
Precise Dynamic Slicing Algorithms*

Xiangyu Zhang Rajiv Gupta
The University of Arizona
Dept. of Computer Science

Tucson, Arizona 85721

Youtao Zhang
The Univ. of Texas at Dallas
Dept. of Computer Science

Richardson, TX 75083

Abstract

Dynamic slicing algorithms can greatly reduce the de-
bugging effort by focusing the attention of the user on a rele-
vant subset of program statements. In this paper we present
the design and evaluation of three precise dynamic slicing
algorithms called the full preprocessing (FP), no prepro-
cessing (NP) and limited preprocessing (LP) algorithms.
The algorithms differ in the relative timing of construct-
ing the dynamic data dependence graph and its traversal
for computing requested dynamic slices. Our experiments
show that the LP algorithm is a fast and practical precise
slicing algorithm. In fact we show that while precise slices
can be orders of magnitude smaller than imprecise dynamic
slices, for small number of slicing requests, the LP algo-
rithm is faster than an imprecise dynamic slicing algorithm
proposed by Agrawal and Horgan.

1. Introduction

The concept of program slicing was first introduced by
Mark Weiser [10]. He introduced program slicing as a de-
bugging aid and gave the first static slicing algorithm. Since
then a great deal of research has been conducted on static
slicing and an excellent survey of many of the proposed
techniques and tools can be found in [8] and [5]. Other
works on slicing have explored the applications of slicing
in greater depth. Some examples of such works include the
use of slicing in debugging sequential and distributed pro-
grams as well as testing sequential programs [2, 6].

It is widely recognized that for programs that make ex-
tensive use of pointers, the highly conservative nature of
data dependency analysis leads to highly imprecise and con-
siderably larger slices. For program debugging, where the
objective of slicing is to reduce the debugging effort by fo-
cusing the attention of the user on the relevant subset of pro-
gram statements, conservatively computed large slices are

*Supported by a grant from IBM and National Science Foundation
grants CCR-0220334, CCR-0208756, CCR-0105355, and EIA-0080123
to the University of Arizona.

clearly undesirable. Recognizing the need for accurate slic-
ing, Korel and Laski proposed the idea of dynamic slicing
[7]. The data dependences that are exercised during a pro-
gram execution are captured precisely and saved. Dynamic
slices are constructed upon users requests by traversing the
captured dynamic dependence information. An exception
to this approach is various works on forward computation
of dynamic slices [11, 12] which precompute all dynamic
slices prior to users requests. While no experimental data
is reported in [11, 12], the execution times of this approach
can be expected to be high. Therefore in this paper we take
the standard approach of computing only the dynamic slices
requested by the user.

It has been shown that precise dynamic slices can be
considerably smaller than static slices [9, 5]. The data in
Table 1 shows the effectiveness of dynamic slicing. For
each of the benchmark programs, we computed 25 distinct
dynamic slices half way through the program's execution
(@Midpoint) and another 25 at the end of program's ex-
ecution (0End). The average (AVG), minimum (MIN) and
maximum (MAX) precise dynamic slice sizes that were ob-
served are given in the precise dynamic slices PDS column.
In addition, the number of distinct statements in the pro-
gram (Static) and the number of distinct statements that a r e

executed (Executed) are also given. For example, program
12 6. g c c contains 585491 static instructions and, during
the collection of the execution trace, 170135 of these in-
structions were executed at least once. When 25 precise dy-
namic slices were computed, they had average, minimum
and maximum sizes of 6614, 2, and 11860 instructions re-
spectively. As we can see, the PDS values are much smaller
that the Static and Executed values. Thus, dynamic slices
greatly help in focusing the attention of the user to a small
subset of statements during debugging.

While precise dynamic slices can be very useful, it is also
well known that computing them is expensive. Therefore
researchers have proposed imprecise dynamic slicing algo-
rithms that trade-off precision of dynamic slicing with the
costs of computing dynamic slicing. However, while such
algorithms have the potential of reducing the cost of slicing,

0-7695-1877-X/03 $17.00 © 2003 IEEE 319

Program

126 . g c c @ End 585491
12 6. g c c @ Midpoint 585491
099 . g o @ End 95459
09 9. g o @ Midpoint 95459
134 . p e r 1 @ End 116182
3.34 . p e r 1 @ Midpoint 116182
130. li @ End 31829
130 . l i @ Midpoint 31829
008. espresso @ End 74039
008. espresso @ Midpoint 74039

Average

Table 1. Effectiveness of Dynamic Slicing.
Static] Instructions PDS IDS-n/PDS IDS-I/PDS]

Executed AVG MIN MAX AVG [M I N I MAX AVG M I N I MAX

170135 6614 2 11860 2.01 1 5188.25 3.82
144504 2325.8 2 7405 2.69 1 1953.25 6.60
61350 5382 4 8449 1.20 1 946.30 2.27
55538 3560 2 6900 1.43 1 1321.83 2.55
21451 765 2 2208 3.43 1 96.15 4.26
20934 601 2 2208 3.04 1 813.5 4.80
10958 834 2 834 5.96 1 41.9 12.87
10429 48 2 584 17.33 1 1036.00 53.40
27333 350 2 1304 3.90 1 48.57 i 5.54
21027 295 2 1114 3.65 1 300.25 i 9.78

1.75 13759.5
1 4804.75
1 3328.04
I 5353.50
1 973.75
1 953.25
1 ! 667.5
4.35 1339.5
1 1273.8
1 1133.75

I 4.46 i 1 I 1174"6 II 10.59 1.41 [3358.7 I

they have also been found to greatly increase reported slice
sizes thus diminishing their effectiveness. In [3], Atkinson
et al. use dynamic points-to data to improve the accuracy
of slicing. Unfortunately, their studies indicate that "im-
proved precision of points-to data generally did not trans-
late into significantly reduced slices". In [4], Gupta and
Sofia proposed hybrid slicing technique which uses limited
amounts of control flow information. However, it does not
address the imprecision in data dependency computation in
presence of pointers. We implemented two imprecise algo-
rithms, Algorithm 1 and Algorithm H, proposed by Agrawal
and Horgan [1] and compared the sizes of the imprecise
dynamic slices (IDS-I and IDS-II) with corresponding pre-
cise dynamic slices (PDS). The ratios IDS-I/PDS and IDS-
II/PDS are given in Table 1. As we can see, imprecise slices
can be many times larger than precise dynamic slices. In the
worst case, for program gee , the imprecise dynamic slice
IDS-H was over 5188 times larger than the precise dynamic
slice. The IDS-I sizes are even larger. Therefore, so far, all
attempts to address the cost issue of dynamic slicing have
yielded unsatisfactory results. Given the inaccuracy of im-
precise slicing algorithms, we conclude that it is worthwhile
to spend effort into designing efficient precise dynamic slic-
ing algorithms.

We observe that once a program is executed and its exe-
cution trace collected, precise dynamic slicing typically in-
volves two tasks: [preprocessing] which builds a depen-
dence graph by recovering dynamic dependences from the
program's execution trace; and [slicing] which computes
slices for given slicing requests by traversing the dynamic
dependence graph. We present three precise dynamic slic-
ing algorithms that differ in the degree of preprocessing they
carry out prior to computing any dynamic slices. The full
preprocessing (FP) algorithm builds the entire dependence
graph before slicing. The no preprocessing (NP) does not
perform any preprocessing but rather during slicing it uses
demand driven analysis for recovering dynamic dependen-
cies and caches the recovered dependencies for potential
future reuse. Finally the limited preprocessing (LP) algo-
rithm performs some preprocessing to first augment the ex-

ecution trace with summary information that allows faster
traversal of the trace and then during slicing it uses demand
driven analysis to recover the dynamic dependences from
the compacted execution trace. Our experience with these
algorithms shows:

• The FP algorithm is impractical for real programs be-
cause it runs out of memory during the preprocessing
phase as the dynamic dependence graphs are extremely
large. The NP algorithm does not run out of memory
but is slow. The LP algorithm is practical because it
never runs out of memory and is also fast.

• The execution time of the practical LP algorithm com-
pares well with that of the imprecise Algorithm H pro-
posed by Agrawal and Horgan. The LP algorithm is
even faster than Algorithm H if a small number of
slices are computed. Also, the latency of computing
the first slice using LP is 2.31 to 16.16 times less than
the latency for obtaining the first slice by Algorithm H.

Thus, this paper shows that while imprecise dynamic slicing
algorithms are too imprecise and therefore not attractive, a
carefully designed precise dynamic slicing algorithm such
as the LP algorithm is practical as it provides precise dy-
namic slices at reasonable space and time costs.

The remainder of the paper is organized as follows. In
section 2 we present the precise slicing algorithms. In sec-
tion 3 we present our experimental studies. Related work is
discussed in section 4. Conclusions are given in section 5.

2 Precise Dynamic Slicing

The basic approach to dynamic slicing is to execute the
program once and produce an execution trace which is pro-
cessed to construct dynamic data dependence graph that in
turn is traversed to compute dynamic slices.

The execution trace captures the complete runtime in-
formation of the program's execution that can be used by
a dynamic slicing algorithm - in other words, there is suf-
ficient information in the trace to compute precise dynamic
slices. The information that the trace holds is the full control

320

flow trace and memory reference trace. Therefore we know
the complete path followed dunng execution and each point
where data is referenced through pointers we know the ad-
dress from which data is accessed.

A slicing request can be specified both in terms of a pro-
gram variable and in terms of a memory address. The lat-
ter is useful if the slice is to be computed with respect to a
field of a specific instance of a dynamically allocated object.
Data slices are computed by taking closure over data depen-
dences while full slices are computed by taking closure over
both data and control dependences.

For a dynamic slice to be computed, dynamic depen-
dences that are exercised during the program execution
must be identified by processing the trace. The precise algo-
rithms that we present differ in the degree to which depen-
dences are extracted from the trace prior to dynamic slicing.
The full preprocessing (FP) algorithm follows an approach
that is typical of precise algorithms proposed in the liter-
ature [7, 1]. The execution trace is fully preprocessed to
extract all dependences and the full dynamic dependence
graph is constructed. Given this graph, any dynamic slicing
request can be handled by appropriate traversal of the graph.
The no preprocessing (NP) algorithm does not precompute
the full dynamic data dependence graph. Instead, dynamic
data dependences are extracted in a demand-driven fash-
ion from the trace during the handling of dynamic slicing
requests. Therefore each time the execution trace is exam-
ined, only dependences relevant to the slice being computed
are extracted from the trace. Finally the limitedpreprocess-
ing (LP) algorithm differs from the NP algorithm in that it
augments the execution trace with trace-block summaries
to enable faster traversal of the execution trace during the
demand-driven extraction of dynamic dependences. Next
we describe the above algorithms in detail. Our discussion
primarily focuses on data dependences because the presence
of pointers primarily effects the computation of data depen-
dences.

2.1 Full Preprocessing

In developing our slicing algorithms one goal that we set
out to achieve was to develo p a dynamic data dependence
graph representation that would not only allow for compu-
tation of precise dynamic slices, but, in addition, support
computation of a dynamic slice for any variable or memory
address at any execution point. This property is not sup-
ported by the precise dynamic slicing algorithm of Agrawal
and Horgan [1]. We take the statement level control flow
graph representation of the program and add to it edges
corresponding to the data dependences extracted from the
execution trace. The execution instances of the statements
involved in a dynamic data dependence are explicitly indi-
cated on the dynamic data dependence edges thus allowing
the above goal to be met.

Consider a situation of memory dependences between
stores and loads. A statically distinct load/store instruction
may be executed several times during program execution.
When this happens different instances of a load instruction
may be dependent upon different store instructions or dif-
ferent instances of the same store instruction. For precise
recording of data dependences we associate the instances of
load and store instructions among which dependences exist.
A slicing request not only identifies the use of a variable by
a statement for which the slice is needed, but also the spe-
cific instance of the statement for which the slice is needed.

Consider the example shown below in which we assume
that the load instruction is executed twice. The first instance
of the load reads the value stored by the store on the left and
the second instance of the load reads the value stored by the
store on the right. In order to remember this information
we label the edge from the load to the store on the left/right
with (1,1)/(2,1) indicating that the first/second instance of
the load's execution gets its value from first instance of ex-
ecution of the store on the left/right respectively. Therefore
when we include the load in the dynamic slice, we do not
necessarily include both the stores in the dynamic slice. If
the dynamic slice for the first instance of the load is being
computed, then the store on the left is added to the slice
while if the dynamic slice of the second instance of the load
is being computed then the store on the right is added to the
slice.

Store R, addr Store R', addr'

J,
(1.1) ",, , " (2,1)

Load R", addr"

Thus, in summary this precise dynamic slicing algorithm
first preprocesses the execution trace and introduces labeled
dependence edges in the dependence graph. During slicing
the instance labels are used to traverse only relevant edges.
We refer to this algorithm as thefullpreprocessing (FP) al-
gorithm as it fully preprocesses the execution trace prior to
carrying out slice computations.

The example in Figure 1 illustrates this algorithm. The
dynamic data dependence edges, from a use to its corre-
sponding definition, for a given run are shown. For read-
ability we have omitted the dynamic data dependence edges
for uses in branch predicates as computation of data slices
do not require these edges; only the edges for all non-
predicate uses are shown. Edges are labeled with the ex-
ecution instances of statements involved in the data de-
pendences. The precise dynamic slice for the value of z
used in the only execution of statement 16 is given. The
data dependence edges traversed during this slice computa-
tion include: (161,143), (143,132), (132,122), (132,153),
(153, 31), (153,152), (152, 31), (152,151), (151,31), and
(151,41).

321

Note that it is equally easy to compute a dynamic slice at
any earlier execution point. For example, let us compute the
slice corresponding to the value of x that is used during the
first execution of statement 15. In this case we will follow
the data dependence edge from statement 15 to statement 4
that is labeled (1, 1); thus giving us the slice that contains
statements 4 and 15.

c a l l f (&v, &v)

14,11

12,

F i g u r e 1. The path taken by the program on input x = 6 is
{11213141516171911011111411515~62121131142152536a7292
102112 153546412213214315455161}. The precise dynamic
slice for use of z by the only execution of statement 16 is
{16,14,13,12,4,15,3}.

2.2 No Preprocessing
The FP algorithm first carries out all the preprocessing

and then begins slicing. For large programs with long exe-
cution runs it is possible that the dynamic dependence graph
requires too much space to store and too much time to build.
In fact our experiments show that too often we run out of
memory since the graphs are too large. For this reason we
propose another precise algorithm that does not perform any
preprocessing. We refer to this algorithm as the no prepro-
cessing (NP) algorithm.

In order to avoid a priori preprocessing we employ de-
mand driven analysis of the trace to recover dynamic de-
pendences. When a slice computation begins we traverse
the trace backwards to recover the dynamic dependences
required for the slice computation. For example, if we need
the dynamic slice for the value of some variable v at the end
of the program, we traverse the trace backwards till the def-
inition of v is found and include the defining statement in

the dynamic slice. If v is defined in terms of value of an-
other variable w, we resume the traversal of the trace start-
ing from the point where traversal had stopped upon finding
the definition of v and so on. Note that since definitions we
are interested will always appear earlier than the uses, we
never need to traverse the same part of the trace twice dur-
ing a single slice computation.

In essence this algorithm performs partial preprocessing
for extracting dynamic dependences relevant to a slicing re-
quest as part of the slice computation. It is possible that two
different slicing requests involve common dynamic depen-
dences. In such a situation, the demand driven algorithm
will recover the common dependences from the trace dur-
ing both slice computations. To avoid this repetitive work
we can cache the recovered dependences. Therefore at any
given point in time, all dependences that have been com-
puted so far can be found in the cache. Therefore when
a dependence is required during a slice computation, the
cache is first checked to see if the dependence is already
known. If the dependence is cached we can directly access
it; otherwise we must recover it from the trace. Thus, at the
cost of maintaining a cache, we can avoid repeated recovery
of same dependences from the execution trace.

We will refer to the two versions of this demand driven
algorithm, that is, without caching and with caching, as
no preprocessing without caching (NPwoC) and no prepro-
cessing with caching (NPwC) algorithms.

As an illustration of this algorithm let us reconsider the
example of Figure 1. When the NP algorithm is used, ini-
tially the flow graph does not contain any dynamic data de-
pendence edges. Now let us say the slice for z at the only
execution of statement 16 is computed. This will cause a
single backward traversal of the trace through which the
data dependence edges (161,143), (143,132), (132,122),
(132,153), (153,31), (153,152), (152,31), (152,151),
(151,31), and (151,41) are extracted. When caching is
used, in addition to obtaining the slice, these edges are
added to the program flow graph. Now if the slice for the
use of x in the 3rd instance of statement 14 is computed, all
dependences required are already present in the graph and
thus the trace in not reexamined. On the other hand, if the
slice for the use of x by the 2nd instance of statement l0 is
requested, the trace is traversed again to extract additional
dynamic data dependences.

2.3 Limited Preprocessing

While the NP algorithm described above addresses the
space problem of the FP algorithm, this comes at the cost
of increased time for slice computations. The time required
to traverse a long execution trace is a significant part of the
cost of slicing. While the FP algorithm traverses the trace
only once for all slicing requests, the NP algorithm often
traverses the same part of the trace multiple times, each

322

Table 2. Benchmark Characteristics
Program Lines of [Num. of Code Size

C Code I Funcs (Bytes)

12 6. gec 207483 2001 283070464
09 9. go 29629 372 27512832
13 4. perl 27044 277 87438967
130. li 7741 357 796n,~
008. espresso 14850 361 22432108

Instructions Execu~d Trace Size(Bytes)
(1) (2) (3) (1) (2) (3)

103156356 112037569 104650291 500000391 500000757 500000215
117503888 120467852 62271885 500000788 500000747 250000022
32729474 55416461 111023934 132807387 250000192 500000438
122017736 21590453 109323294 581574086 99999705 500000365
1142979 37512537 20203629 4665571 124988145 79512147

time recovering different relevant dependences for a differ-
ent slicing request.

In light of the above discussion we can say that NP al-
gorithm does too little preprocessing leading to high slic-
ing costs while FP algorithm does too much preprocessing
leading to space problems. For example, during our exper-
iments we found that a run of FP over a trace of around
one hundred million instructions for 12 6. g c c is expected
to generate a graph of size five gigabytes. Therefore next
we propose an algorithm that strikes a balance between pre-
processing and slicing costs. In this precise algorithm we
first carry out limited preprocessing of the execution trace
aimed at augmenting the trace with summary information
that allows faster traversal of the augmented trace. Then we
use demand driven analysis to compute the slice using this
augmented trace. We refer to this algorithm as the limited
preprocessing (LP) algorithm.

This algorithm speeds up trace traversal as follows: the
trace is divided into trace blocks such that each trace block
is of a fixed size. At the end of each trace block we store
a summary of all downward exposed definitions of variable
names and memory addresses. During the backward traver-
sal for slicing, when looking for a definition of a variable
or a memory address, we first look for its presence in the
summary of downward exposed definitions. If a definition
is found, we traverse the trace block to locate the definition;
otherwise using the size information we skip right away to
the start of the trace block.

Since the summary information contains only downward
exposed definitions, the number of checks performed to lo-
cate the definition being sought is smaller when the sum-
mary information is used in contrast with using the trace
itself. Thus, if the block is skipped, the net effect is fewer
comparisons between the address of the variable whose def-
inition is being sought and addresses defined within the
trace block. On the other hand, if the block is not skipped,
more comparisons are needed because both the summary
information and the trace block are examined till the def-
inition is located. Note that the cost of comparisons, and
the size of the summary information, can also be reduced
by representing the summary information using bit vectors.
Moreover, since the dynamic slices are quite small in com-
parison to the trace size, it is expected that many of the tra-
versed trace blocks will not contribute to the dynamic slice

and would therefore be skipped after examination of the
summary information. Thus, fewer address comparisons
will be performed in practice, and e v e , more importantly,
the I/O cost during trace traversal will be greatly reduced.

3 Experimental Evaluation

3.1 I m p l e m e n t a t i o n

For our experimentation we used the Trimaran system
that takes a C program as its input and produces a lower
level intermediate representation (IR) which is actually the
machine code for an EPIC style architecture. This interme-
diate representation is used as the basis for slicing by our
implementations of the algorithms. In other words, when
slicing is performed, we compute the slices in terms of a set
of statements from this IR. Our implementation supports
computation of both data slices as well as full slices that are
based both upon data and control dependences. However,
when computing slices for C programs, the key source of
imprecision is the presence of pointers. Therefore in our
experiments we focus primarily upon computation of dy-
namic data slices.

In the low level IR the usage of registers and presence of
memory references has been made explicit by the introduc-
tion of load and store instructions. An interpreter for the IR
is available which is used to execute instrumented versions
of the IR for obtaining execution traces consisting of both
the control flow trace and memory trace. In our implemen-
tation we read the execution trace in blocks and buffer it to
reduce the I/O cost. Some of the programs we use make
use of longjmps which makes it difficult to keep track of
the calling environment when simulating the call stack. We
handle this problem by instrumenting the program to ex-
plicitly indicate changes in calling environment as part of
the trace. This additional information in the trace is used
during traversal of the trace.

To achieve a fair comparison among the various dynamic
slicing algorithms, we have taken great care in implement-
ing them. The dynamic slicing algorithms that are imple-
mented share code whenever possible and use the same ba-
sic libraries.

323

Table 3. Precise Dynamic Slice Sizes for Additional Inputs.

Pro~n

126.gcc @ End
0 9 9 . g o @ End
134.perl @ End
130.ii @ End
008.espresso @ End

Static Instructions PDS(2) Instructions PDS(3)
Executed(2) AVG MIN MAX Executed(3) AVG MIN MAX

585491 136269 1268 2 10702 194162 7359 2 15388
95459 56051 4982 2 6934 46497 1268 2 5178
116182 15327 98 2 611 22897 151 2 599
31829 8462 21 2 232 8854 19 2 323
74039 22897 448 4 1443 19356 227 2 1229

3.2 Benchmark Characteristics

The programs used in our experiments include
008.espresso from the Specint92 suite, and
130.ii, 134.perl, 099.go and 126.gcc from the
Specint95 suite. The attributes of the programs, includ-
ing the number of lines of C code, number of functions,
and the generated code size are given in Table 2. Each of
the programs were 6xecuted on three different inputs and
execution traces for the three inputs were collected. The
number of instructions executed and the sizes of execution
traces for these program runs are also given in Table 2. We
can see that both the programs and the execution traces
collected are quite large.

The system used in our experiments is a 2.2 GHz Pen-
tium 4 linux workstation with 1.0 GB RAM and 1.0 GB of
swap space.

3.3 Precise Slicing Algorithms

In order to study the behaviors of the proposed pre-
cise dynamic slicing algorithms we computed the follow-
ing slices. We collected execution traces on 3 different in-
put sets for each benchmark. For each execution trace, we
computed 25 different slices. These slices were performed
for latest executions of 25 distinct values loaded using load
instructions by the program. That is, these slices were com-
puted with respect to the end of program's execution (0
End). For the first program input, in addition, we computed
25 slices at an additional point in program's execution: @
midpoint - after half of the execution.

Slice sizes. Let us first examine the sizes of slices to es-
tablish the relevance of dynamic slicing for program debug-
ging. In Table 1, in the introduction, the precise dynamic
slice sizes of the programs on the first input for both 0 End
and @ m i d p o i n t were given and it was observed that the
number of statements in the dynamic slice is a small fraction
of the distinct statements that are actually executed. Thus,
they are quite useful during debugging. In Table 3, the pre-
cise dynamic slice sizes for the other two program inputs
for 0 End are given. As we can see, similar observations
hold for different inputs for each of the benchmarks. Thus,
dynamic slicing is effective across different inputs for these
pointer intensive benchmarks.

Slice computat ion times, Next we consider the execution
times of FP, NPwoC, NPwC, and LP algorithms. Our im-
plementation of the LP algorithm does not use caching. Fig-
ure 2 shows the cumulative execution time in seconds as
slices are computed one by one. The three columns in Fig-
ure 2 correspond to the three different inputs. These graphs
include both the preprocessing times and slice computation
times. Therefore for algorithms which perform preprocess-
ing the time at which the first slice is available is relatively
high as before the slice is computed preprocessing must be
performed.

First we note that in very few cases the FP runs to com-
pletion, more often it runs out-of-memory (OoM) even with
1 GB of swap space available to the program and therefore
no slices are computed. Clearly this latter situation is un-
acceptable. This is not surprising when one considers the
estimated graph sizes for these program runs given in Ta-
ble 4 (the estimates are based upon the number of dynamic
dependences).

Table 4. Estimated Full Graph Sizes.

Program I] Size (MB)
(1) (2) I (3)

12 6 . g e c @ End 4931.4 50643 5055.9
099 . g o @ End 2366.6 2276,5 1076.2
134.perl @ End 1975.8 5629.2 8977.5 I
130 . l i @ End 1808.6 316.2 1614.3
008. espresso @ End 26.4 755.5 409.3

When we consider the other precise algorithms, that is,
NPwoC, NPwC and LP algorithms, we find that they all
successfully compute all of the slices. Therefore clearly
these new algorithms make computation of precise dynamic
slices feasible.

Now let us consider the no preprocessing algorithms in
greater detail. We note that for the NPwoC algorithm there
is a linear increase in the cumulative execution time with the
number of slices. This is to be expected as each slicing oper-
ation requires some traversal of the execution trace. More-
over we notice that for NPwC that uses caching, the cumu-
lative execution time increases less rapidly than NPwoC,
which does not use caching, for some programs but not
for others. This is because in some cases dependences are
found in the cache while in other cases they are not present
in the cache. In fact when there are no cache hits, due to
the time spent on maintaining the cache, NPwC runs slower

324

126 ,gcc @ E n d - - (1)

• sooo - -

, " c c e c : ~ . c . ~ : . c . ~ : : : : : ' ~ c c : c :

~oooo

° 0 1 2 3 4 s 6 7 e e 1011121314?S l~ IT IBTg~21~23~4~

09g.go @ E n d - - (1)

~o0oo
G----F~ ~ . II

~ooo ~ - -~ N ILe , "

I-

° 0 1 2 3 4 5 e 7 ~1 e Io t112131415161718592021~2324252~
s l ~

1 3 4 . p e a o End --(1)

aooo

o

/

1 2 3 4 ~ 6 7 6 ~ lO I I 12 T3 14 tS Io 17 18 19~0212223242528
S~

130.1i @ E n d - - (1)

'if'
o 1 2 3 4 b 6 7 tl 9 IO I1T2 f3141StO171810202122~Z3242521~

s~ce*

O08.espresso @ E n d - - (1)

<

| .

,Io

0.---0 AI9o, II
~2"""~} FP

.. -) NPwoC
/ ~ . ~ NPwC
,!-. ,,:LP

,o~
°o 1 2 3 4 s 6 7 8 • 10~11213 t41$1617 t$1920212223242 .52~

sooo~

loo~o

sooo

o

~sooo

a~oo

i-
sooo

126.gcc @ E n d - - (2)

~.~: ' , : ;~ ".~":'""

1 2 3 4 6 6 7 I 9 101T I~ I3141S lS ITH I Ig2021222324252~
m~

099.go @ End - - (2)

= . c c c . c c c c c c : ~ r _ : ~ . a o o c : = c e o

~ e -

I 2 3 4 ~ ~ 7 o ~ 10 t1121314161~171~10~21~24~

l ~ . ~ d @ E n d - - (2)

~ c c . c . c c c c . c c c c c c c c c c c c c c . c . c . c c o

e~o f

i i~
40O / ~"" "~ N PWC((~'I mn)

200 41" ~ , , . , ..i

~00 /

k.~ .
I ~ 3 4 S 8 7 e 9 1011121314151617181e~21~4252~

130.[i @ End ~ (2)

4OOO I ~---O~JW. " ~-----~ FP
..... ~ ' N ~ C

~ F

i
~ t

, ~ ,..,-;: ~:~i

0 t 2 3 4 s 6 7 8 ~ 10111213141518171819~02~z22324252~
s~

008.espresso @ End - - (2)

!-
lOOO

I 2 3 4 S 6 7 6 9 10111213141~ f8171819~21~28
Sgcaia

126 .gcc @ E n d - - (3)

ool c c : : : : c c : , c c C , , C e c e c c . ~ c : . c c o

~oooo

o ['''~'~ ;' :g'~ " ' ' ' , -

099.go @ End - - (31

LTi ...

2~0,
~00

isoo

Iroo
~" 18oo

lsoo
14oo

~ooo f ~ - - o Aklo..

t /r--p, NPtvC{dldnl ran) ~.-

~coo ~ ~,"~'~ ,<" '

o
0 t 2 3 4 s e 7 6 9 so l l 121a141s t$171e1020212223242528

sa¢**

134.ped @ End - - (3)

/ .

, .~ NPv,~c / /

• ' ~ ~i"
/

~o~ . . .~.~-: .~ ,~ ~-~..~....~..,~ ~ .- .. ~ ' /

°o 1 2 3 4 S • 7 e 9 I 0111213141GIG I? lB?9~21~
S~.U

130.1i O E n d - - (3)

5O00

l- moo
,3

~ - . , NF~C /"
~--.-t~ Nl>*C(a~anrt ~ l

~,--4

~-4 . / •
^ ~ p - . ^

: - e c c c c c C ~ : . ~ . ~ . c . - ~ - ~ - e - c c - c e e c

~ d

~oo
21oo
~ooo
19oo
18oo,
~70o
lOOO
lsoo
14c~
t~oo
12oo
Tloo
lOOO
ooo
aoo
7o0
eoo
soo
*oo
3OO ~
200
100'

0

Sk~

O08.esprosso @ End - - (3)

E

~'---'>N~OC / f

Z

d .
i 2 3 4 S 6 7 8 S i 0 t l 1213141511817tlt192021222~1242SL~45

Figure 2. Execution Times.

325

than NPwoC. Since the impact of caching was minimal for
the first input, we did not run the NPwC version on the other
two inputs.

When we look at the results of using LP algorithm we
find that the limited preprocessing indeed pays off. The LP
cumulative execution time rises much more slowly than the
NPwoC and NPwC curves. Since limited preprocessing re-
quires only a single forward traversal of the trace, its prepro-
cessing cost is small in comparison to the savings it provides
during slice computations. The execution times of the LP
algorithm are 1.13 to 3.43 times less than the NP algorithm
for the first input set (see Table 5). This is not surprising
when one considers the percentage of trace blocks that are
skipped by the LP algorithm (see Table 6). Each trace block
consisted of the trace of 200 basic blocks. Varying the trace
block size makes little difference as the percentage of trace
blocks skipped is quite large.

Table 5. Cumulative times: NP vs LP.
Program N P / L P

(1) (2) (3)
12 6. gec @ End 1.43 1.833 1.58
099. go @ End 1.13 i.31 2.09
134 .pe r] . @ End 3.19 1.25 1.14
130.33i @ End 1.95 1.25 i 1.53
008. espresso @ End 2.67 3.43 I 2.65

Average II 2.o7 rs1 I 1.8°1

Table 6. Trace Blocks Skipped by LP.

Program I % Blocks Skipped
~ (1) (2) (3)

126. g e e @ End 90.43 97.63 89.39
099. go @ End 57.52 65.38 91.7
134 .pa r] . @ End 92.42 98.99 98.26
130.33i @ End 99.02 99.51 99.70
008. espresso @ End 96.6 97.15 98.68

Awage II 87"20191"73 I 95.65

3.4 LP vs. Imprecise Algorithm II

In this section we compare the performance of our best
precise dynamic slicing algorithm, the LP algorithm, with
Agrawal and Horgan's Algorithm H. We do not include data
for Algorithm I because as shown by the data presented in
Table 1, Algorithm 1 is extremely imprecise even in com-
parison to Algorithm I1.

Before describing the results it is important to under-
stand the differences between the LP algorithm and Algo-
rithm H. Both algorithms do not run out of memory and
hence solve the problem of large graph sizes. The LP algo-
rithm solves this problem by demand-driven construction of
relevant part of the precise dynamic dependence graph. Al-
gorithm H solves the same problem by constructing an im-
precise dynamic dependence graph where the instances of
statements among which dependences exist are not remem-
bered. This approximation greatly reduces the size of the

graph which is constructed in a single pass over the trace.
Thus all the preprocessing is carried out once in the be-
ginning and then slices can be computed very quickly by
traversing this graph.

A question that may arise is whether the performance
of Algorithm H can be further improved by applying the
demand-driven approach and limited preprocessing used by
the LP algorithm. Since the approximate dynamic depen-
dence graph constructed by Algorithm H is already small,
there is no point in building it in a demand-driven fashion.
Moreover, given the approach taken by Algorithm H, the
demand-driven construction of the approximate dynamic
dependence graph will only further slow down Algorithm
IL This is because Algorithm H constructs the complete ap-
proximate dynamic dependence graph in a single pass over
the trace. If demand-driven approach is used, to extract sub-
set of dependences from the trace, the entire trace may have
to be traversed for extracting these dependences. Thus, re-
peated passes over the trace would have to be carried out
to extract different subsets of dependences which will fur-
ther slow down Algorithm H. On the other hand, the LP
algorithm has to build the precise dependence graph in a
demand-driven fashion because the complete graph is too
large. Furthermore, since Algorithm H traverses the trace
only once, there is no point in augmenting the trace with
summary information because such augmentation would
also require a complete traversal of the trace.

Slice sizes. The data presented in the introduction already
showed that precise dynamic slices are much smaller than
the imprecise dynamic slices computed using Algorithm H.
In Table 7 similar data for the two additional inputs is given.
As we can see, the same observation holds across these ad-
ditional inputs.

We have already compared the slice sizes of LP and Al-
gorithm H. However, since the results of such comparisons
are dependent upon the variables for which slicing is per-
formed, we also developed a novel slice independent ap-
proach for comparing the algorithms by simply comparing
the dynamic dependence graphs constructed by them and
measuring the imprecision in these dependence graphs that
is introduced by Algorithm H. This method is motivated by
the fact that the imprecision in dynamic dependence graph
constructed by Algorithm H is the root cause of resulting
imprecision in the dynamic slices computed by this algo-
rithm.

The number of dynamic dependences recovered by the
precise algorithm is exact. However, when the impre-
cise algorithm is used, the imprecision is introduced in the
dynamic dependence graph in form of false dependences,
Therefore if we compute the equivalent number of dynamic
dependences for the imprecise algorithm they will be higher
than those for the precise algorithm. The greater the number

326

Table 7. IDS-II vs. LP: Inputs (2) and (3).

Program IDS-n/PDS(2) IDS-II/PDS(3)
AVG MIN] MAX AVG] MINI MAX

126. gce @ End 6.80 1 4167 2.03 1 6533.5
099 .go @ End 1,39 1 4124 1.95 1 162.5
134 . p e r l @ End 8,65 1 737 8.92 1 703
130. l i @ End 9,09 1 178.5 3.08 1 21.50
008. e s p r e s s o @ End 2,09 1 60.95 8.26 1 1561.5

Avenge II 5.6 I I 1853.49 II 4.a5 I1 I 1796.46

Table 8. Slice Independent Comparison of Algorithms.

Program

126.gcc
099.go
134.perl
130.ii
O08.espresso

[Number of Dynamic Memory Dependinces
Input (!) Input (2) Input (3)

Algofithm-II Precise Algorithm-II Precise Algorithm-lI Precise
35378836 8632906 7 4 6 0 1 3 4 1 8546040 38311969 8686760
148995060 10079908 114054794 8768685 42549505 3852822
22114062 12923947 6 8 5 3 2 1 3 4668814 13566847 !9307883
310899820 I 10150987 6175836 1828449 37056110 9284206
374329 '77217 1 4 4 1 4 2 2 0 1232534 6686934 918732

of false dependences, the greater is the degree of impreci-
sion.

Let us say statement S is executed many times and some
of its instances are dependent upon values computed by
statement T and others on values computed by statement
U and in addition S refers to some addresses that are also
written by statement V although there is no true dependence
between S and V. LP algorithm makes each instance of S
dependent upon a single instance of either T or U. Algo-
rithm H introduces twice the number of dependences as the
LP algorithm because it makes each instance of S depen-
dent upon both T and U.

We computed the equivalent number of dynamic mem-
ory dependences (i.e., dependences between a store and a
load operation) present in the dynamic dependence graphs
constructed for Algorithm H and LP algorithm. The results
of this computation are given in Table 8. As we can see, the
number of dynamic memory dependences for Algorithm H
are several times that of the number of dynamic memory
dependences for the LP algorithm. For example, for the
first input set, 2.2 6. gcc ' s execution produces a dynamic
data dependence graph containing 35378836 memory de-
pendences for Algorithm II and 8632906 memory depen-
dences for the precise algorithm. Thus, imprecision of Al-
gorithm H leads to a 4.1 fold increase in the number of dy-
namic memory dependences.

We also compared the performance of the two algorithms
for two types of slices, data slices (based upon transitive
closure over data dependences) and full slices (based upon
transitive closure over both control and data dependences).
We observed that while the overall sizes of full slices were
several times (3 to 9 times) greater than data slices, the rel-
ative performance of the two algorithms was similar. For
the first input, while precise data slices computed by the

LP algorithm were 1.2 to 17.33 times smaller than impre-
cise data slices computed by Algorithm H, precise full slices
were 1.09 to 1.81 times smaller than imprecise full slices.
More detailed data is omitted due to space limitations.

Execution times. The execution times for Algorithm H
for slices computed at the end of execution are shown in
Figure 2. Table 9 shows the preprocessing and slice com-
putation times of these two algorithms. When we compare
the execution times of the two algorithms we observe the
following:

• O End of execution the total time (i.e., sum ofprepro-
cessing and slicing times) taken by LP is 0.55 to 2.02
times the total time taken by Algorithm H.

• @ M i d p o i n t of execution the total time taken by LP
is 0.51 to 1.86 times that of Algorithm II.

• The latency of producing the results of the first slice
using LP is 2.31 to 16.16 times smaller than that of
producing the first slice using Algorithm IL

On examining the graphs in Figure 2 we notice that if we
compute only a small number of slices, then the precise LP
algorithm in fact outperforms Algorithm H even in terms
of the runtime performance. This is because Algorithm H
requires that all preprocessing be performed before slicing
can begin while LP performs much less preprocessing. For
each program there is a number L such that if at most L
slices are computed, LP algorithm outperforms Algorithm
H. The value of L is higher for execution runs with longer
traces as the length of the trace determines the preprocess-
ing time for Algorithm II. For the slicing of g c c @ End
we can compute all 25 slices precisely using LP algorithm
in time which is less than the time it takes for Algorithm lI to

327

Table 9. Preprocessing + Slicing Times: Algo.
II vs. LP for Input (1).

126 .gcc @ End 33014.1 + 11.46

0 0 8 , e s p r e s s o @ Midpoint

727.82+17556.48
12 6 . g c c @ Midpoint 9271.64+ 5.24 347.61+4371.21
0 9 9 . g'o @ End 12671.8 + 5.37 893.92+24766.14
099 . go @ Midpoint 6039.56+3.21 455.17+8582.18
134 . p e r 1 @ End 631.32 + 0.76 190.18+996.82
13 4 . p e r l @ Midpoint 407.83+0.32 94.16+543.20
130. li @ End 2725.32 + 3.43 858.08+4493.45
1 3 0 . l i @ Midpoint 1747.38+1.89 464.71+2736.54
0 0 8 . e s p r e s s o @ End 25.15 + 0.11 7.83+33.98

15.39+0.03 3.74+25.01

carry out preprocessing. On the other hand, for e s p r e s s o
@ End we can compute around 10 slices using LP algo-
rithm in the same amount of time as it takes Algorithm H to
carry out preprocessing. We also compared the performance
of LP and Algorithm H for the first input trace at execution
midpoint (i.e., @ Midpoint). The results are presented in
Figure 3. As we can see, at this earlier point in program
executions similar observations hold.

4 R e l a t e d W o r k

Agrawal and Horgan proposed two imprecise and two
precise dynamic slicing algorithms in [1]. We have already
compared the performance of our algorithms with the im-
precise algorithms in detail. The first precise algorithm
they propose, Algorithm III, is quite similar to our FP algo-
rithm. The difference is in the dynamic dependence graph
representation. While FP labels dependence edges with in-
stances, Agrawal and Horgan construct multiple instances
of nodes and edges. In practice, we found our representa-
tion to be more compact.

To reduce the size of the dependence graph, Agrawal and
Horgan also proposed another precise algorithm which is
Algorithm IV in their paper. Algorithm IV is based upon
the idea of forward computation of dynamic slices where
slices for all variables can be maintained at all times, and
when a statement is executed, the new slice of the vari-
able just defined can be computed from the slices of the
variables whose values are used in the definition. Algo-
rithm IV maintains the current dynamic slices in terms of
the dynamic dependence graph. A new node is added to
the dynamic dependence graph only if following the execu-
tion of a statement the dynamic slice of the defined variable
changes. Thus, the size of the graph is bounded by the num-
ber of different dynamic slices. As shown in [8], a program
of size n can have O(2 n) different dynamic slices.

Essentially Algorithm IV precomputes all of the dynamic
slices. While this idea results in space savings, the precom-
putation time of Algorithm IV can be reasonably assumed
to be much higher than the preprocessing time in FP, in

c

l t ~

mrs

so

I = ,
20:

c

1o

1 2 6 . g c c @ Mid - - -O)

8,--~/t~o. II /,~"

• ~.,¢

<..~ ' " f '

, , g " ° . , - :

; i
i ;

s ~

0sS.go @ Mid--(1)

e - -e~x .

~,-.-.~. N p., C{¢~dm't m n)

• ;, W == e e e e : e = =z e ~ . ; e ~ . ~ ~ = _ : ~. z : . z :

0

1 2 3 4 G ¢5 7 s 8 tO111213T41S1617181820212223242~S215
S i re

~ 3 4 . p e r l • M i d - - (1 1

<,---1,~ NP,~c / / r
~,--.1~. N pwC (didn't fun)

, /

c : = c c c ~ - ~ L ~ - - : : : : : o o c z :

silo*

130.1i @ M i d - - (1)

0 1 2 ~ 4 8 8 7 8 9 I01112131415SOITtB1920212223242$28
S~

O 0 8 . e s p r e s s o @ M i d - - - (1)

~---eAIgo. .
~j-.-.<.3 Fp

~---& NP,,C.4dtd.l ~) / ' "

:e.

I
, 2 3 4 $ 6 7 II g 1011 1213141516171819 20 2122 23 24 25 2t5

Figure 3. Execution Times @Midpoint.

328

which the direct dependences are merely added as edge la-
bels but no slices are computed. Given the fact that LP is
faster than FP, it is going to perform even better in compari-
son to Algorithm IV. Furthermore, the dynamic dependence
graph produced by Algorithm IV can be used only to com-
pute dynamic slices for the last definitions of variables. All
the algorithms we have developed can be used to compute
dynamic slices corresponding to any executed definition of
any variable at any program point. In other words, in or-
der to produce a compacted graph, Algorithm IV sacrifices
some of the functionality of Algorithm IlL

In [11] another algorithm for forward computation of dy-
namic slices was introduced which precomputes and stores
all dynamic slices on disk and later accesses to them in re-
sponse to users requests. This algorithm saves sufficient
information so that dynamic slices at any execution point
can be obtained. Like Algorithm IV, it will also take a long
time to respond to user's first request due to the long prepro-
cessing time. Some applications of dynamic slicing, such as
debugging, may involve only a small number of slicing re-
quests. Thus, the large amount of preprocessing performed
is not desirable. Our demand driven approach represents a
much better choice for such situations.

Korel and Yalamanchili [12] introduced another forward
method which computes executable dynamic slices. Their
method is based on the notion of removable blocks. A dy-
namic slice is constructed from the original program by
deleting removable blocks. During program execution on
each exit from a block, the algorithm determines whether
the executed block should be included in a dynamic slice
or not. It is reported in [8] that executable dynamic slices
produced may be inaccurate in the presence of loops.

Finally no experimental data is presented to evaluate the
forward computation of dynamic slices in any of the above
works [1, 11, 12]. In this paper we have shown that it is
important to consider practical design tradeoffs when de-
veloping a precise backward slicing algorithm. Any similar
issues that may exist in the design of algorithms that per-
form forward computation of dynamic slices have yet to be
studied by anyone.

5 Conclusions

In this paper we have shown that a careful design of a
dynamic slicing can greatly improve its practicality. We de-
signed and studied three different precise dynamic slicing
algorithms: FP, NP, and LP. We made the use of demand
driven analysis (with and without caching) and trace aug-
mentation (with trace block summaries) to achieve practical
implementations of precise dynamic slicing. We demon-
strated that the precise LP algorithm which first performs
limited preprocessing to augment the trace and then uses
demand driven analysis performs the best. In comparison to

the imprecise Algorithm H it runs faster when a small num-
ber of slices are computed. Also, the latency of computing
the first slice using LP is 2.31 to 16.16 times less than the
latency for obtaining the first slice by Algorithm II.

In conclusion this paper shows that while imprecise dy-
namic slicing algorithms are too imprecise and therefore not
an attractive option, a carefully designed precise dynamic
slicing algorithm such as the LP algorithm is practical as
it provides precise dynamic slices at reasonable space and
time costs.

References

[1] H. Agrawal and J. Horgan, "Dynamic Program Slicing," ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 246-256, 1990.

[2] H. Agrawal, R. DeMillo, and E. Spafford, "Debugging with
Dynamic Slicing and Backtracking," Software Practice and Ex-
perience (SP&E), Vol. 23, No. 6, pages 589-616, 1993.

[3] D.C. Atkinson, M. Mock, C. Chambers, and S.J. Eggers, "Pro-
gram Slicing Using Dynamic Points-to Data," ACM SIGSOFT
lOth Symposium on the Foundations of Software Engineering
(FSE), November 2002.

[4] R. Gupta and M.L. Sofia, "Hybrid Slicing: An Approach for.
Refining Static Slices using Dynamic Information," ACM SIG-
SOFT 3rd Symposium on the Foundations of Software Engi-
neering (FSE), pages 29-40, October 1995.

[5] T. Hoffner, "Evaluation and Comparison of Program Slicing
Tools." Technical Report, Dept. of Computer and Information
Science, Linkoping University, Sweden, 1995.

[6] M. Kamkar, "Interprocedural Dynamic Slicing with Applica-
tions to Debugging and Testing," PhD Thesis, Linkoping Uni-
versity, 1993.

[7] B. Korel and J. Laski, "Dynamic Program Slicing," Informa-
tion Processing Letters (IPL), Vol. 29, No. 3, pages 155-163,
1988.

[8] F. Tip, "A Survey of Program Slicing Techniques," Journal of
Programming Languages (JPL), Vol. 3, No. 3, pages 121-189,
September 1995.

[9] G. Venkatesh, "Experimental Results from Dynamic Slicing
of C Programs," ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), Vol. 17, No. 2, pages 197-216,
1995.

[10] M. Weiser, "Program Slicing," IEEE Transactions on Soft-
ware Engineering (TSE), Vol. SE-10, No. 4, pages 352-357,
1982.

[11] A. Beszedes, T. Gergely, Z.M. Szabo, J. Csifik, and T. Gy-
imothy, "'Dynamic Slicing Method for Maintenance of Large
C Programs," 5th European Conference on Software Mainte-
nance and Reengineering (CSMR), March 2001.

[12] B. Korel and S. Yalamanchili. "Forward computation of dy-
namic program slices," International Symposium on Software
Testing and Analysis (ISSTA), August 1994

329

