
algorithm has to build the precise dependence graph in a 
demand-driven fashion because the complete graph is too 
large. Furthermore, since Algorithm H traverses the trace 
only once, there is no point in augmenting the trace with 
summary information because such augmentation would 
also require a complete traversal of the trace. 

Slice sizes. The data presented in the introduction already 
showed that precise dynamic slices are much smaller than 
the imprecise dynamic slices computed using Algorithm H. 
In Table 7 similar data for the two additional inputs is given. 
As we can see, the same observation holds across these ad- 
ditional inputs. 

We have already compared the slice sizes of LP and Al- 
gorithm H. However, since the results of such comparisons 
are dependent upon the variables for which slicing is per- 
formed, we also developed a novel slice independent ap- 
proach for comparing the algorithms by simply comparing 
the dynamic dependence graphs constructed by them and 
measuring the imprecision in these dependence graphs that 
is introduced by Algorithm H. This method is motivated by 
the fact that the imprecision in dynamic dependence graph 
constructed by Algorithm H is the root cause of resulting 
imprecision in the dynamic slices computed by this algo- 
rithm. 

The number of dynamic dependences recovered by the 
precise algorithm is exact. However, when the impre- 
cise algorithm is used, the imprecision is introduced in the 
dynamic dependence graph in form of false dependences, 
Therefore if we compute the equivalent number of dynamic 
dependences for the imprecise algorithm they will be higher 
than those for the precise algorithm. The greater the number 

326 



Table 7. IDS-II vs. LP: Inputs (2) and (3). 

Program IDS-n/PDS(2) IDS-II/PDS(3) 
AVG MIN ] MAX AVG ] MINI  MAX 

126. gce @ End 6.80 1 4167 2.03 1 6533.5 
099 .go @ End 1,39 1 4124 1.95 1 162.5 
134 . p e r l  @ End 8,65 1 737 8.92 1 703 
130. l i  @ End 9,09 1 178.5 3.08 1 21.50 
008. e s p r e s s o  @ End 2,09 1 60.95 8.26 1 1561.5 

Avenge II 5.6 I I 1853.49 II 4.a5 I1 I 1796.46 

Table 8. Slice Independent Comparison of Algorithms. 

Program 

126.gcc 
099.go 
134.perl 
130.ii 
O08.espresso 

[ Number of Dynamic Memory Dependinces 
Input (!) Input (2) Input (3) 

Algofithm-II Precise Algorithm-II Precise Algorithm-lI Precise 
35378836 8632906 7 4 6 0 1 3 4 1  8546040 38311969 8686760 
148995060 10079908 114054794 8768685  42549505 3852822 
22114062 12923947 6 8 5 3 2 1 3  4668814 13566847 !9307883 
310899820 I 10150987 6175836 1828449 37056110 9284206 
374329 '77217 1 4 4 1 4 2 2 0  1232534  6686934 918732 

of false dependences, the greater is the degree of impreci- 
sion. 

Let us say statement S is executed many times and some 
of its instances are dependent upon values computed by 
statement T and others on values computed by statement 
U and in addition S refers to some addresses that are also 
written by statement V although there is no true dependence 
between S and V. LP algorithm makes each instance of S 
dependent upon a single instance of either T or U. Algo- 
rithm H introduces twice the number of dependences as the 
LP algorithm because it makes each instance of S depen- 
dent upon both T and U. 

We computed the equivalent number of dynamic mem- 
ory dependences (i.e., dependences between a store and a 
load operation) present in the dynamic dependence graphs 
constructed for Algorithm H and LP algorithm. The results 
of this computation are given in Table 8. As we can see, the 
number of dynamic memory dependences for Algorithm H 
are several times that of the number of dynamic memory 
dependences for the LP algorithm. For example, for the 
first input set, 2.2 6.  gcc ' s  execution produces a dynamic 
data dependence graph containing 35378836 memory de- 
pendences for Algorithm II and 8632906 memory depen- 
dences for the precise algorithm. Thus, imprecision of Al- 
gorithm H leads to a 4.1 fold increase in the number of dy- 
namic memory dependences. 

We also compared the performance of the two algorithms 
for two types of slices, data slices (based upon transitive 
closure over data dependences) and full slices (based upon 
transitive closure over both control and data dependences). 
We observed that while the overall sizes of full slices were 
several times (3 to 9 times) greater than data slices, the rel- 
ative performance of the two algorithms was similar. For 
the first input, while precise data slices computed by the 

LP algorithm were 1.2 to 17.33 times smaller than impre- 
cise data slices computed by Algorithm H, precise full slices 
were 1.09 to 1.81 times smaller than imprecise full slices. 
More detailed data is omitted due to space limitations. 

Execution times. The execution times for Algorithm H 
for slices computed at the end of execution are shown in 
Figure 2. Table 9 shows the preprocessing and slice com- 
putation times of these two algorithms. When we compare 
the execution times of the two algorithms we observe the 
following: 

• O End of execution the total time (i.e., sum ofprepro- 
cessing and slicing times) taken by LP is 0.55 to 2.02 
times the total time taken by Algorithm H. 

• @ M i d p o i n t  of execution the total time taken by LP 
is 0.51 to 1.86 times that of Algorithm II. 

• The latency of producing the results of the first slice 
using LP is 2.31 to 16.16 times smaller than that of 
producing the first slice using Algorithm IL 

On examining the graphs in Figure 2 we notice that if we 
compute only a small number of slices, then the precise LP 
algorithm in fact outperforms Algorithm H even in terms 
of the runtime performance. This is because Algorithm H 
requires that all preprocessing be performed before slicing 
can begin while LP performs much less preprocessing. For 
each program there is a number L such that if at most L 
slices are computed, LP algorithm outperforms Algorithm 
H. The value of L is higher for execution runs with longer 
traces as the length of the trace determines the preprocess- 
ing time for Algorithm II. For the slicing of g c c  @ End 
we can compute all 25 slices precisely using LP algorithm 
in time which is less than the time it takes for Algorithm lI to 
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Table 9. Preprocessing + Slicing Times: Algo. 
II vs. LP for Input (1). 

126 .gcc @ End 33014.1 + 11.46 

0 0 8 ,  e s p r e s s o  @ Midpoint 

727.82+17556.48 
12 6 .  g c c  @ Midpoint 9271.64+ 5.24 347.61+4371.21 
0 9 9 .  g'o @ End 12671.8 + 5.37 893.92+24766.14 
099 . go  @ Midpoint 6039.56+3.21 455.17+8582.18 
134 . p e r 1  @ End 631.32 + 0.76 190.18+996.82 
13 4 .  p e r l  @ Midpoint 407.83+0.32 94.16+543.20 
130. li @ End 2725.32 + 3.43 858.08+4493.45 
1 3 0 .  l i  @ Midpoint 1747.38+1.89 464.71+2736.54 
0 0 8 .  e s p r e s s o  @ End 25.15 + 0.11 7.83+33.98 

15.39+0.03 3.74+25.01 

carry out preprocessing. On the other hand, for e s p r e s  s o 
@ End we can compute around 10 slices using LP algo- 
rithm in the same amount of time as it takes Algorithm H to 
carry out preprocessing. We also compared the performance 
of LP and Algorithm H for the first input trace at execution 
midpoint (i.e., @ Midpoint). The results are presented in 
Figure 3. As we can see, at this earlier point in program 
executions similar observations hold. 

4 R e l a t e d  W o r k  

Agrawal and Horgan proposed two imprecise and two 
precise dynamic slicing algorithms in [1]. We have already 
compared the performance of our algorithms with the im- 
precise algorithms in detail. The first precise algorithm 
they propose, Algorithm III, is quite similar to our FP algo- 
rithm. The difference is in the dynamic dependence graph 
representation. While FP labels dependence edges with in- 
stances, Agrawal and Horgan construct multiple instances 
of nodes and edges. In practice, we found our representa- 
tion to be more compact. 

To reduce the size of the dependence graph, Agrawal and 
Horgan also proposed another precise algorithm which is 
Algorithm IV in their paper. Algorithm IV is based upon 
the idea of forward computation of dynamic slices where 
slices for all variables can be maintained at all times, and 
when a statement is executed, the new slice of the vari- 
able just defined can be computed from the slices of the 
variables whose values are used in the definition. Algo- 
rithm IV maintains the current dynamic slices in terms of 
the dynamic dependence graph. A new node is added to 
the dynamic dependence graph only if following the execu- 
tion of a statement the dynamic slice of the defined variable 
changes. Thus, the size of the graph is bounded by the num- 
ber of different dynamic slices. As shown in [8], a program 
of size n can have O(2 n) different dynamic slices. 

Essentially Algorithm IV precomputes all of the dynamic 
slices. While this idea results in space savings, the precom- 
putation time of Algorithm IV can be reasonably assumed 
to be much higher than the preprocessing time in FP, in 
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which the direct dependences are merely added as edge la- 
bels but no slices are computed. Given the fact that LP is 
faster than FP, it is going to perform even better in compari- 
son to Algorithm IV. Furthermore, the dynamic dependence 
graph produced by Algorithm IV can be used only to com- 
pute dynamic slices for the last definitions of variables. All 
the algorithms we have developed can be used to compute 
dynamic slices corresponding to any executed definition of 
any variable at any program point. In other words, in or- 
der to produce a compacted graph, Algorithm IV sacrifices 
some of the functionality of Algorithm IlL 

In [ 11] another algorithm for forward computation of dy- 
namic slices was introduced which precomputes and stores 
all dynamic slices on disk and later accesses to them in re- 
sponse to users requests. This algorithm saves sufficient 
information so that dynamic slices at any execution point 
can be obtained. Like Algorithm IV, it will also take a long 
time to respond to user's first request due to the long prepro- 
cessing time. Some applications of dynamic slicing, such as 
debugging, may involve only a small number of slicing re- 
quests. Thus, the large amount of preprocessing performed 
is not desirable. Our demand driven approach represents a 
much better choice for such situations. 

Korel and Yalamanchili [12] introduced another forward 
method which computes executable dynamic slices. Their 
method is based on the notion of removable blocks. A dy- 
namic slice is constructed from the original program by 
deleting removable blocks. During program execution on 
each exit from a block, the algorithm determines whether 
the executed block should be included in a dynamic slice 
or not. It is reported in [8] that executable dynamic slices 
produced may be inaccurate in the presence of loops. 

Finally no experimental data is presented to evaluate the 
forward computation of dynamic slices in any of the above 
works [1, 11, 12]. In this paper we have shown that it is 
important to consider practical design tradeoffs when de- 
veloping a precise backward slicing algorithm. Any similar 
issues that may exist in the design of algorithms that per- 
form forward computation of dynamic slices have yet to be 
studied by anyone. 

5 Conclusions 

In this paper we have shown that a careful design of a 
dynamic slicing can greatly improve its practicality. We de- 
signed and studied three different precise dynamic slicing 
algorithms: FP, NP, and LP. We made the use of demand 
driven analysis (with and without caching) and trace aug- 
mentation (with trace block summaries) to achieve practical 
implementations of precise dynamic slicing. We demon- 
strated that the precise LP algorithm which first performs 
limited preprocessing to augment the trace and then uses 
demand driven analysis performs the best. In comparison to 

the imprecise Algorithm H it runs faster when a small num- 
ber of slices are computed. Also, the latency of computing 
the first slice using LP is 2.31 to 16.16 times less than the 
latency for obtaining the first slice by Algorithm II. 

In conclusion this paper shows that while imprecise dy- 
namic slicing algorithms are too imprecise and therefore not 
an attractive option, a carefully designed precise dynamic 
slicing algorithm such as the LP algorithm is practical as 
it provides precise dynamic slices at reasonable space and 
time costs. 
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