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Abstract—Ring ORAM (Oblivious RAM) is a secure primitive
that mitigates the large performance degradation of ORAM
through reduced online memory bandwidth demand, i.e., the
number of memory accesses at servicing a real memory request.
Ring ORAM requires 4x or more of the protected data space to
enable the optimization and thus presents high capacity pressure
on modern memory systems. While recent studies strive to reduce
its space consumption through bucket compaction, the large space
consumption remains a major design challenge for Ring ORAM.

In this paper, we propose AB-ORAM to reduce the space
capacity demand in Ring ORAM. AB-ORAM identifies two
inefficient use of memory space in Ring ORAM: (i) accessed
blocks hold useless data until the next reshuffle operation; and
(ii) large buckets provide a diminishing performance benefit for
tree levels close to the leaves. AB-ORAM then proposes two
schemes to exploit the optimization opportunities, respectively.
Specifically, it reclaims accessed blocks early by allocating them
to buckets that need a reshuffle; and shrinks the bucket size for
tree level close to the leaves for a better space/performance trade-
off. We evaluate the proposed AB-ORAM design and compare it
to the state-of-the-art. Our results show that AB-ORAM achieves
an average of 36 % space reduction over the state-of-the-art while
introducing very low performance overhead.

Index Terms—Oblivious RAM, ORAM, security, memory ac-
cess pattern, space efficiency.

I. INTRODUCTION

Modern computer systems widely adopt the detached-
memory architecture, i.e., the processor chip integrates a
memory controller on-chip and sends memory addresses and
device commands in cleartext on memory buses [19]. Even
if the user data may be secured with strong encryption and
authentication schemes, e.g., AES encryption [12], Merkle tree
authentication [15], it is possible to leak sensitive information
from access patterns in memory addresses [35], [39]. To ensure
high-level protection of user privacy, it is necessary to adopt an
expensive ORAM primitive that obfuscates memory requests
from the user program [16], [17].

Ring ORAM is a recently proposed secure primitive for
mitigating the large performance degradation of ORAM [25].
Ring ORAM is built on top of Path ORAM [28], an ORAM
primitive that organizes data blocks in a binary tree structure
and converts each user memory request to two path accesses
in the tree, which incurs large performance degradation, i.e.,
O(logN) complexity where N is the number of to-be-protected
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data blocks. Ring ORAM optimizes the protocol by differ-
entiating two types of accesses: online and offline accesses.
The former refers to those servicing the real user requests
while the latter refers to those for protocol maintenance. While
Ring ORAM has the same overall complexity as that of Path
ORAM, i.e., O(logN), it fetches one data block from each tree
bucket for online accesses, representing % memory bandwidth
requirement over Path ORAM, where 7 is the number of data
blocks in each tree node. With special hardware support, the
memory bandwidth requirement for online accesses can be
further reduced to O(1).

A major concern of Ring ORAM is its low space utilization.
Path ORAM needs to double the memory space such that there
are sufficient empty slots spreading across the ORAM tree and
it has low possibility to remap a data block to a path with
no empty slot [28]. This leads to 50% space utilization. The
space utilization is defined as the size of the real user data over
the size of the ORAM tree. Ring ORAM has even lower space
utilization as it allocates more dummy blocks. For a typical
setting [25], a 12-entry tree bucket keeps (1) five blocks for
block remapping. Based on the above discussion, on average,
there are 2.5 blocks holding real data while the rest holds
dummy data; and (2) seven dummy blocks for Ring ORAM
operations. This represents a 2.5/12= 21% space utilization.

Given memory resource is precious for modern computers,
the low space utilization tends to introduce large performance
and energy consumption overheads. Cao et. al. addressed the
space utilization issue with bucket compaction (CB), a design
that shrinks the bucket size and utilizes a portion of real blocks
as reserved dummies when needed [6]. CB prevents the stash
overflow possibility with more frequent background eviction,
a performance/overhead trade-off optimization proposed for
Path ORAM [26]. Unfortunately, space utilization with bucket
compaction may be improved to 31%, which remains a major
design obstacle for Ring ORAM adoption. For this matter,
some studies try to improve the performance of Path ORAM
without increasing the space demand. For instance, IR-ORAM
[23] is the latest optimization proposed upon Path ORAM
that improves the performance while it maintains 50% space
utilization. However, it still has lower performance than Ring
ORAM. In this work, our goal is to achieve optimum space



utilization and performance simultaneously.

In this paper, we propose AB-ORAM to improve the space
utilization of Ring ORAM implementation while maintaining
the high performance benefit of Ring ORAM. The proposed
AB-ORAM focuses on space reduction. We define space
reduction as the reduced total size of the ORAM tree. Note
that this reduction only affects the dummy part of the ORAM
tree, and the real part, i.e., user data, remains intact. As such,
AB-ORAM also effectively improves the space utilization (=
user data/ ORAM tree size) as the ORAM tree size is reduced.

The contributions of AB-ORAM are summarized as follows.

« AB-ORAM exploits two inefficient use of memory space
in Ring ORAM: (i) a data block becomes a dead block
after its first access and holds useless data till the next
bucket reshuffle or path eviction; (ii) larger buckets that
contain more dummy blocks help to support more path
accesses till the next expensive bucket reshuffle or path
eviction. However, for tree levels close to the leaves, its
performance benefit diminishes fast while space demand
increases dramatically.

o AB-ORAM addresses the inefficient use of memory space
with optimized bucket allocation. AB-ORAM dynamically
tracks dead blocks and adaptively allocates them to buckets
that demand reshuffle, i.e., those due to bucket reshuffle
or path eviction operations. This helps to reclaim dead
blocks early and thus reduces the overall space demand.
By exploiting the space/performance trade-off at different
levels, AB-ORAM adopts a statically fixed but non-uniform
bucket space allocation strategy. It decreases the number of
dummy blocks for the levels close to the leaves.

« We evaluate the proposed AB-ORAM design and compare
it to the state-of-the-art. Our results show that AB-ORAM
achieves on average 36% space reduction over the state-of-
the-art while introducing very low performance overhead.

II. THREAT MODEL

We use the same threat model as those in prior ORAM
studies [25], [28]. Our discussion is based on a standalone
secure processor while the design is applicable to cloud setting
with a secure server and remote clients. For the standalone
secure processor, we assume that only the processor can
be fully trustworthy, i.e., the trusted computing base (TCB)
includes the processor only. The program code and data are
stored in ciphertext in memory. An on-chip secure engine
encrypts data before writing to memory and decrypts after
fetching from memory. The data are also authenticated to
ensure data integrity. Prior studies have shown that hardware-
assisted security enhancements can effectively reduce the
encryption and authentication overheads [15], [29], [32]. To
prevent memory traces from leaking sensitive information, the
baseline configuration adopts Ring ORAM.

III. BACKGROUND

While Ring ORAM and Path ORAM share the same proto-
col complexity, Ring ORAM reduces the memory bandwidth
for online accesses and thus has better performance.

A. Path ORAM Basics

Given Ring ORAM is built on top of Path ORAM, we
next briefly discuss how Path ORAM works. More details
can be found in [28]. Path ORAM achieves O(logN) protocol
complexity by organizing the to-be-protected memory space as
a binary tree. Each tree node, referred to as a bucket, contains
7' slots each of which holds a block of typically cacheline
size. Each slot may contain either real (user data) or dummy
block. Each user data block is randomly mapped to a path on
the ORAM tree. Given a memory request for address A from
the user program, Path ORAM translates A to its obfuscated
path ID [, and services the request with two path accesses of
l: read path phase and write path phase. Path ORAM accesses
L x Z' blocks in each phase, where L is the number of
ORAM tree levels. Path ORAM includes an on-chip ORAM
controller that contains a stash and a position map. The stash
buffers blocks read from the tree during path accesses while
the position map holds frequently used mapping between data
blocks and tree path IDs.

Path ORAM access has three types of operations. Assume
we are to access block A.

@ read path: The ORAM controller first looks up the
position map to identify the path [ on which block A resides,
and then reads all the blocks on [ from the memory. It decrypts
and authenticates the fetched blocks. It keeps the real blocks
in the stash and discards the dummy blocks.

@ block remap: After the read path, block A is present
in the stash. The ORAM controller remaps it to a random new
path. It then updates the position map with this new mapping.
Block A is then sent to the user program.

@ write path: The ORAM controller writes data blocks
except A back to [. It searches the entire stash and starts
the write-back from the leaf level to the root. Dummy blocks
might be written to a tree node if there are not enough blocks
found for that node. Note that all blocks are encrypted and
authenticated prior to write-back.

The protocol fails if a data block is mapped to a path that
has no empty slot. To prevent protocol failures, Path ORAM
uses only half of the slots to store real data blocks. Thus, the
space utilization for Path ORAM is 50% [25], [26], [28].

B. Ring ORAM Basics

Ring ORAM [25] was developed on top of Path ORAM
[28]. It achieves performance improvement by reducing the
memory bandwidth requirement for online accesses to %
of that in Path ORAM. An online access is referred to as
the operation that services the memory request of the user
program.

Ring ORAM also organizes the to-be-protected memory as
a binary tree. Assume we construct an ORAM tree with L
levels and each bucket has Z slots. Then, the ORAM tree can
hold Z x (2% — 1) blocks. Ring ORAM reserves S slots in
each bucket, (or S x (2 — 1) for the entire tree), for holding
dummy blocks only. The remaining Z’ slots in each bucket
may hold either real data blocks or dummy blocks (Z=Z'+5).
Ring ORAM uses around half of Z’ space for real data blocks



TABLE I: Organization of bucket metadata in Ring ORAM and AB-ORAM.

Metadata Field AB-ORAM (bit) Ring ORAM (bit)

Function

count 1 x log(S) 1 x log(S) Number of times the bucket has been touched since the last refresh
addr Z' x 1og(NBiock) 2" x log(NBiock) Address for each real block
label Z'x (L+1) Z'x (L+1) The path ID of each real block
Block-related ptr 7" x log(Z) 7" x log(Z) Offset in the bucket for each real block
valid Zx1 Zx1 Indicates whether the corresponding block is valid
remote Rx1 - Indicates whether the corresponding block is located at a remote location
remoteAddr R X log(NBucket) Address of the bucket in which the corresponding block is remotely allocated
remoteInd R x log(Z) Offset in the bucket of the remotely allocated block
dynamic$ log(S) The current S value of the bucket (based on the last allocation)
Slot-related  status Zx2 Indicates the slot status (REFRESHED, ALLOCATED, DEAD)

to facilitate random path remapping, similar as that in Path
ORAM. Fig. 1 depicts Ring ORAM tree organization.
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Fig. 1: Ring ORAM tree organization (L = 3, Z'
and Z = 7).

Like Path ORAM, Ring ORAM maintains a position map
that maps each data block to a path ID. It also includes a stash
to buffer data blocks loaded from the memory, and optionally
a treetop cache for performance improvement [21], [24]. The
path access in Path ORAM, is responsible for servicing the
user request, maintaining the tree, and depleting the stash.
Ring ORAM, on the other hand, differentiates between online
and offline accesses. The former is to service the user program
request while the latter refers to maintenance operations. Ring
ORAM supports three main operations as follows.

3,5 =4,

o ReadPath: this operation is referred to as online access, i.e.
to service the user program request. To access block A, the
ORAM controller first determines its mapped path [ and
then conducts a two-step access.

(1) metadata access: The ORAM controller loads the
metadata from a separate small tree for all buckets along
[. Tt then identifies the location of block A, i.e., a particular
slot in one bucket, and then determines one valid dummy
block from each of the other buckets along . Metadata is
updated/written back at the end of the Ring ORAM access.
(2) block access: The ORAM controller reads one block
from each bucket along the path. The block A is added to
the stash while all other blocks are dummy blocks and thus
discarded. The bucket location of each block is invalidated
and the information gets updated in the metadata.

ReadPath differs from path accesses in Path ORAM in that
it only reads one block per bucket, thereby reducing the
memory bandwidth requirement compared to Path ORAM.

o EvictPath: it is a background operation that gets triggered
after every A online accesses. Each trigger chooses a path
using reverse-lexicographic order to reshuffle. It i) reads all
remaining valid blocks from the buckets along the selected

path, ii) refills the buckets with loaded blocks as well
as those in the stash, and iii) writes the new contents
to the buckets in memory. The data are encrypted and
authenticated and, as part of the operation, the metadata
are also updated. The role of this operation is to lower the
stash occupancy and push the data blocks to levels close to
tree leaves. It is similar to path access in Path ORAM but
requires no specific block to access.

o EarlyReshuffle: it gets triggered after a readPath operation,
for a particular bucket if it accumulates S readPath opera-
tions after the last bucket write. To complete the operation,
the ORAM controller reads the corresponding bucket into
the stash, reshuffles and writes it back to the tree. Each
bucket reshuffle includes Z’ reads (from valid slots) and Z
writes (to all slots). Note that a residue block in the stash
might be piggy-backed during a bucket reshuffle.

Note that readPath is considered online access, and ser-
vices the user program request. Whereas, evictPath, and ear-
IyReshuffle are offline accesses and responsible for maintaining
the tree and depleting the stash.

Ring ORAM maintains metadata for each bucket, as listed in
Table I, to facilitate the protocol operation. When accessing a
bucket with readPath, we increment its count and invalidate
the corresponding slot. The addr and ptr fields determine
at what slot each real block resides in the bucket.

Ren et al. explored the design space for choosing Z', S, Z,
and A [25]. For a typical setting for secure processor setting,
weuse 2/ =5,8=7 7Z =12, A =05, as shown in [25].

Space utilization. For Ring ORAM, its space utilization is
(Z'x50%)/Z, or about 21% for the above typical setting.

C. Ring ORAM with Bucket Compaction

Cao et. al. proposed to shrink the bucket size while keeping
Z' and S parameters intact by introducing the concept of
overlap [6]. In this scheme, the bucket size is Z, and Z’ blocks
are dedicated to real blocks. Then, S can have a value of
Z — 7' +Y, where Y is the number of blocks for overlap.
In this way, when all dummy reserved blocks of a bucket
are used, a block from the portion dedicated to real blocks
can be returned to the processor. That block is called a green
block and may be either dummy or real. In case it is real,
it has to remain in the stash. This can increase the chance of
stash overflow. To address this issue, they proposed to generate
dummy accesses if the stash occupancy reaches a threshold.



Thus, dummy insertion continues until evictPath operation
frees up the stash below the threshold. If we consider the
typical setting of Ring ORAM, Z' =5, S =7, Z = 12 as
a baseline, by applying the bucket compaction scheme with
Y = 4, the allocation willbe Z =8, Z/ =5and S = 3. In
this paper, we built our design on top of this state-of-the-art.

D. Broad Impact of Space Reduction

Studies have shown that securing memory access patterns
demands ORAM [16], [17] as simple obfuscation [39] tends to
provide limited security protection. Unfortunately, all ORAM
protocols have high performance overheads, in particular,
they introduce orders of magnitude more memory accesses.
Of different ORAM protocols, Ring ORAM has low online
memory bandwidth request, making it a promising protocol
for practical deployment.

However, Ring ORAM’s space utilization is low, which
increases memory contention with co-running applications. As
main memory is one of the most precious system resources in
modern systems, reducing space demand can effectively make
better use of main memory resource, leading to improved sys-
tem performance, throughput, and power/energy consumption.

IV. MOTIVATION

We made two key observations regarding the low utilization
of memory space in Ring ORAM. In the following, we
elaborate these observations and discuss how to exploit them
to improve the space efficiency. The first observation is the
existence of dead blocks in the ORAM tree. The second
observation is that there exists a space/performance trade-off
on the bucket size at different tree levels.

A. Studying Dead Blocks

A bucket slot in Ring ORAM tree can be accessed at most
once between any two reshuffles. The ORAM controller marks
the slot as invalid after its readPath but does not reclaim the
space until a later evictPath or earlyReshuffle. In this paper,
the invalid bucket slots are referred to as dead blocks.

We conduct an experiment to track the total number of dead
blocks for different benchmarks and summarize the results
in Fig. 2. The settings are listed in Section VII. The X-
axis shows the program execution in the total number of
online accesses. The Y-axis shows the snapshot of the total
number of dead blocks. From the figure, the number of dead
blocks increases quickly at the beginning of the execution and
stabilizes after 30M online accesses. Due to high similarity
of the results, the figure only reports the results from three
individual benchmarks and the average of all benchmarks.

Dead blocks are generated from online accesses at a stable
rate, i.e., every readPath generates L dead blocks, where L is
the tree height. The elimination of dead blocks, i.e., reclaiming
invalid blocks through evictPath and earlyReshuffle operations,
exhibits low rate at the beginning of the execution, and then
stabilizes for the rest of program execution. EarlyReshuffle
always gets triggered when a bucket accumulates S dead
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Fig. 2: Dead blocks over time for different benchmarks.
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Fig. 3: Dead blocks across the levels.

blocks. The chance is low at the beginning of the execution.
For the path determined by evictPath, there are few dead
blocks along the path at the beginning of the execution so
that only few dead blocks can be reclaimed. With more online
accesses, the dead blocks spread across all paths such that
picking up any path has around L dead blocks to reclaim.
This helps to stabilize the total number dead blocks.

For the 24-level ORAM tree in Fig. 2, the dead blocks
account for around 18% (=36M/(12x(2%%-1)) of the total
ORAM space. That is, around 18% of the allocated space is
wasted at any time after entering the stable execution stage.

Fig. 3 reports the numbers of existing dead blocks at
different tree levels after running 400 million traces. At each
tree level (X-axis), the bar shows the number of dead blocks
(Y-axis to the left) and the line dot denotes the number of
buckets at that level (Y-axis to the right). As shown in the
figure, the last level contains 17.9 million dead blocks. Given
that the last level has about 8 million buckets, on average,
there are 2.1 dead blocks per bucket.

B. Studying Space/Performance Trade-off

In this section, we study the trade-off between space and
performance in Ring ORAM. As discussed before, there are
S reserved dummy blocks allocated for each bucket in Ring
ORAM. During the readPath, only one bucket returns a real
block while all other buckets along with the path return
dummy blocks. Any bucket, if having been accessed S times,
may run out of dummy blocks and thus needs to be reshuffled,
i.e., triggering an earlyReshuffle on this bucket. Thus, the
larger the S value is, the less number of earlyReshuffle
operations the Ring ORAM would need. Of course, a larger .S
value results in more space wasted in saving dummy data. In
addition, a larger S' value leads to more blocks in each path,



making it more expensive to complete evictPath. Accordingly,
if we reduce the S value, the number of earlyReshuffles
increases but at the same time the cost of evictPaths decreases.
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Fig. 4: Space demand across different path length normalized
to the baseline (top), slowdown over the baseline (bottom).

We conduct an experiment to expose the space/performance
trade-off. In Fig. 4, we compare the space and performance
impacts when reducing the S values for the bottom seven
levels (that account for 99% of the entire capacity). L-x means
reducing the S value by three for the last = levels. The
baseline adopts the typical setting [25], Z = 12, Z/ = 5,
and S = 7. From the figure, as we reduce the S values for
more levels, the space demand reduces while the performance
degrades. When the bucket size is reduced so is the path
length, hence, the path eviction incurs less number of memory
accesses. The space saving stabilizes after reducing the last
three levels. In the experiment, there is a large increase of
the number of earlyReshuffles. However, the reduction from
conducting cheaper evictPaths benefits more. As figure shows,
the execution time grows linearly whereas the space reduction
is in logarithmic scale. Hence, by shrinking the S value for the
levels close to the leaves, we can achieve a significant space
reduction while incurring a low performance overhead.

V. THE AB-ORAM DESIGN
A. Overview

In this section, we elaborate on our AB-ORAM design
for reducing the space demand for Ring ORAM. AB-ORAM
consists of two designs — one is to early reclaim the dead
blocks while the other is to reduce the number of dummy
blocks for bottom levels with a non-uniform S value setting.

Dead Block Reclaim. To reclaim dead blocks, we adopt a
new block allocation mechanism called remote allocation. To
enable remote allocation, we first construct a FIFO queue to
track recently generated dead blocks at each bottom tree level
and update the metadata accordingly. We then reduce the initial
S value, i.e., the number of reserved dummy blocks, for the
buckets at bottom levels and extend the .S value to its original

using the space reclaimed from dead blocks. Given a binary
tree doubles its size with every extra level, reducing the S
value at the bottom levels can effectively reduce the space
demand for Ring ORAM.

Non-uniform S Setting. By exploiting the performance
and space-saving trade-off at the bottom levels, we propose to
reduce the .S value for bottom tree levels. While such a design
increases the number of earlyReshuffle operations and slightly
degrades the performance, it achieves large space savings.

For the first scheme, we need remote allocation and altering
S value. While the second scheme only involves altering S
value. Thus, we organize the rest of this section as follows.
First, we discuss the remote allocation. Then, we discuss how
we can exploit altering .S value for each of our schemes.

B. Remote Allocation

1) One Extra Level of Address Mapping: Ring ORAM
consists of three levels of address mapping, as shown in Fig.
5(a). A memory address of a user request is first mapped to
a path ID in the ORAM tree. This mapping is randomized
and secured by the ORAM protocol, i.e, encrypted as position
map. Given a path ID, we can use the well-known tree
organization knowledge to translate it into a list of tree buckets.
Depending on the operation, we may get all block addresses
for the selected buckets (for evictPath and earlyReshuffle) or
one block address per bucket (for readPath). The latter is
determined by the metadata, which is also secured and part of
the Ring ORAM protocol. Given a tree block address, the OS
translates it to the storage location, i.e., the physical addresses
in the main memory. From the figure, mapping from a path ID
to all its related tree buckets/blocks, and from a tree block to
the address in the memory is not protected and is thus known
to the attackers.

TCB
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ORAM PosMap l (Logical tree address)
I BathllD | ] ’ Tree Block Address
TreelStruCtul’e AB-ORAM Managed Mapping
Tree Bucket MetaData
Addresses In-pace Remote
Allocation Allocation
All Tree Blocks One (Physical tree address)
of Selected Tree Block Reclaimed
Bucket Per Bucket Same Tree Dead Tree
ictPath Block Address
evictPath or readPath Block Address
earlyReshuffle
0OS|Managed Page Table 0S|Managed Page Table
l Physical Address in Main Memory ‘____ l Physical Address in Main Memory ‘

(a) Ring-ORAM address mapping (b) AB-ORAM address mapping

Fig. 5: AB-ORAM adds one more level of address mapping
in the insecure domain.

To reuse the dead blocks, AB-ORAM introduces one more
level of address mapping, as shown in Fig. 5(b). The trans-
lation from a memory address of a user request to a list
of tree block addresses is kept the same as that in the



baseline. To facilitate the discussion, we differentiate two
tree block addresses — logical tree addresses and physical
tree addresses. Conceptually, the logical tree address of a data
block determines where the block should stay according to
tree organization. The physical tree address determines its
actual location due to space availability. AB-ORAM saves this
mapping in bucket metadata, however, the mapping is kept in
cleartext and thus known to the attackers.

Based on if a block’s physical tree address is the same as
its logical tree address, we have two types of data allocation.
« In-place allocation: This refers to the case when a block’s

physical tree address is the same as its logical tree address.

For example, all blocks in the baseline implementation. In

AB-ORAM, the block in the top and middle levels keeps

the same logical and physical tree addresses.

« Remote allocation: This refers to the case when a block’s
physical tree address differs from its logical tree address.
After fetching a tree block for readPath, AB-ORAM marks
the corresponding block as dead and may reclaim it by
allocating it to a different logical tree block. In Ring ORAM,
both evictPath and earlyReshuffle need to write reshuffled
secure data back to the memory. They may demand space
allocation and set up the corresponding mapping for remote
allocation. The mapping is kept in the metadata in cleartext.
2) Tracking Dead Blocks: To enable remote allocation, we

need to dynamically identify the dead blocks in the ORAM

tree so that we can reuse them later. This consists of two sub-
tasks. One is to collect the addresses of dead blocks while the
other is to mark the status of tree blocks in metadata.

Tracking Queues. In Ring ORAM, dead blocks are gen-
erated from readPath operations — each readPath fetches L
blocks such that all of them become dead after the access.
While all L blocks can be potentially claimed, our study in
Section VIII-D reveals that the dead blocks in the top and
middle levels tend to have short lifetimes and they account
for a small portion of the total memory space. As such, we
skip these levels and maintain several FIFO queues with one
for each bottom level, referred to as DeadQ queues, to track
dead blocks at each corresponding level. Each entry in the
queue maintains two fields that define the physical location of
a dead block (or an empty slot): {slotAddr, slotInd}.

AB-ORAM maintains all the DeadQ queues inside the
processor, i.e., on-chip. However, this information does not
need to be secured. Our security analysis shall prove that
it does not compromise security protection if the attacker
knows this information. Given the limited on-chip space, each
DeadQ maintains a small number of entries, e.g., 1000 entries.
Since they are FIFO queues, the maintenance cost is low. The
design goal of the DeadQ is not to track all dead blocks at
each level. Instead, it is to collect a good amount of dead
blocks so that we can exploit dead blocks to meet part of
the space allocation demands for the following evictPath and
earlyReshuffle operations. We keep one queue for each level
because according to our analysis the lifetime of dead blocks
from different levels exhibit orders of magnitude difference as
shown in Fig. 12.

Tracking Metadata. Since we add one level of address
mapping, we need to precisely know if a tree block adopts
in-place allocation or remote allocation. AB-ORAM achieves
this by keeping per block status information in the metadata
of each bucket. Table I details the organization of bucket
metadata in Ring ORAM and AB-ORAM. For clarity, we
divide metadata fields into two categories, block-related and
slot-related. The block-related metadata of a bucket contains
information about the blocks that have been mapped to this
bucket. Whereas the slot-related metadata indicates informa-
tion about the slot itself, i.e. the physical location.

AB-ORAM adds five pieces of metadata to Ring ORAM:
four block-related (remote, remoteAddr, remotelInd,
and dynamicS) and one slot-related (status). The
remote flag indicates whether the corresponding block
adopts in-place or remote allocation, i.e., if the logical and
physical locations of the block are the same. In the case
that they are not the same, remoteAddr and remoteInd
identify the physical location of the block in the tree.

The status of all slots is initially REFRESHED once they
are written to the ORAM tree. When a block is accessed during
the readPath, it must be invalidated according to the Ring
ORAM protocol. Thus, its valid flag is turned off. At this
point, the status of the slot that contains this block becomes
DEAD since it is carrying a dead block. A slot is marked as
ALLOCATED when it is added to AB-ORAM’s Dead(Q.

Table I states the size of metadata fields in terms of ORAM
parameter. Note that Npj,cr, and Npy ket are the number of
real blocks and the total number of buckets in the ORAM
tree, respectively. R indicates the maximum number of slots
that AB-ORAM allows remote allocation per bucket. All other
parameters are identical to what is introduced in Section III-B.

Tracking procedures. In summary, we have the following
two lightweight procedures.

e markDEAD (): it marks the status of a slot as DEAD
when its occupant block turns dead (i.e. valid = 0). Note
that the block may be either in-place-allocated or remote-
allocated. It is invoked at the metadata access of readPath.

e gatherDEADs (): it adds information of all the DEAD
slots along a path into the corresponding DeadQ with
the format of {slotAddr , slotInd}. Then, it marks
status of that slot as ALLOCATED so that no one else
will use it. It is invoked at the metadata access of readPath.

3) Remote Allocation: In Ring ORAM, only evictPath and
earlyReshuffle can write data blocks to the main memory.
All data blocks take in-place allocation in the baseline Ring
ORAM implementation.

Next, we illustrate how to remotely allocate a data block
(with logical tree address A) at a bottom tree level.

(1). We first dequeue a DEAD block from its corresponding
DeadQ. Let us assume the tree block address of it is 7.

(2). We then write block A in block T'. Note that no access
or update on metadata for block 7" is needed. Since block T’
is looked up from the DeadQ, its status has already been
updated as ALLOCATED (at the time it was queued).
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Fig. 6: An overview of remote allocation in AB-ORAM.

(3). We update the block-related metadata of block A. The
remote flag is raised and remoteAddr and remoteInd
are set to point to block 7'. All other block-related metadata
pieces are updated as they are in the Ring ORAM.

Fig. 6, demonstrates the remote allocation. In the figure,
after accessing block a on path [, it is marked as dead and
added to the DeadQ. Block b and c are remotely allocated
and the mapping identifies the physical tree addresses.

C. Altering the S Value for Space Savings

We next elaborate on how to change the S value for better
space savings. It consists of two designs. One is to extend the
S value to take advantage of the remote allocation. The other
is to set the non-uniform S values for more space savings.

1) Extending the S Value with Remote Allocation: While
remote allocation can early reclaim the space occupied by
dead blocks, the baseline tree allocation actually cannot exploit
its benefit — in the baseline, every logical tree block has its
physical tree block allocated so that there is no need to “reuse”
the space of dead blocks.

There exist two alternative strategies to exploit remote
allocation. Based on the typical ORAM setting Z’ = 5,5 =7,
Z =12, A = 5, assume we apply remote allocation to the
bottom levels, taking level 23 as an example.

(1). We allocate 12 blocks (Z =547 =12, S = 7) for each

bucket at this level. At runtime, based on the generation
rate of dead blocks, we can extend the bucket size to Z =
549 =14, 5 =9, i.e., each bucket can sustain 9 readPath
accesses, instead of 7 readPath accesses, before triggering
an earlyReshuffle.

(2). We allocate 10 blocks (Z = 5+ 5 = 10, S = 5) for each

bucket at this level. At runtime, we recover the bucket size
to Z =5+7=12, S = 7. Each bucket can still sustain 7
readPath accesses, even though we physically only allocate
5 reserved dummy blocks.

For either strategy, after extending the .S value, each bucket
has two fewer physical blocks, e.g., strategy (1) allocates 12
entries for one bucket but tries to use it as a 14-entry bucket.
We, therefore, allocate two logical blocks to the reclaimed
dead blocks. The two strategies have different emphases — the
first strategy saves no space comparing the baseline. However,
it reduces the number of earlyReshuffle operations and thus

potentially improves the performance. The second strategy
focuses on space savings. It uses smaller space for the initial
tree allocation but tries to achieve the same effectiveness as
the baseline. Given this paper focuses on space savings, we
adopt the second strategy in AB-ORAM.

AB-ORAM initializes the ORAM tree with the bucket size
for bottom tree levels being set as Z — r where r denotes the
applied space reduction. Based on the study in Section IV,
we identify r as 2 for the baseline setting. The r value
depends on the choices of Z, Z’, and S values, i.e, it depends
on the ORAM tree, while being independent of the secure
applications. After one complete round of tree reshuffle, i.e,
applying evictPath to every path, we start to extend .S values
for the bottom levels. The number of sustained readPath
accesses before earlyReshuffle is also updated to the new value.

In the design, when the Dead(Q is empty, we may skip
extending the S value for a bucket at the bottom level. This
may happen either at evictPath or earlyReshuffle time. To
facilitate the transition and the empty-queue case, we keep a
counter dynamic$S for each bucket, as in Table I. It tracks the
number of readPath that it can sustain, dynamics is extended
to S + 2 only for the buckets that allocate their two logical
tree blocks in reclaimed dead blocks.

2) The Non-uniform S Value: The motivational study in
Section IV revealed that, if we choose to reduce the .S value for
a number of bottom tree levels, there exists a trade-off between
performance overhead and space savings. Therefore, we can
take a non-uniform S value design that sets S7 and S (0<
S1< S) values for the bottom k tree levels and for the other
tree levels, respectively. Here S is the same as the baseline
while S; is a smaller value. By reducing the S values for k
bottom levels, we tend to suffer from a small performance
degradation but achieve space savings.

Fig. 4 in Section IV shows that the space savings are about
to saturate at L3 while the performance loss is low (about
4%). The result was for S| = S — 3. However, if we take a
different .S; value, the trend of space savings stay the same
while the performance loss may vary. We, therefore, set k = 3
or k = 2 and adjust S; according to the space utilization. Our
experiment study shows that S; can be set as S-2 and S-1 for
the baseline Ring ORAM and an optimized implementation
that makes better use of space, respectively.



We propose two designs in the paper — (1) Initially
allocating smaller buckets (with smaller S value) for several
bottom tree levels and extending the S value at runtime; (2)
Assigning a smaller S value for several bottom tree levels.
While both designs shrink the S value, they differ from each
other as they have different design goals. The former allocates
fewer physical tree blocks for these buckets and exploits dead
blocks to mitigate the physical space reduction, i.e., recover
to the same S value and sustain the same number of readPath
accesses as those of the baseline. The performance overhead
comes from accessing remote blocks for a subset of tree
entries. The latter permanently reduces the S value for the
bottom tree levels such that these buckets can sustain fewer
readPath accesses. The performance overhead comes from
increased earlyReshuffle operations. By shrinking the .S value,
the latter design improves the evictPath performance.

D. Comparison to the State-of-the-arts

Table II summarizes the latest optimizations proposed on
ORAM. One of the key improvements in IR-ORAM [23]
is to reduce the path access overhead by shrinking the Z
value for the middle levels. IR-ORAM reveals that middle
levels are under-utilized. Besides, they account for a small
portion of the entire capacity. Thus, shrinking the buckets of
these levels improves the performance without affecting the
capacity. However, it increases the probability of the stash
overflow, hence, it may incur more background evictions than
the baseline. IR-ORAM was proposed to optimize Path ORAM
[28] while the principal can be adopted to optimize the portion
of Z' entries of tree buckets in Ring ORAM.

Bucket Compaction (CB) [6] was proposed to shrink the
bucket size for Ring ORAM by reducing the S value. This too
reduces the path access overhead so that evictPath operation
costs less. Unlike IR-ORAM, CB applies the shrinking to
buckets of all levels so it reduces the space demand effectively.
Note that this reduction only affects the number of reserved
dummy blocks so the capacity of the tree for storing real data
blocks remains intact. Like IR-ORAM, it may increase the
number of background evictions because real blocks may be
returned to the stash instead of dummy blocks.

As discussed, we develop two schemes in this paper, i)
extending the S value for bottom levels by reclaiming dead
blocks, and ii) setting non-uniform S values for the ORAM
tree. For the former, we shrink the S value like CB but we
compensate for the performance impact by extending the S
value via remote allocation. Since remote allocation means
address redirection, it may incur a slight increase in memory
block accesses due to lower row buffer hit in DRAM DIMMs.
Our experimental results show that this overhead is negligible.
The latter design shrinks the bucket size of levels close to the
leaves, which helps to reduce the overhead of each evictPath
operation. This increases the number of earlyReshuffle opera-
tions for those levels. However, the reshuffle operations are off
the critical path and thus exhibit a low impact on performance.

More importantly, the proposed two schemes are orthogonal
to both IR-ORAM and bucket compaction. By adopting our

schemes on top of IR-ORAM or CB, we are able to further re-
duce the space demand of Ring ORAM. The space utilization
of the fully optimized Ring ORAM implementation is made
comparable to that of Path ORAM, i.e., around 50%.

VI. SECURITY AND CORRECTNESS

In this section, we show that AB-ORAM ensures the same
level of security guarantee as that of the baseline Ring ORAM.

A. Remote Allocation is Secure

To prove remote allocation is secure, we refer to the address
mapping enhancement in Fig. 5 in Section V-B1 The key
observation is that the added address mapping is outside of
the secure domain, that is, we utilize public knowledge to
improve space utilization and leak no secure information.

To utilize the space of dead blocks, AB-ORAM tracks the
generation of dead blocks, early reclaims dead blocks, queries
the status of selected blocks, and shrinks/extends the S value
for the bottom tree levels. Tracking the generation of dead
blocks leaks no secure information as it is public knowledge
— attackers, without performing AB-ORAM, can conduct
the same information collection, i.e., the blocks accessed by
readPath become dead. We maintain a queue for each level
and enqueue/dequeue in cleartext. Given a dead block, it is
well-known if it is queued, or skipped as the queue is full.
Collecting such information reveals no secure information.

Reclaiming dead blocks leaks no secure information as,
to reclaim dead blocks, we dequeue them from DeadQ and
exploit them as a buffer to store the data of corresponding
logical tree blocks. The mapping is known to the public. Such
an extra mapping is secure because if it is not, we can construct
a simple attack to the baseline Ring ORAM. Conceptually,
the decision on choosing a particular logical tree block from a
bucket at readPath is secure. The address mapping introduced
in AB-ORAM does not change the above decision and kicks
in only when we know the address of a logical tree block.

Querying the status of data blocks is secure as the query
is integrated with the metadata access in the baseline. The
metadata access is performed before each readPath and thus
AB-ORAM does not introduce extra protocol access steps.

In the same way that real and dummy blocks are indistin-
guishable in Ring ORAM, their dead and reused versions are
indistinguishable in AB-ORAM. Therefore, an attacker cannot
infer anything about a block being real or dummy by collecting
a dictionary of all remote mappings in AB-ORAM. Also, the
temporal locality would not affect this matter either because
if it would, one could guess the type of the accessed block
based on its location along the path in Ring ORAM.

B. Altering the S Value is Secure

According to the security analysis in the baseline Ring
ORAM [25], the three types of operations can be divided
into two groups: (1) user-application-dependent readPath;
(2) maintenance-oriented earlyReshuffle, and evictPath. Ring
ORAM ensures all readPath accesses are indistinguishable,
while the knowledge about when to perform maintenance



TABLE II: Summary of the state-of-the-art ORAM implementations.

Ring ORAM | IR-ORAM Bucket This work
[25] [23] Compaction [6] | Dead block reclaim [ Non-uniform S value
[ Space demand [ [ improved | improved [ improved [ improved ]
Online access - - - slight more -
Bucket reshuffle - - - slight more more
Path eviction - - improved slight more improved
Background eviction more more

operations is well-known and leaks no secure information. We
next prove that, by altering the S value (in dead block reclaim
and non-uniform S design), these operations remain secure.

For readPath, altering the S value has no impact on Ring
ORAM mapping (i.e., creating/accessing PosMap entries).
Consequently, all readPaths remain indistinguishable — each
of them initiates a metadata access and then fetches one block
from each bucket along the path. Each bucket contains at least
one dummy slot to support one more readPath. Therefore, no
secure information leaks from collecting readPath operations.

For earlyReshuffle, it is public knowledge about when to be
triggered on a particular bucket. Altering S is advertised as
cleartext dynamicS such that the same strategy is applied to
trigger earlyReshuffle, which leaks no secure information.

For evictPath, it is triggered at a fixed interval, i.e., once
for every five readPath accesses and uses the fixed reverse-
lexicographic order, which leaks no secure information.

For the special case discussed in Section V-Cl1, i.e., when
DeadQ is empty, we may skip extending the S value, i.e.,
allocating Z = 5+ 5 = 10 entries instead of Z =5+ 7 =
12 entries for a bucket at the bottom level. This results in
assigning dynamicS= 5 for this bucket. This is secure as
this is public knowledge, similar to assigning a cleartext S = 7
in the baseline. The slight security difference here is, now an
attacker guesses if any of the first 5 accesses to a 10-entry
bucket contains real data (instead of guessing from 7 accesses
to a 12-entry bucket). For the non-uniform S value design, the
security indication is, assume we reduce S to 3, an attacker
guesses if any of the first 3 accesses to an 8-entry bucket
contains real data. Given this guess needs to be combined
with all bucket accesses along the path, i.e., only one bucket
returns the real data, this security difference is negligible as
we demonstrate empirically in the following experiment.

C. Empirical Security Analysis

We set up an experiment to demonstrate how AB-ORAM
preserves the same security guarantee as Ring ORAM. We
simulate one billion traces of 17 benchmarks in this experi-
ment. All other configurations are listed in Section VII. We
measured the success rate of an attacker guessing the real
block during readPath. The attacker guesses one block out of
L blocks randomly. Fig. 7 indicates the success rate, i.e., the
number of correct guesses by the attacker over the total number
of readPaths. On average, the baseline exhibits a success rate
of 0.041665, while for AB-ORAM, it is 0.041670. As shown
in the figure, AB-ORAM closely follows the baseline. As one
would expect, the success rate for all applications is around

0.041666 (= 1/24), which highlights that path accesses are
indistinguishable in Ring ORAM, which is preserved by AB-
ORAM as well.
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Fig. 7: Empirical study on AB-ORAM security implication.

D. Correctness

Ring ORAM follows Path ORAM and fails if a data block
is mapped to a path that contains no dummy entry for the
Z' portion. Given AB-ORAM does not change the Z’ value
for the ORAM tree, AB-ORAM can save the same number of
data blocks in each bucket. The address mapping from the user
address to the tree path remains the same. AB-ORAM fetches
one real data block from one path, the same as the baseline.
As such, AB-ORAM introduces no correctness issue.

VII. EXPERIMENTAL METHODOLOGY

To evaluate AB-ORAM, we used USIMM [7], a widely-
adopted trace-driven cycle-accurate DRAM simulator in the
literature to evaluate ORAM schemes. Table III lists the
configuration details. We used the Pin tool [10] to collect traces
from SPEC CPU2017 suite [1]. We used traces with 40 million
memory accesses from each benchmark. For each trace, the
first 38 million accesses were used to warm up the ORAM tree,
and the last two million were fed to USIMM for DRAM access
simulation. While not reported, we ran longer traces and the
results remained stable. Table IV lists the benchmarks and their
LLC misses per kilo instruction (MPKI) in the experiments.

We modeled a Ring ORAM tree with 24 levels, Z = 12,
and 7' =5, S = 7. We integrated Bucket Compaction [6] in
the baseline, as set Y =4, Z =8, Z' =5, and S = 3, ie.,
the tree occupies (224 — 1)x8x64B = 8GB memory space.
Following the prior work [6], [22], [23], [28], [36], [37], the
protected user data occupies around 50% of all Z’ entries in
buckets, that is, 224~ x5x50% x64B = 2.5GB. We adopted
a tree cache that saves the top 10 levels on-chip [23].

We implement and evaluate the following schemes.
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Fig. 8: Space saving and performance overhead comparison of different schemes.
o Baseline: It implements Ring ORAM [25] and integrates TABLE IV: Evaluated benchmarks.
Bucket Compaction [6], with Y =4, Z =8, Z' = 5, and Integer read  write Float read  write
S = 3. Note, all other schemes are built on top of this. Benchmark  MPKI MPKI Benchmark MPKI MPKI
e IR: It implements IR-ORAM utilization optimization [23]. gce 0.1 0.5 bwa 0.0 4.1
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AB: It combines DR and NS. Itsets Z =6 (Z' =5, S =1)
for [L18, L20], and Z =5 (Z' =5, S = 0) for [L21, L23].

TABLE III: System configuration.

Processor Configuration

Processor Fetch Width/ ROB Size | 4 /256

Memory Channels 4

DRAM Clk Frequency 800 MHz

L1 / L2 D-cache 4-way 64KB / 8-way 256KB
L3 cache (LLC) 16-way 2MB

ORAM Configuration

ORAM tree levels 24

Bucket size/ Block size 4/ 64B

Stash entries 300

Dedicated tree top cache 256KB (4K entries)
On-chip PLB / PosMap ‘ 64KB / 512KB

VIII. EXPERIMENTAL RESULTS

In this section, we discuss the result of evaluated schemes
described in Section VIL.
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A. Main Results of Space and Performance

Fig. 8 presents the main result of our evaluation. Fig. 8a
reports the total space consumption of different schemes nor-
malized over Baseline. Fig. 8b shows the space utilization.
Fig. 8c compares the normalized execution time for different
schemes, with results normalized over Baseline.

From the figure, IR exhibits 4% performance slowdown
because it uses Y = 3 to avoid a large increase of back-
ground evictions, but smaller Y causes more reshuffles than
Baseline, which has Y = 4. It has a negligible impact
on space demand as it only shrinks the middle levels of
the ORAM tree. DR lowers the space demand to 75% of
Baseline, i.e., the state-of-the-art Ring ORAM implemen-
tation. DR achieves 25% space reduction, leading to a space
utilization of 41.5%. We track the reclaimed blocks and
observe that DR early reclaims most of the dead blocks in
the system. DR is 3% slower than Baseline, with the



overhead coming mainly from the enlarged buckets at the
bottom levels. Reshuffling a bucket with the extended S value
is more expensive than doing an original bucket. NS reduces
the space demand of Baseline by 19% with comparable
execution time. NS increases the number of earlyReshuffles but
reduces the cost of evictPath. When combining DR and NS,
AB-ORAM achieves 36% space reduction over Baseline
while having around 4% performance overhead. The combined
scheme achieves further space savings over DR and NS, indi-
cating DR and NS are designs that improve space utilization
from different directions. AB improves the space utilization of
Baseline from 31.2% to 48.5% which is very close to 50%.

Note that the bucket size reduction in IR-ORAM [23]
originally was proposed upon Path ORAM, and in that setting,
it benefits the performance. Because bucket size reduction is
more significant in Path ORAM as it has a much smaller
bucket size (Z=4). In addition, IR in the presence of the
bucket compaction optimization in Ring ORAM incurs more
dummy accesses due to stash overflow.

Fig. 9 reports the bandwidth impact of our approach. From
the figure, the extra bandwidth demand is negligible. On
average, AB increases the bandwidth usage by 1%.
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Fig. 9: Bandwidth impact of AB-ORAM.

B. Bucket Reshuffle Impact

Fig. 10 compares the number of reshuffles across the dif-
ferent levels for different schemes. DR has the closest number
of reshuffles compared to Baseline due to S extension. NS
increases the number of reshuffles for [L22, 1.23] where the S
value is reduced by 2. AB compared to NS has more reshuffles
for L21 and fewer reshuffles for L22 and L.23. This is because
we use L3-S1 in AB that shrinks S by 1 for [L21, L23].
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Fig. 10: Comparing number of reshuffles across the levels.
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C. DR Sensitivity Analysis

Fig. 11 denotes the result of a sensitivity analysis of DR
scheme across the level choice. DR-L18 in Fig. 11 is the
same as DR in Fig. 8. Top levels are less desirable for remote
allocation due to their low contribution to space demand.
For instance, the top 17 levels account for less than 1% of
the space, while their reshuffle number contributes equally to
performance as other levels.
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Fig. 11: Sensitivity analysis of DR to the number of levels.

D. Dead Block Lifetime Analysis

We studied the lifetime of dead blocks. A dead block’s
lifetime is defined as how long it has been invalid. In Fig. 12
the X-axis indicates the tree levels while the Y-axis indicates
the lifetime of dead blocks in terms of the number of online
accesses. We report the minimum, average, and maximum
lifetime of all dead blocks at each level. The three lines are
the average of all benchmarks.

From the figure, the dead blocks from buckets above level
18 (i.e., closer to the root) tend to have a lifetime close to
zero, indicating most of these dead blocks get reclaimed in a
very short period of time. However, for dead blocks close to
the leaves, the average lifetime is large, indicating that dead
blocks at these levels tend to be invalid for a long duration.
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Fig. 12: Dead blocks lifetime across tree levels.
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E. NS Design Exploration

To determine the settings for NS, we studied different
configurations and summarized the results in Fig. 13. In this
figure, Ly—Sx means that, for the last y levels, NS shrinks
the S value by z. From the figure, an aggressive configuration,
e.g., L3-S3, has large performance degradation. Note, it differs
from Fig. 4 because CB is the baseline here. We therefore
chose L2-S2 for NS and L3-S1 for DS+NS, i.e., AB.
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Fig. 13: Design exploration of NS.

F. Remote Allocation Effectiveness

Fig. 14 indicates the ratio of extended S values over the
total number of bucket allocations. As shown in Fig. 3, there
are abundant dead blocks available at each level. Therefore,
DR is able to extend almost all of the bucket allocations after
gathering enough dead blocks in DeadQ. In contrast, when
NS is also enabled, there are fewer dead blocks available at
a time. Thus, AB has a lower extending ratio of 74%. Note,
this ratio remains the same across different applications as the
dead block availability is not application dependant.
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Fig. 14: AB-ORAM capability for extending the S value.

G. Generalizability Over Different Applications

To assess the generalizability, we repeat the experiment
with applications from another benchmark suite; PARSEC
[51, [7]. Fig. 15 reports the space and performance results.
Our space saving remains the same as it is not application
dependent. NS has a similar execution time as Baseline. DR
and AB, on average, incur 3% and 4% performance overheads,
respectively.

NS DR AB
Space Reduction 19% 25% 36%
Space Utilization 38.5% 41.5% 48.5%
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Fig. 15: Generalizability analysis of AB-ORAM.
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H. Storage Overhead

On-chip Overhead. Given we track dead blocks for 6 lev-
els, and DeadQs are empirically set to have 1000 entries, the
on-chip space is 21KB, which is small for modern processors.

Memory Overhead. For Ring ORAM, the bucket metadata
takes 33B that fits into a block (i.e. 64B). To avoid incurring
any performance penalty during the metadata access phase we
keep the extra added metadata by AB-ORAM less than a block
size (33B + 28B) by setting R = 6 in Table 1.

IX. RELATED WORK

Che et. al. proposed a channel imbalance-aware scheduler
[8] to minimize the channel imbalance for read requests in
Ring ORAM. Devadas et. al. proposed Onion ORAM [11] to
construct a constant bandwidth blowup scheme. It leverages
poly-logarithmic server computation to avoid the logarithmic
lower bound on ORAM bandwidth blowup. Chen et. al. im-
plemented Onion Ring ORAM [9] to outperform logarithmic-
bandwidth ORAM such as Ring ORAM. Hoang et. al. de-
veloped a distributed ORAM scheme [18] to achieve client
storage efficiency in addition to efficient client-server band-
width. Many optimizations were proposed for Path ORAM
with some being applicable to Ring ORAM [13], [14], [21],
[22], [33], [34], [36], [37], [38].

Recent studies have proposed to adopt ORAM for protecting
data storage servers [20], [27]. Memory access patterns can
be effectively protected by hardware enhancements [2], [4].
Hardware-assisted security schemes are also developed to
mitigate the impact of data authentication on performance [31].

Skewed Merkle Tree was proposed to reduce the number
of memory accesses [30], [40]. A skewed tree has imbalanced
left and right subtrees such that path lengths may vary. AB-
ORAM keeps the full binary tree and only reduces the size of
the nodes at some levels, i.e., paths are of the same length.

Radix Path [3] was proposed on top of Path ORAM to
reduce the space demand. In this scheme, the root node is
expanded to a 1000-entry node to buffer nodes of other levels
and all other buckets are reduced in size. It requires a very
expensive background eviction to avoid path overflow.

X. CONCLUSION

In this paper, we propose AB-ORAM to address the space
inefficiency of Ring ORAM. AB-ORAM reduces the space
demand by reclaiming the dead blocks space via remote
allocation. It furthers the space reduction by setting a non-
uniform bucket size across the tree levels. It shrinks the
buckets close to the leaves. AB-ORAM is orthogonal to the
latest optimization of Ring ORAM and effectively lowers the
overall space demand. On average, AB-ORAM achieves 36%
space reduction over the state-of-the-art while introducing very
low performance overhead.
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