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Abstract— The proliferation of Chip Multiprocessors (CMPs)
has led to the integration of large on-chip caches. For scalability
reasons, a large on-chip cache is often divided into smaller banks
that are interconnected through packet-based Network-on-Chip
(NoC). With increasing number of cores and cache banks inte-
grated on a single die, the on-chip network introduces significant
communication latency and power consumption.
In this paper, we propose a novel scheme that exploits Frequent
Value compression to optimize the power and performance of
NoC. Our experimental results show that the proposed scheme
reduces the router power by up to 16.7%, with CPI reduction as
much as 23.5% in our setting. Comparing to the recent zero pat-
tern compression scheme, the frequent value scheme saves up to
11.0% more router power and has up to 14.5% more CPI reduc-
tion. Hardware design of the FV table and its overhead are also
presented.

I. INTRODUCTION

Chip Multiprocessors (CMPs) have recently gained popu-
larity in both embedded and high-performance systems. By
integrating multiple cores on a single die, CMP can provide
better Thread-Level Parallelism (TLP) than single-core solu-
tion. To fully exploit the computing power of multiple cores,
a large shared on-chip cache is preferred in addition to small
private caches. The large cache is often divided into multiple
banks that are interconnected through an on-chip network. This
type of caches is referred as Non-Uniform Cache Architecture
(NUCA) as the cache access time is not the same across differ-
ent banks.

Recent studies showed that it is increasingly important to
optimize on-chip interconnection network under chip area and
power constraints [7]. Due to its advantages in predictability,
reusability and scalability [2] [3], packet-based Network-on-
Chip (NoC) is the most widely used interconnection fabric for
CMPs. Unfortunately as the size of on-chip network scales,
packet-based NoC introduces significant power consumption
and communication latency overhead.

While many approaches have been proposed to optimize
packet-based NoC designs, compressing on-chip data commu-
nication has been proven to be beneficial because it reduces the

on-chip traffic and thus, optimizes both performance and power
of the network.

Recently R. Das et al. discovered that a few value sequences
i.e. patterns occur with very high frequencies in on-chip traffic
[11]. They then proposed a scheme to exploit frequent patterns
for packet-based NoC architectures [11]. Data values are pro-
cessed through pattern matching hardware, and are encoded in
forms of pattern prefix bits to accompany data packets. Among
all patterns, the zero value pattern is most effective in achiev-
ing desired benefits, and requires the simplest hardware imple-
mentation. They also exploited the possibility of combining
storage compression (cache compression) and communication
compression (network compression) to store data in cache and
increase the effective cache capacity at some addition hardware
cost.

We propose to compress the NoC traffic through exploiting
frequent values instead of value patterns. Frequent values refer
to a small set of distinct values that present both spatially and
temporally in the memory space. When utilized for data encod-
ing on off-chip buses between the chip and memory, frequent
values can reduce significant bus energy through lowering their
switching activities. [4]. Previous effort has also used frequent
value compression to reduce the energy consumption for the
on-chip shared bus in CMPs [12]. This scheme incorporates
a communicating value cache (CVC) to store frequent values,
and leverages the snooping bus to mirror the CVC across all
cores for consistent compression and decompression. How-
ever, this is not applicable to scalable NoCs with packet-based
communication (instead of broadcasting) because CVC cannot
be easily maintained consistently across all cores.

In this paper, we develop a frequent value (FV) based com-
pression scheme for on-chip packet-based NoCs. We use a very
small code book for end-to-end communications, and code
books among different cores need not be the same. This can
help to capture local FVs in addition to global FVs obtained
through a uniform code book such as CVC. Overall, the contri-
butions of this paper are:

• To the best of our knowledge, this is the first work that ex-
ploits the usage of Frequent Value compression in packet-
based NoC architectures. We develop and compare the
effectiveness of four alternative FV replacement policies.



Fig. 1. Appearance ratio of top 8 FVs.

• Our FV compression scheme reduces the average length
of data messages by 24.0% on average — a 15.2% more
reduction over the zero pattern scheme [11]. This results
in a CPI reduction of up to 23.5%, a 14.5% improvement
over the zero pattern scheme on average. FV compression
also delivers 10.9% router power savings on average — a
7% more reduction over zero pattern scheme.

• Our FV compression scheme is general–purpose, and
transparent to both the cache controller and network in-
terface. This means it can be easily adopted in generic
CMP/NoC platforms without major architectural changes.

In the following section, we discuss the motivation and de-
sign of our FV compression scheme. Section III describes our
experimental platform, and Section IV presents the results of
our simulation. Section V concludes the paper.

II. FREQUENT VALUE COMPRESSION ON NOCS

A. Dynamic Frequent Values

Studies have shown that a small number of frequently re-
peated values (FV) account for a large percentage of on-chip
data traffic [4], [12]. For example, Fig.1 presents the ratio of
top 8 frequent values when running different applications on a
6x4 packet-based NoC architecture (with the setting described
in Section III). From the figure, up to 77% appeared values are
frequent values.

An important characteristic of frequent values is that they are
highly dynamic. Frequent values change with different work-
loads, different inputs, and at different runtime intervals. In
practice, this helps to achieve better compression rate and better
accommodation to different workloads than fixed patterns (e.g.
zero pattern [11]). As an example, the data traffic in swim is
almost uncompressible using zero pattern while it exhibits 10%
compression potential using FV scheme (Fig.1).

B. Frequent Value Table

To ensure the correct compression and decompression for an
end-to-end communication channel, an FV table is maintained
in a synchronized way on both sides. When sending a data mes-
sage, the sender matches the values in the data message with its
FV table. Each value with a hit will be substituted with its in-
dex into FV table. Otherwise the original value is used. To dis-
tinguish between compressed (hit) and uncompressed (missed)
values in the encoded message, an extra flag bit is attached to
each encoded value. This bit is used to indicate whether the

F V  0

F V  1

F V  2

F V  3

.. . . . .

C  0

C  1

C  2

C  3

m a t c h  0

m a t c h  1

m a t c h  2

m a t c h  3

.. . . . .

3 2

e n c o d e

h i t

M U X
... . . .

i n p u t

i n d e x

3

Fig. 2. FV control logic.

Fig. 3. Pipelined operation of CAM and controller.

corresponding value is compressed. Therefore, when using a
FV table with 8 entries, the encoded length of a 32-bit value is
either 4 bits (hit) or 33 bits (miss). On reception, the receiver
decodes the message using its FV table. Since the FV tables on
both sides contain the same values with the same indices, the
message can be decoded properly.

We use Content-Addressable Memory (CAM) structure to
realize the FV table. We implemented the FV table circuit and
compressor/decompressor logic using Verilog HDL and syn-
thesized the hardware with 45nm standard cell library [15, 16].
Fig.2 illustrates the logic of FV table controller. The CAM
and control circuits operate in a pipelined way, so that the total
cycles needed to process N values are N+2. Fig.3 shows the
pipelined operation.

For an 8-entry FV table whose compressor and decompres-
sor circuits work under 1GHz clock frequency, our results
showed that the area overhead and dynamic power consump-
tion of the compressor circuit are 4438.8μm2 and 4.26mW ,
respectively; the area overhead and dynamic power consump-
tion of decompressor circuit are 4320.2μm2 and 3.95mW , re-
spectively.

Data messages are packaged into network flits before be-
ing injected into the network. Since values are sequentially
processed, we integrate the FV compressor into the packaging
stage in each node’s network interface device, and overlap the
latency of compression and packaging operations. This helps
to reduce the visible latency of FV compression to two cycles.
Similarly, decompression of a message can start as soon as
the first data flit arrives. Decompressed values are pushed out
while following flits are being received and processed at same
time. Fig.4 shows an example when decompressing a four-flit
message.
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Fig. 4. Overlapping decompression with unpackaging.

C. FV Replacement Policies

To capture dynamically appeared frequent values, the FV ta-
ble needs to be updated periodically at runtime. The update
should be synchronized to maintain the same table content on
both the sender and the receiver sides. When replacing new val-
ues into the FV table, two factors must be considered. On one
hand, replacing new values more aggressively leads to faster
adaptivity to workloads’ dynamic behavior. On the other hand,
however, it is desirable to give old values enough time to take
effect before they are evicted. We found that different FV re-
placement policies exhibit different trade-offs.

We implemented and evaluated four different FV replace-
ment policies as follows:

• Counter-based replacement

With this replacement policy, each entry in the FV table
contains a 32-bit value and an 8-bit counter. To compress
a data message (e.g. a cache line) that contains multiple
32-bit values, the controller tries to match each value in
the FV table. To facilitate the discussion, we introduce
following terms. A hit-value is a value in the data message
that is also in the FV table; a miss-value is a value in the
message but not in the table; a hit-entry is an entry in the
FV table whose value appears in the current message; a
miss-entry is an entry in the table whose value does not
appear in the current message.

To update the counter, the controller processes the values
in the data message one by one. A hit increases the cor-
responding counter by two while multiple appearances of
the same value update the same hit-entry multiple times.
At the end of processing, the counters of all miss-entries
are decreased by one. The counter value ranges from 0
to 255; it does not overflow or underflow i.e. increas-
ing a counter with value 255 gets 255 while decreasing
a counter with value 0 still gets 0.

After processing all values, the controller tries to update
the table based on counter values. If it can find a miss-
value, and an entry whose counter is zero (it must be
a miss-entry), then the missed value replaces the current
value of the miss-entry. The above processing repeats un-
til no distinct miss-value or no zero-counter entry can be
found. The replacement process is not on the critical path.

• Approximate LRU/one replacement per message

Using this policy, each entry in the FV table is comprised
of a 32-bit value and an 8-bit timestamp. The timestamp
is updated as follows. When processing values in the mes-
sage, each hit left-shifts a bit-1 to the corresponding times-
tamp. At the end of the processing, each miss-entry left-
shifts a bit-0 to its timestamp. This update policy is similar

Fig. 5. Normalized message length of different FV replacement policies.

to the counter-based policy except that the timestamps of
miss-entries decrease much faster.

After processing all values in the data message, the FV
controller scans the FV table to find one entry with zero
timestamp and replaces it with a miss-value, if both the
entry and the miss-entry can be found.

• Approximate LRU/one replacement per value

Similar to the above policy, each entry in the table has a
32-bit value and an 8-bit timestamp. However, timestamp
update and table replacement decisions are performed per
each value instead of per message: as each value in the
data message is being matched to the FV table, times-
tamps of FV table entries are updated based on matching
results. If current value is a miss, the FV controller finds
an entry with zero timestamp and replaces it with current
value. This is an aggressive policy that evicts old values
very quickly.

• Approximate LRU/one replacement per group

This policy is a compromise between the above two poli-
cies. Values in a data message are divided into several
groups e.g. each group contains 4 values. The update and
replacement are performed per group instead of per mes-
sage or per value.

We evaluated the effectiveness of the four FV replacement
policies with multiple workloads (the settings are described
in section III). Fig.5 compares the normalized data message
lengths of these four policies. As we can see, the counter-
based policy has the best average compression rate, therefore,
we adopt it in our following study. The results are also used in
distributed random traffic to study the effects of different com-
pression schemes.

D. Frequent Value Compression for Packet-based NoCs

As we discussed, to ensure the correct compression and de-
compression for an end-to-end communication channel, the up-
dates to FV tables on both ends must be synchronized. It is easy
to achieve for bus interconnect as all nodes attached to a snoop-
ing bus can see all sent and received messages in the same order
and update their local FV tables accordingly.

However the synchronization becomes more complicated in
a mesh NoC. Given an end-to-end communication node pair,
one node can send out messages without knowing the status
of the other one. Therefore the nodes on two ends may see
different orders of their exchanged messages. In Fig.6 the order
of processed messages on A is A1 → A2 → B1 while on node
B the order is A1 → B1 → A2. To remove this problem, we
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Fig. 6. Interleaved messages in bidirectional communication.

Fig. 7. On-chip network layout.

maintain two FV tables for each node pair — one for A-send/B-
receive and the other one for A-receive/B-send i.e. both node
A and B get A1 → A2 and B1 for the two tables respectively.

Since a node on a CMP processor may simultaneously com-
municate with multiple other nodes, it needs to maintain two
distinct FV tables for each node it talks to. Although it might
be possible that several nodes share a same FV table, the com-
plexity of synchronization and the need for a centralized con-
troller offset the benefits it might bring. Although each node
has multiple FV tables, only those that correspond to current
communication channels are active.

III. EXPERIMENT

A. Simulation Model

We simulated an 8-core CMP using Simics [13] full system
simulator and GEMS [8] toolset. Each core has a 32KB private
L1 cache; all cores share an 8MB L2 cache that is divided into
16 512KB banks each with a local directory. The 16 L2 banks
together with 8 cores are interconnected using a 6x4 mesh NoC
(Fig.7). We used a state-of-art fixed pipeline router with de-
terministic X-Y routing algorithm in the NoC. The details are
summarized in Table I.

Since zero pattern takes majority of frequent patterns in data
traffic [11], and is simple to implement in hardware, we set zero
pattern scheme as the baseline and compared our FV compres-
sion scheme with it.

B. Workloads

We collected a diverse set of parallel computation workloads
from SPLASH2 [9] and OpenMP2001, as well as server work-
load. The details of workloads are specified in Table II. In all
simulation runs, we skipped the initialization phase to avoid
biased data values.

TABLE I
SIMULATION MODEL

Component Parameters

Processor Cores Eight cores, each at 1GHz clock.

L1 Cache Each core has a 32KB private L1 cache, split I and D
cache, 4-way set associate, 64 byte per line, 3 cycles
access time.

L2 Cache Shared L2 Cache divided into 16 512KB banks, 8-
way set associative, 64 bytes per line, 6 cycles ac-
cess time.

Memory 4GB RAM, 200 cycles access time.

Network 6x4 mesh network, with 8 cores on two sides and 16
L2 banks in middle (Fig.7).

Router Fixed five-stage router with X-Y routing, 2 VCs per
PC, 64-bit flits. Routers run at same frequency as
processor (1GHz). An unencoded data message is
comprised of 1 header flit and 8 data flits which
stores a cache line.

FV Table Each table has 8 entries, and use counter-based re-
placement policy.

TABLE II
WORKLOADS

Benchmarks Description

Barnes Standard 8 processor input set.

Ocean 514x514 ocean with 8 processors.

FMM 8 processor input set with 16384 particles.

Raytrace 8 processor, 256MB shared memory and 2-pixel anti-
aliasing.

Volrend 8 processors, standard input set (“head”).

Water-Spatial Standard input set for 8 processors.

Swim 8 processors, reference input set.

Mgrid 8 processors, reference input set.

Apache We use Apache 2.2.6 for Solaris 9 with default config-
uration, and use SURGE [10] to generate requests (16
clients, 100 threads per client).

C. Distributed Random Traffic

In order to fully evaluate our FV compression scheme un-
der various NoC traffic conditions, we developed a tunable
traffic generator which is capable of generating uniform dis-
tributed random traffic at specified rate. Such random traffic
exists at the background of the benchmarks under test and does
not affect their execution. Their existence emulates the situa-
tion when there are certain levels of network traffic contention
due to multi-threading, multiple workloads etc. that are overly
time-consuming in full system simulation. When configured
with a random traffic rate between 0 and 1, a node can gener-
ate distributed random traffic so that:

G ≈ T ∗ R

where T is the time (cycles) elapsed since simulation is started,
R is the random traffic rate and G is the number of random
traffic flits generated. These random traffic flits are sent with a



Fig. 8. Router energy saving % under random traffic rate.

special flag so that they can be specially handled at receiver side
without disturbing the timing model of the Simics simulator.

The data messages injected by the random traffic genera-
tor conforms with the value characteristics that we observed
in different benchmarks i.e. the compression rate is kept at
about the same as (Fig.5) when simulating different compres-
sion schemes.

IV. RESULTS

A. Router Energy Saving

To compare the router energy saving of FV compression
and zero pattern, we ran both schemes with same workloads
under random traffic rate 0.39 (0.39 flit/cycle per node on
average). We compared their router energy savings against
non-compression scheme and summarized the results in Fig.8.
From the figure, FV compression yields as much as 16.7%
router energy reduction, and up to 11.0% more reduction than
zero pattern.

To measure the energy overhead of FV compression, we cal-
culated the average energy consumption for transmitting one
data message using the Orion [14] power model (at 45nm), and
compared it with the energy consumed by FV compression and
decompression. Our results show that the compression and de-
compression energy per message is 0.148nJ while the average
energy for a message to traverse the network is 3.56nJ . There-
fore the energy overhead from FV compression operations is
reasonable comparing to its router energy savings.

B. Performance Improvement

We then measured the performance changes using FV com-
pression and zero pattern respectively. We ran both schemes
with same workloads under random traffic rate 0.39, and com-
pared their reduction of Cycles-Per-Instruction (CPI) number
against non-compression scheme in Fig.9. Our simulation re-
sults show that FV compression yields up to 23.5% CPI reduc-
tion, and up to 14.5% more reduction than zero pattern com-
pression.

C. Compression Rate

Next we studied the average length of data messages us-
ing FV compression and zero pattern compression (Fig.10).
From the figure, FV compression yields up to 42% more re-
duction, and 15% more reduction on average. In particular, FV
compression adapts to a larger variety of workloads, e.g. for
Barnes, zero pattern compression increases the length by 8%
while our FV compression achieves 34% length reduction.

Fig. 9. CPI reduction % under random traffic rate.

Fig. 10. Normalized data message length.

D. Latency Reduction

We also ran simulation to collect the average latency per flit
(including network latency and queuing latency) under differ-
ent random traffic rates. We compared the latency trend of dif-
ferent schemes in Fig. 11. Our results show that FV com-
pression reduces average latency and significantly defers the
saturation point.

V. CONCLUSION

In this paper, we examine how FV compression can be ap-
plied in NoC architectures. We evaluated four FV replacement
policies from which we picked up the counter-based policy as
it provides the best average compression rate. We also explored
the hardware implementation of FV table as well as its area and
energy overhead.

Our simulation results indicate that the FV compression
scheme reduces message length by as much as 49%, 15% more
comparing to zero pattern on average. As a result, FV com-
pression delivers up to 11.0% more router energy savings and
up to 14.5% more CPI reduction over zero pattern (under ran-
dom traffic rate 0.39).

Fig. 11. Average latency under different random traffic rates.



In addition, our FV compression scheme is transparent to
both cache controller and network interface. Thus it can be eas-
ily adopted into existing CMP/NoC architecture without major
architectural change.
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