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As the de facto memory technology, DRAM has enjoyed continuous scaling over the past

decades to keep performance growth and capacity enhancement. However, DRAM further

scaling into deep sub-micron regime faces significant challenges. Among the induced issues,

prolonged restore time is expected to be one of the major concerns, but it has been paid little

attention. Aiming at restore issue, this thesis performs pioneering studies to characterize

the problems, and presents techniques from different perspectives to overcome them.

First, our experimental studies quantify the significant restore process variations, caus-

ing serious degradations on yield and/or performance. To solve the problem, we propose

schemes to expose the variations to the architectural levels. Fast restore chunks can thus be

constructed utilizing DRAM organization, and they can be exposed to the memory controller

to effectively compensate the performance loss. Further, we maximize the improvement by

applying restore-time-aware rank construction and hotness-aware page allocation schemes to

fully utilize the fast regions.

Second, in addition to simply expose the variations to higher levels, we investigate DRAM

cell structures and behaviors finding that refresh and restore are two strongly correlated

operations. Whereas are being fully restored after each read or write access, DRAM cells

are always being fully charged by periodical refresh operations, providing an opportunity

to early terminate restore. With the insight, we first propose to truncate a restore using

the time distance to next refresh. Further, to provide more truncation opportunities, we

integrate the multirate-refresh concepts to shorten the distance by increasing the refresh
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rate of recently accessed regions.

Lastly, we explore higher to the application level with the inspiration that a large set

of applications can well tolerate output accuracy loss and runtime errors, enabling us to

exploit approximate computing to mitigate prolonged restore. By utilizing the variance in

restore timing exhibited at different row segments, we reduce the restore time such that only

partial segments are fully reliable. We then map the critical data onto the reliable segments

to keep the application-level errors low. Atop of the approximation-aware technique, we

further generalize it to support precise computing as well.
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1.0 INTRODUCTION

As a fundamental component of computing systems, main memory bridges the fast processors

to the slow massive storage devices. Servicing as the primary repository of runtime data

and instructions, main memory plays significant role on the whole system performance and

cost. Since being invented in 1960s, dynamic random access memory (DRAM) has been

the de facto standard in the past few decades thanks to its structural simplicity, and is

now widely deployed in almost all systems, including servers, desktops, mobile devices and

embedded systems. After generations’ evolutions, DRAM has reached a right combination

on intertwining aspects like high capacity, short latency and low cost, which cannot be

effectively achieved in the potential alternative memories like PCM [Lee et al., 2009a], STT-

RAM [Kultursay et al., 2013] and 3D-XPoint [Patterson, 2015].

Wheres DRAM’s capacity and bandwidth have been significantly increased in each gen-

eration, the growth rates are much slower than that of processor performance, and the

unbridgeable gap is still widening [Wilkes, 2001; Jevdjic et al., 2014]. Memory footprints of

running applications continue enlarging, and emerging data intensive platforms and appli-

cations, such as in-memory database [sap] and Deep Learning applications [Diamos et al.,

2016], place greater need for high capacity; more and increasingly massive multithreading

cores, e.g., GPGPUs [Lindholm et al., 2008] and heterogeneous cores [Vijayarahavan et al.,

2017], keep demanding high capacity and bandwidth; meanwhile, DRAM latency and power

consumption has been one of the most significant bottlenecks in modern computing, and will

be a profound challenge in future Exascale computing [DoE, 2015].
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1.1 PROBLEM STATEMENT

DRAM’s great success is tremendously contributed by its continuous technology scaling

to grow DRAM chip capacity and bandwidth, to reduce power consumption and to lower

the per-bit cost. While scaling-down has been the conventionally effective method, it is

starting hit a brick wall where DRAM cells cannot be made smaller without jeopardizing

their robustness.

As scaling down, DRAM cells, composed of one transistor and one capacitor (as in-

troduced in Chapter 2), have been shrinking to smaller dimensions, which results in size

reduction of access transistor, storage capacitor and peripheral circuits. Firstly, smaller

capacitor translates into a lower capacitance, reducing the stored charge; secondly, scaled

DRAMs apply lower supply voltage [Mukundan et al., 2013; Zhang et al., 2016a], which

further decreases per-cell charge and also worsens the gate induced drain leakage [Nair et al.,

2013b]; meanwhile, at smaller dimensions, adjacent cells are likely to electrically disturb each

other [Kim et al., 2014]; moreover, smaller cell geometry increases the resistance on both

access transistor and bitline [Mukundan et al., 2013; Wang, 2015], obstructing the cell charg-

ing process. In addition to charge decrease, the input offset voltage on the sense amplifiers

is also expected to exacerbate [Zhang et al., 2016a; Mukundan et al., 2013], which makes it

more difficult to sense data content stored in the cells.

Moreover, scaling to smaller technology nodes grow the fabrication complexity and makes

it more challenging to precisely control the dimensions of DRAM cells, which introduces

severer process variations (PVs). Accordingly, DRAM cells are expected to show more

statistical behaviors in a much wider range, as shown by the example restore distribution in

Figure 1.1; and, such uncertainty might cause increasingly more cells to violate the design

specifications, which is beyond the tolerance of existing mechanisms such as row/column

redundancy and ECC [Nair et al., 2013b; Jacob et al., 2007]. As a result, a large number of

chips would fail the manufacture testings.

The above phenomena of reduced dimensions and increased variability together adversely

affect the data retention time, charge restoration and voltage sensing, which impact DRAM

performance, reliability and cost from several aspects: (i) lower stored charge and higher
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leakage current introduces more leaky cells, resulting in more frequent refresh operations

that harms performance, energy and reliability; (ii) slower charging process means longer

restoring operation and potentially failing the standard specifications, which could hurt both

performance and yield; (iii) sensing difficulty lengthens the normal read/write accesses, and

might cause access failures; (iv) close proximity of cells leads to electrical coupling effects,

which introduces erroneous data.

15ns

cell distribution

tWR

current DRAM

as DRAM scales

Figure 1.1: The cell restore time prolongs as DRAM scales.

Although technology scaling becomes increasingly challenging, DRAM is still irreplace-

able and hence it must keep advancing to satisfy the overwhelming requirements from systems

and applications. To tackle the scaling issues, whereas significant researches have been put

into DRAM retention studies [Hamamoto et al., 1998; Wong et al., 2008; Kim and Lee,

2009], refresh optimizations [Ghosh and Lee, 2010; Stuecheli et al., 2010; Liu et al., 2012a,

2013; Mukundan et al., 2013; Nair et al., 2013b,a; Agrawal et al., 2014; Khan et al., 2014;

Qureshi et al., 2015; Bhati et al., 2015b], and sensing time reductions [Son et al., 2013;

D. Lee et al., 2013; Shin et al., 2014; Lee et al., 2015], restoring has not been paid attention

to until recently and very few explorations [Kang et al., 2014; Choi et al., 2015] have been

performed.
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1.2 RESEARCH OVERVIEW

In this thesis, our research objective is to explore the restoring trends in further scaling

DRAM, and propose schemes to mitigate the induced issues like performance loss and yield

degradation. Specifically, this thesis plans to answer the following questions: (i) how serious

will be the restore scaling in future DRAMs? (ii) how to solve the enlarged timing con-

straints utilizing the memory organization characteristics? (iii) can we utilize the DRAM

cell behaviors to find solutions by integrating the restore with other memory operations?

(iv) what kind of assistance can we get from above-architecture layers like operating system

and the applications? Generally, this thesis tries to explore DRAM scaling from restoring

perspective with collaborative efforts from different layers as shown in Figure 1.2, covering

hardware architecture Ê, operating system Ë and applications Ì, etc.

1.2.1 Achieve Fast Restore via Reorganization

Conventionally, a single set of timing constraints is applied to the whole memory system,

which becomes undesirable in smaller feature size, because of the enlarged worst-case timing

values. To preserve high chip yield, we have to relax the timings to allow the worst cells

reliably finishing operations, which indicates a longer bank occupancy and thus degraded

performance.

Fortunately, the variation characteristics also provide a large portion of healthy cells,

which can be potentially utilized to compensate the bad ones. Without modifying the

DRAM cell structure, we can choose to expose the timing variations to architectural level.

The memory controller can thus be enhanced to be variation-aware to mitigate the perfor-

mance loss. The exploration can be performed either on coarse chip-level or fine chunk-level,

depending the overhead budgets and improvement goals.

Nevertheless, given the facts that each DRAM logical row is physically composed of

multiple rows from different chips, and each chip row consists of thousands of cells, naively

exposing timings is likely to offer very limited help. Accordingly, we choose to form logical

rows by clustering similar fine-granularity chunks from different chips [Zhang et al., 2015a].
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Figure 1.2: Overall view of thesis work. While placing a focus on memory structures, we explore
restoring effects from other layers, including page translation from operating system and inherent
behaviors of applications.

As a result, more fast memory regions can be constructed. In addition, we extend the idea

to assembly phase in manufacturing stage, where compatible chips are grouped together to

form ranks, and hence bad chip contamination could be well controlled [Zhang et al., 2017b].

From processor perspective, the aforementioned variation exploration provides non-uniform

memory access (NUMA) characteristics, which can be utilized by operating system to speed

up program execution [Zhang et al., 2017b]. Following the idea, we profile workloads to iden-

tify frequently accessed pages, and then allocate them to fast memory regions to maximize

performance gains.

1.2.2 Shorten Restore using Refresh

Normal read/write accesses restore charge into cell capacitors to store data values. Due to

DRAM’s intrinsic leakage, the charge leaks over time, causing the stored data to be lost. To

prevent this, periodical refreshes are required to recharge the cells. Given that cell voltage

monotonically reduces between two refreshes and each refresh always fully charge the cells,

complete charge is thus unnecessary if the access is close in time to the next refresh.

The observation motivates us to propose refresh-distance-aware partial restore [Zhang

et al., 2016a]. Restore operation is performed with respect to the distance to the coming
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refresh, and the closer to next refresh, the less charge is needed and thus the earlier the

restore operation can be terminated. For ease of management, the idea is implemented by

partitioning one refresh window (typically 64ms) into multiple sub-windows, each of which

has its own restoring goal, i.e., different timings.

Whereas DRAM necessities frequent fresh to avoid data loss, the vast majority of cells

can hold the data for much longer time, which inspires designs of multiple rate refresh [Kim

and Lee, 2009; Liu et al., 2012a; Bhati et al., 2015b]. Compared to refresh operations, re-

store contributes more critically to memory access latency and overall system performance,

and hence we could achieve more truncation opportunities by upgrading refresh rate. Cor-

respondingly, we apply higher refresh frequency, e.g., 64ms, to those less leaky rows with

longer refresh window, e.g., 256ms, to further shorten restore timings.

However, blind upgrading introduces more refresh operations, which not only prolongs

memory unavailable period but also consumes more energy. As a compromise, we selectively

upgrade the refresh rate of selected bins, those were recently touched, and thus incur modest

refreshing overhead to the system.

1.2.3 Mitigate Restore in Approximate Computing Scenario

While much performance loss in further scaling DRAMs can be recouped with the help of

the proposed memory designs and the operating system, this might be over qualified for

nowadays popular applications in domains like computer vision, machine learning and big

data analytics. Those applications commonly have intrinsic resilience to inaccuracy, which

provides a good opportunity to tolerate the slow-to-restore cells in memory [Zhang et al.,

2016b, 2017a].

With the insights, this thesis applies approximate computing to tolerate slow restore

timings by mapping critical data bits to fast row segments at a low application error rate.

To exploit the restore variation across different row segments of a DRAM row, we reduce the

restore timings such that only partial segments are fully reliable, i.e., other segments might

contain faulty bits. With the reduced timings, we then map the critical bits of annotated

variables [Sampson et al., 2011, 2013; Miguel et al., 2014, 2015] to reliable memory regions
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to keep low application-level errors.

Given the fact that not all applications can tolerate accuracy loss, we generalize the

technique to support precise-computing by stitching together fast, reliable row segments to

form a faster row. And further, we integrate to have a hybrid scheme speeding up both

approximate and precise computing.

1.3 CONTRIBUTIONS

This thesis makes the following contributions:

• We perform pioneering studies on DRAM restoring in deep sub-micron scaling to confirm

and characterize the problems. We build models to simulate restoring behaviors, and

then generate DRAM devices to faithfully repeat the manufacturing process and perform

architectural-level studies.

• Targeting at restoring issues, we propose schemes from different perspectives. On device

and architectural levels, we apply chunk remapping and chip clustering techniques to

exploit the exposed variance, and further to achieve fast memory accesses; on system

level, we maximizing performance improvement by allocating hot pages of the running

workloads to fast regions.

• Going further, we investigate applications in domains like machine learning and computer

vision, and find that they can tolerate final output quality loss, and thus can be utilized

to mitigate restore issues. Hence, we apply approximate computing onto further scaling

DRAMs to strike a good balance among performance, energy and accuracy.

• Our principles in the thesis are universal and thus can be used to explore wider topics

in memory and even other components; the principles include examining the problems

at varying levels from different perspectives, designing for common and specific cases

instead of the worst case, and co-operating memory and system, hardware and software,

etc.
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1.4 OUTLINE

The rest of this thesis is organized as follow: Chapter 2 introduces the DRAM structures,

operations and scaling issues, and also presents related work on timing reduction, restore

and approximate computing, etc. In Chapter 3, we build models to study restoring effects,

and then propose a series of techniques to shorten restoring timing values from memory

organization perspective. In Chapter 4, we utilize the correlation between restoring and

refresh to seek the opportunities to early terminate restore operations. In Chapter 5, we

explore restore in approximate computing scenario, and devise schemes to strike the balance

between performance and accuracy. Summary and future work are discussed in Chapter 6.
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2.0 BACKGROUND AND RELATED WORK

2.1 DRAM STRUCTURE AND ORGANIZATION

DRAM-based main memory system is logically organized as a hierarchy of channels, ranks

and banks, as illustrated by Figure 2.1(a). Bank is the smallest structure to be accessed in

parallel with each other, which is termed as bank-level parallelism [Mutlu and Moscibroda,

2008; Lee et al., 2009b]. And, rank is formed by clustering multiple, typically eight 1 , banks

which operate in lockstep, i.e., all banks in a rank respond to a single command received from

memory controller (MC). Lastly, one channel is composed of an on-chip memory controller

and several ranks that share the same narrow command/address and wide data bus.

Physically, DRAM is provided as DIMM (dual in-line memory module), typically with

2 ranks on each side; each rank is composed of multiple chips, inside which eight banks are

deployed as cell arrays. The logical bank, as shown in Figure 2.1(a), is physically made up

of the same numbered bank from all chips. For instance, bank 0 of a rank contains bank

0 2 residing in all chips in the rank. Likewise, a DRAM row is dispersed across chips, as

shown in Figure 2.1(b). In normal accesses to a rank, each chip provides 8 bits at a time

simultaneously, which together satisfy the total data bus width of 64-bit, termed as a beat.

In addition, to amortize memory access overhead on processor side and also to bridge the

giant gap between DRAM core frequency (about 200 MHz) and bus frequency (over 1000

MHz), n-bit prefetch and burst access is supported [Yoon et al., 2011; Zhang et al., 2014b].

1For illustration purpose, we assume the memory chips are x8, i.e., 8 data I/O pins. The overall structure
keeps the same for x4 and x16, except the number of chips in a rank.

2Without specific comment in the rest of the thesis, bank refers to a logical bank, which is across chips in
a rank; for banks residing in a chip, we would specifically call as chip bank to differentiate. The same rule
goes with row.
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Figure 2.1: DRAM high-level structure.

n is 8 for commodity DDR3, which translates into a granularity of 64B (64b×8), the popular

cache block size.

In more detailed level, DRAM cells are packed into 2D arrays, as Figure 2.2 shows,

where each cell can be uniquely located by a vertical bitline and a horizontal wordline. Each

cell consists a capacitor to store electrical charge, and one access transistor to control the

connection to wordline. Upon receiving a row address, DRAM fetches the target row content,

through charge sharing and sensing [Lee et al., 2015; Shin et al., 2014], into the row buffer,

which contains thousands of sense amplifiers to detect the voltage change on bitline.

2.2 DRAM OPERATIONS AND TIMING CONSTRAINTS

DRAM supports three types of accesses — read, write, and refresh. An on-chip memory

controller is responsible to receive requests from processors and decompose them into a

series of commands such as ACT, RD, WR and REF, etc. The commands are then sent to

DRAM modules sequentially following the predefined timing constraints in DDRx standard

[JEDEC, 2009b]. We briefly summarize the involved commands and timing constraints as

follow:

READ: as illustrated in Figure 2.3(a), read access starts with an ACTIVATE (ACT)
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Figure 2.2: DRAM detailed organization. (a) is the high-level structure of DRAM array, (b)
shows cell structure, and (c) illustrates the equivalent circuit where Rc is contact resistance and
RBL is the bitline resistance.

command to bring the required row into the sense amplifiers; then, a READ (RD) command

is issued to fetch data from the row buffer. The interval between ACT and RD is constrained

by tRCD. DRAM read is destructive, and hence the charge in the storage capacitors needs to

be restored. The restore operation is performed concurrently with RD, and a row cannot be

closed until restoring completes, which is determined by tRAS-tRCD. Once the row is closed,

a PRECHARGE (PRE) can be issued to prepare for a new row access. PRE is constrained

by timing tRP. The time for the whole read process is thus tRC=tRAS+tRP.

WRITE: write works similarly to read, with ACT as the first command to be performed.

After tRCD has been elapsed, a WRITE (WR) is issued to overwrite the content in the row

buffer, and then update (restore) the value back into the DRAM cells. Before issuing PRE,

the new data overwritten in the sense amps must be safely restored into the target bank,

taking tWR time. To summarize, both RD and WR commands involve the restoring operation

3 , and hence a change in restore time shall affect both DRAM read and write accesses.

Refresh: DRAM needs to be refreshed periodically to prevent data loss. According to

JEDEC [JEDEC, 2009b], 8K all-bank auto-refresh (REF) commands are sent to all DRAM

3Whereas restoring after write is represented by tWR, that after read is included in tRAS. For ease of
presentation, we discuss with a focus on tWR and always adjust tRAS accordingly.
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Figure 2.3: Commands and timing constraints involved in DRAM accesses. (Timing values are
from [JEDEC, 2009b])
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devices in a rank within one retention time interval (Tret), also called as one refresh window

(tREFW) [Bhati et al., 2015a; Mukundan et al., 2013], typically 64ms for DDRx. The gap

between two REF commands is termed as refresh interval (tREFI), whose typical value is

7.8µs, i.e. 64ms/8K. If a DRAM device has more than 8K rows, rows are grouped into 8K

refresh bins. One REF command is thus used to refresh multiple rows in a bin. An internal

counter in each DRAM device tracks the designated rows to be refreshed upon receiving REF.

The refresh operation takes tRFC to complete, which proportionally depends on the number

of rows in the bin.

2.3 DRAM TECHNOLOGY SCALING

With continuously increasing demands on DRAM density and capacity, the cell dimensions

keep scaling downward. Past decades saw DRAM’s rapid development of 4x density every 3

years [Patterson and Hennessy, 2008]. Along scaling path from over 100nm to nowadays 2x

nm, DRAM also experiences the drop of supply voltage [Zhang et al., 2016a], more severe

signal noise [Ryan and Calhoun, 2008; Mukundan et al., 2013] and shorter retention time

[Nair et al., 2013b; Wang, 2015]. However, for reliable operations in DRAM, cell capacitor

must be sufficiently large to hold charge, access transistor is required to be large enough to

exert effective control [Lee et al., 2009a], resistance should not be too large to obstruct cell

charging process, and sub-threshold leakage should be small to safely hold data for a long

time.

The intertwining requirements make the scaling jeopardy. For instance, smaller technol-

ogy nodes provides smaller contacts of transistor and capacitor, and also narrower bitlines,

both of which result in increased resistance (shown in Figure 2.2(c)), which lengthens the

restoring time, and further the overall access latency. The growing number of slow and leaky

cells has a large impact on system performance. There are three general strategies to address

this challenge:

• The first choice is to keep conventional hard timing constraints for DRAM, which makes

it challenging to handle slow and leaky cells. Cells that fall outside of guardbands could
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be filtered (not used). With scaling, however, this approach can incur worse chip yield

and higher manufacturing cost. Because the DRAM industry operates in an environment

of exceedingly tight profit margins, reducing chip yield for commodity devices is unlikely

to be preferred.

• A second choice is to expose weak cells, falling outside guardbands, and integrate strong

yet complex error correction schemes, e.g., ArchShield [Nair et al., 2013b]. Due to the

large number of cells that violate conventional timing constraints such as tRCD, tWR,

significant space and performance overheads are expected.

• A third choice is to relax timing constraints [Kang et al., 2014; Zhang et al., 2015a].

This approach is compelling because it can easily maintain high chip yield at extreme

technology sizes. However, relaxing timing, without careful management, can cause large

performance penalties.

Because the third choice is compatible with the need for both high chip density and yield, we

adopt it in this thesis. We relax restore timing and strive to mitigate associated performance

degradation. Our design principle is also applicable to the second strategy if exposed errors

can be well managed. We leave this possibility to future work.

2.4 RELATED WORK

Around the performance and power design goals, DRAMs have been optimized from varying

perspectives, e.g., timing reductions, refresh scheduling. We briefly discuss the prior arts

and compare against our proposed designs as follow:

2.4.1 Timing Reduction

Reducing timing constraint values can effectively improve memory performance. TL-DRAM

[D. Lee et al., 2013] creates row segments with low ACT and PRE latencies. CHARM [Son

et al., 2013] reduces sensing time by attaching fewer cells to each bitline. MCR [Choi et al.,

2015] is a recent work that reduces both sensing time and restore time. While above schemes
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are designed mainly for existing commodity DRAM, this thesis targets at the restoring issues

in deep sub-micron DRAMs to keep high yield. Moreover, the schemes proposed in this thesis

do not need to modify the DRAM internal structures.

To achieve high yield and reliability, timing constraint values are set with excessive

margins, which reflect the worst-case. Most DRAM chips can perform normally with smaller

timing values. Chandrasekar et al. [Chandrasekar et al., 2014] proposed to identify the excess

in process-margins for DRAM devices at runtime. AL-DRAM [Lee et al., 2015] analyzes the

timing reduction opportunities and exploits the large margin of DRAM timing parameters

to improve performance. NUAT [Shin et al., 2014] exploits the electric charge variation caused

by leakage to design a non-uniform access time memory controller. Differently, this thesis

focuses on the prolonged restore issue in the future DRAMs, and thus it is orthogonal to

AL-DRAM and NUAT, as discussed in Section 4.2.3.

2.4.2 DRAM Restore

While write recovery time (tWR) keeps at 15ns across all generations from DDR to DDR4

[JEDEC, 2000, 2009a,b, 2012], it has to be lengthened in deep sub-micron technology nodes,

which was first recently discussed by Kang et al. [2014]. As the first academic work on

restore issues in further scaling DRAM, our paper [Zhang et al., 2015a, 2017b] studied the

variation behaviors and proposed to utilize chunk remapping to lower restoration durations.

Afterwards, patents on restore were granted: Son et al. [2014] raised the idea to adjust

timings with respect to temperature, and Wang [2015] claimed that tWR can be increased

from 15ns to 60ns, and then raised the idea of exploring backward compatibility. The patents’

findings on restore trends are well aligned with our studies.

Whereas the restore scaling issue has been identified in industrials, little academic re-

search have been performed. Restoration has been an silent issue util recently; people started

to utilize the reserved timing margins [Chandrasekar et al., 2014; Lee et al., 2015], with

restoring being included. Besides, later work [Choi et al., 2015] took use of charge variation

to relax some timing constraints. However, none of these work targets at future DRAM

technologies. Compared to the very few existing work, this thesis performs comprehensive
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studies on restore issue, and proposes effective schemes from multiple perspectives.

2.4.3 DRAM Refresh

As DRAM device capacity increases, refresh is expected to introduce larger performance and

energy overheads [Liu et al., 2012a; Nair et al., 2013a; Bhati et al., 2015a]. To address the

issue, a bunch of schemes have been proposed from different directions, with representative

ones like Smart Refresh [Ghosh and Lee, 2010], Elastic Refresh [Stuecheli et al., 2010],

and Refresh Pausing [Nair et al., 2013a], etc.

While weak cells require frequent refreshes, the majority of the cells on a DRAM chip

can hold the data for a much longer time, which makes it viable to adopt multi-rate refreshes

[Kim and Lee, 2009; Wong et al., 2008; Agrawal et al., 2014; Liu et al., 2012a; Wang et al.,

2014a; Bhati et al., 2015b]. Particularly, Liu et al. [2012a] proposed RAIDR to group DRAM

rows into several partitions and enable different refresh rates for different partitions. Wang

et al. [2014a] and Bhati et al. [2015b] optimized RAIDR to make it compatible with modern

DRAM standards. ArchShield was designed to tolerate high error rate in future DRAMs.

It can be utilized to cover leaky cells and reduce refresh rate.

The proposed restore truncation schemes in Chapter 4 targets at the correlation of re-

store and refresh, and they can be integrated with the existing refresh innovations to find

a better tradeoff between overall performance improvement and refresh penalty. We adopt

the practical REFLEX [Bhati et al., 2015b] to implement multi-rate refresh. And, the experi-

mental results show that our proposed refresh-related schemes are capable to beat all refresh

reduction designs, as reported in Section 4.6.

2.4.4 Approximate Computing

Approximate computing is an emerging paradigm that exploits the inherent error resilience

of many modern applications where a small number of hardware and software errors have

little impact on the quality of program output [Liu et al., 2011; Sampson et al., 2011]. For

these applications, user data are often categorized as either critical or non-critical. While

non-critical data has error tolerance, critical data are protected to ensure correctness.
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For main memory, most approximate computing approaches focus on DRAM refresh

energy. Flikker [Liu et al., 2011] refreshes non-critical memory regions less frequently to

save energy. Arnab et al. [2015] further divide memory pages into quality bins with different

refresh and error rates, and enable quality-aware data allocation to the bins. Sparkk refreshes

different chips in a DIMM with different rates to reduce refresh power [Lucas et al., 2014].

Compared to refresh operations, the degradation of restore time with scaling slows down both

read and write operations, leading to more significant performance degradation. In addition,

approximate computing caches have been proposed to improve effective cache capacity and

achieve energy savings [Miguel et al., 2014, 2015, 2016], and optimize storage density and

lifetime [Sampson et al., 2013; Guo et al., 2016].

To support approximate computing analysis, EnerJ uses type qualifiers to map approx-

imate data to low power storage [Sampson et al., 2011]. Schmoll et al. [2013] presented a

flexible software-based error handling. Khudia et al. [2015] and Mahajan et al. [2016] pro-

posed to dynamically monitor errors and adjust computation accuracy to meet the quality

demand on the final results. These schemes are orthogonal to our work so that they can be

combined with our design to further improve system performance.
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3.0 ACHIEVE FAST RESTORE VIA REORGANIZATION

3.1 MODELING RESTORE EFFECTS

Modeling and simulation are required to perform the studies on further scaling DRAM.

On device level, the model needs to capture the critical components including transistor,

capacitor, sense amplifier, and other peripheral circuits; and the model should also cover

the primary parameters and dimensions, such as transistor length/width, capacitance and

voltage, etc. Following the principles, we built SPICE modeling on basis of a Rambus tool

[Vogelsang, 2010], and simulated data write operation.

Further, to involve process variation effects, the models should be inherently statistical

following certain distributions. Using the aforementioned cell model, we generate 100K

samples and curve fit using log-normal distribution. Similar to recent process variation (PV)

studies [Liu et al., 2012a; Agrawal et al., 2014], we include bulk distribution to depict the

normal variation that dominates the majority of cells, and tail distribution to depict random

manufacturing defects 1. Table 3.1 summarizes the parameters for bulk and tail distributions

after curve fitting with our cell samples.

Table 3.1: Process Variation Modeling Parameters

tech node µbulk σbulk µtail σtail φ random weight

20nm 2.031 0.21 3.081 0.063 0.3 0.5

14nm 2.048 0.247 3.283 0.0735 0.3 0.5

1Note that not all cells following the tail distribution are treated as defects. The worst ones are covered
by conventional redundant repairs [Agrawal et al., 2014; Jacob et al., 2007].
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To obtain the chip maps, we use the VARIUS tool [Sarangi et al., 2008] to involve

both within-die (WID) and die-to-die (D2D) process variations. Similar to prior PV studies

[Karnik et al., 2004; Agrawal et al., 2014], we assume the same share of systematic and

random components, and choose φ = 0.3 meaning that the correlation range equals to 30%

of the chip’s side length, as shown in Table 3.1. With the constructed models and collected

parameters, we can move forward to generate chips, and then form ranks and DIMMs using

the pool of chips. Next, architectural explorations can be conducted on the collected memory

system.

Conventionally, each timing constraint for DRAM has a single fixed value, e.g., tWR

keeps at 15ns in existing DRAM standard [JEDEC, 2000, 2009a,b, 2012]. Given that more

cells in deep sub-micron are likely to violate tWR, it is beneficial to relax it to allow most

such cells finish restoring operations after a destructive read or write operation, which helps

to preserve high chip yield. However, a larger tWR indicates longer bank occupancy and

lower bank throughput.
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Figure 3.1: Comparing performance and yield with different tWR values (20nm).

Figure 3.1 compares the performance and yield with different relaxed tWR values at

20nm technology node. If tWR is set to 15ns, the scaling effect would lead to no chip

satisfying the existing specification, i.e., yield rate is 0%. At 20nm technology node, the

majority of chips have large tWR values in a tight range (28-29). To achieve 99% yield

rate, tWR has to be relaxed to 30ns, which prolongs the execution by over 25%; A smaller

degradation, e.g., 21%, can be observed when tWR is relaxed to 28ns. However, the yield is
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seriously lowered to 45%. From the figure, we can see that it is challenging to achieve high

chip yield while minimizing its impact on system performance.

3.2 PROPOSED DESIGNS

In this section, we elaborate the proposed designs. First, we discuss the post-fabrication

schemes in terms of both coarse chip-level and fine chunk-level restoring managements; then,

we extend the schemes to assembly phase to deliberately form ranks by clustering compatible

chips; and finally, the schemes are integrated with OS-level page allocation to maximum

performance gains.

3.2.1 Chip-specific Restoring Control

We start with a simple enhancement to the current DRAM standard of adopting one tWR

2 — by exposing chip variations, we may set different tWRs for different chips. For this

purpose, a post-fabrication test process is performed by the manufacturer to determine the

tWR of each chip while a DIMM is then constructed using chips with the same or similar

tWRs. Each DIMM derives its tWR from the chip-row 3 that has the worst tWR of the

entire DIMM (as shown in Figure 3.2(a)), or the worst one after adopting a small number

of spares to rescue those slowest chip-rows [Jacob et al., 2007].

The chip-specific tWR design helps to improve chip yield rate as otherwise a chip with

tWR=24ns would be discarded if tWR is set as 23ns or less in the standard. While technically

all fabricated chips can now be treated as good ones, those with very large tWR (e.g., twice

as large as the expected tWR) should still be marked as failed chips as DIMMs constructed

from them tend to have very low performance.

2For discussion purpose, we focus on tWR relaxation while tRAS is relaxed accordingly in each design
3A chip-row refers to the portion of cells of a row that reside on one chip. A DIMM-row refers to all the

cells of a row.
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Figure 3.2: Comparison of different schemes: (a) The chip-specific tWR; (b) The chunk-specific
tWR; (c) The chunk-specific tWR with chunk remapping. For illustration purpose, each rank
consists of two chips while each chip contains two four-row banks. One DIMM-row (i.e., the row
exposed to the OS) consists of two chip-row segments — the number in each chip-row indicates
its corresponding tWR, i.e., the tWR of the weakest cell.
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3.2.2 Chunk-specific Restoring Control

Even though tWR exhibits a wide range of variations when scaling in deep sub-micron

regime, only a small number of cells need long recovery time. Setting a DIMM’s tWR based

on the chip-row that has the worst tWR is still too pessimistic. We therefore propose to

partition each memory bank into a number of smaller chunks and set the chunk level tWR

based on the worst chip-row within the chunk. The chunk level tWR is then exposed to the

memory controller to aid scheduling.

In Figure 3.2(b), one chunk consists of two rows. Since the first chunk has 23ns and 18ns

tWRs for its two chip-rows, its chunk tWR is set to 23ns. By take advantage of these fast

chunks, a chunk-tWR-aware memory controller can speed up memory accesses that fall into

the fast chunks 4.

3.2.3 Chunk-specific with Remapping

The previous design can only form a DIMM-chunk from the same-index chip-chunks, which

can be optimized to further reduce tWR values. This is because the chip-chunks that are

of the same index may exhibit significant tWR difference. It would be beneficial to form a

chunk using chip-chunks that are of the same or similar tWRs.

For the example in Figure 3.2(c), if we form the first DIMM-chunk using the 4th chip-

chunk from chip 0 and the 1st chip-chunk from chip 1, the tWR of this chunk can be as

low as 18ns. Constructing a number of such fast chunks helps to speed up the average row

access time of the given DIMM.

The chunk remapping is done in two steps: (1) after detecting the tWR for each chip-

chunk, we compute the averaged tWR for each chip-bank, and sort chip-banks independently

on each chip. A DIMM-bank consists of chip-banks that are of the same index on the

sorted list; (2) For chip-chunks within each chip-bank, we sort them again such that each

DIMM-chunk consists of chip-chunks that are of the same index on the sorted list.

While only one access is allowed to access one bank at any time, the multiple banks

4For discussion purpose, a chip-chunk is referred to as one chunk within one chip; a DIMM-chunk is
referred to as the set of same-index chip-chunks from different chips of the DIMM. For example, the 2nd
DIMM-chunk consists of the 2nd chip-chunk from each chip.
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in a DIMM can be accessed simultaneously. To maintain the same bank level parallelism,

we treat the chip-chunks from one bank as a group in chunk remapping. In Figure 3.2(c),

DIMM-chunk 0 and 1 belong the DIMM-bank 0. Since DIMM-chunk 0 is constructed using

chip-chunk 3 on chip 0, DIMM-chunk 1 needs to use chunks from the same group, i.e., chip-

chunk 2 on chip 0. In this way, simultaneously accessing two different DIMM-banks will

never compete for the same chip-bank on any chip.

3.2.4 Restore Time aware Rank Construction

A DIMM rank is composed of multiple chips, which work in lockstep fashion. The access

speed of one logical row is determined by its worst chip-row. While chunk-remapping does

not have to form a DIMM-row using the chip rows that of the same physical index, it may

still be ineffective when one of the chips that form a rank contains many slow rows. A bad

chip would lead to a slow rank no matter how the chunks are remapped.
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Figure 3.3: Rank construction consists of three steps — (1) chip sorting and seed chip selection;
(2) distributing chips to bins; (3) constructing DRAM ranks using chips from each bin.

We further propose to construct DRAM ranks using compatible chips, rather than ran-

dom chip selection in the baseline design. Given N DRAM chips, our goal is to construct a

better rank set (and each rank contains R chips). The rows in each chip are divided into K

chunks and we use M bins to assist rank construction.
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We first compute the average chip level tWR, which uses the chunk level tWR values

of each chip. The latter can be collected during post-fabrication testing. We sort the chips

based on their average tWR values, and choose M seed chips, i.e., the chips on the sorted

chip list whose indice can be divided by bN/Mc. The seed chips are distributed to M bins.

We then place the rest of chips into M bins based on their similarity to the seed chip

of each bin. The chunk level tWR values of each chip are treated as a K-item vector. The

similarity of two chips is calculated using the Hamming distance of the two K-item vectors.

The candidate chip is placed in the bin whose seed chip has the smallest Hamming distance,

i.e., the highest similarity, to the candidate chip.

Once a bin reaches its size limit, i.e., n×R where n = bN/M/Rc, and n×R ≤ N/M , it

can no longer accept new chips. In the algorithm, an extra bin BinM+1 is used to hold the

leftover chips. When filling chips to each bin, we construct a rank if a bin has R chips (the

seed chip is used to form a rank in the last batch).

Since the algorithm, as depicted in Alg 1, needs to scan each chip and compute its

similarity with all seed chips, the time complexity is O(N ×M × K). Here M and K are

constant. M is usually small (M << N) while K can be relatively large, e.g., K=1024.

Therefore, the time complexity is linear to the number of candidate chips. This is a light

weight rank construction scheme, compared that in [Wang et al., 2015]. Our experiments

show that the two algorithms achieve similar rank level tWR results.

Table 3.2 compares the average tWR values when using different rank construction al-

gorithms. We constructed ten ranks and the rows in each bank are divided into 4K chunks.

We list the rank tWR values and the average tWR values at 20nm technology node, and the

average tWR values at 14nm technology node. From the table, we find that, without chunk

remapping, the slow rows can significantly affect the rank level tWR values. For example,

for Baseline at 20nm node, the average tWR of all ranks is 28.25ns while the average tWR

of rank-1 is 30.1ns. Performing chunk remapping after bin-based rank construction is the

most effective scheme. In the experiments, we set the number of bins to 5. Varying the

bin counts from 2 to 10 shows similar results. In addition, we compare the results with the

scheme that perform heavy weight rank construction [Wang et al., 2015], and observe similar

average tWR values of all ranks.
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Algorithm 1: Bin-based Rank Construction

Input: Chunk level tWR values of all candidate chips

Arguments : N -total number of candidate chips; K-chunks in each chip; M -total

clustering bins; R-chips in a rank;

Output: N/R formed ranks

1. Preprocessing: calculate the average tWR of each chip, and order the chips;

2. Seed pick-up: assign one seed chip per bin by selecting one every N/M chips;

3. Scan the remaining non-seed chips, and put each into a bin;

chipID = 0; bin size = bN/M/Rc ×R;

create one extra bin, BinM+1;

repeat

fetch the ChipchipID from the pool;

min dist = IMAX; min id = -1;

for id = 0; id < M ; id++; do

if (Binid is full) then

continue;

end

dist = Hamming distance(seed chip of Binid, ChipchipID);

if (dist < min dist) then

min dist = dist; min id = id;

end

end

if (min id ! = −1) then

put the chip into Binmin id;

else

put the chip into BinM+1;

end

chipID ++;

until chipID >= N −M ;

4. Sequentially scan the classified chips of each bin, and form R-chip ranks;
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Table 3.2: Comparison of average tWRs for 20nm and 14nm nodes (10 ranks were constructed
and each chip has 4096 chunks )

rankID Baseline1(ns) Chunk2(ns) ChunkBin3(ns) ChunkSortBin4(ns)

0 25.9 22.4 25.9 27.3

1 30.1 27.1 30.7 27.3

2 25.9 22.2 25.9 22.4

3 30.7 27.2 25.9 22.2

4 28.8 27 31.8 22.2

5 28.8 27 25.9 22.2

6 28.8 27.1 25.9 22.2

7 28.8 27.1 25.9 22.3

8 25.9 22.3 25.9 22.2

9 28.8 27.0 25.9 22.2

avg(20nm) 28.25 25.64 26.97 23.25

avg(14nm) 35.04 31.71 33.33 28.73

1 Baseline is the baseline that constructs ranks using random grouping.

2 Chunk is the scheme that conducts chunk remapping on basis of Baseline.

3 ChunkBin is the scheme that adopts our proposed restore time aware rank con-

struction. Chunks within each chip are not remapped.

4 ChunkSortBin is the scheme that remaps chunks after the rank construction.
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3.2.5 Restore Time aware Page Allocation

The translation of virtual to physical address is supported in hardware by Memory Man-

agement Unit (MMU), and the virtual-physical mapping is determined by operating system

(OS). Traditional page allocation is restore time oblivious as all physical pages have the same

access latency. However, when a set of fast DRAM chunks are constructed and exposed to

the memory controller, it is beneficial to exploit the access latency difference to speed up

program execution.

Clearly, the memory system can be more effective if fast chunks are assigned to service

performance-critical pages. In this thesis, the page criticality is estimated using its access

frequency [Son et al., 2013; Lee et al., 2001]. Studies have shown that it is usually a small

subset of pages, referred to as hot pages, that are frequently accessed in modern applications

[Bhattacharjee and Martonosi, 2009; Ramos et al., 2011; Ayoub et al., 2013]. We adopt the

offline profiling approach as in [Son et al., 2013] to identify hot pages.
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Figure 3.4: The page access distributions in SPEC CPU2006.

Figure 3.4 studies the page access distribution of a set of SPEC CPU2006 applications

[SPEC, 2006]. The figure shows that different applications have very different access behav-

iors: for some workloads, e.g., 459.Gem and 470.lbm, accesses are evenly distributed such

that the number of accumulative requests grows linearly with the number of touched pages;
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for some other applications, e.g., 429.mcf and 403.gcc, most memory accesses come from a

small subset of hot pages. The hot pages are the ones to be allocated in fast DRAM chunks.

The benefit of restore time aware page allocation also depends on the number of hot

pages, i.e., if the hot page set can all be allocated in the fast chunks. Figure 3.5 compares

the number of touched pages of different benchmarks. From the figure, the majority touch

less than 1/8 of the total memory space, while some benchmarks (i.e., 459.lbm and 429.mcf)

use up all available space.
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Figure 3.5: The portion of touched pages for each benchmark. The memory capacity is 2GB,
which can be divided into 52K 4KB-page.

In this article, our goal is to illustrate that a restore time aware page allocator can take

advantage of the latency difference of the DRAM chunks. For this purpose, we adopt a

simple strategy that profiles program execution offline and statically allocates hot pages to

fast chunks. In the case if profiles are not accurate, we may need to design and enable more

flexible strategies, e.g., such as the detailed behavioral synthesis [J. Cong and Zou, 2011] and

data migration and compression [Ozturk and Kandemir, 2008]. We leave this as our future

work.
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3.3 ARCHITECTURAL ENHANCEMENTS

In order to exploit restore time variations at either chip or chunk levels, a post-fabrication

testing needs to be performed to detect restore time at fine-granularity. Given that cell

restore time is thermal dependent — study showed that it becomes worse at low temperature

[Kang et al., 2014], the manufacturer needs to examine different types of data patterns

[Venkatesan et al., 2006; Liu et al., 2012a, 2013]. to record the worse timing constraints

under chip’s allowed working conditions. The values are organized as a table (with each entry

in the table recording affected timing constraints tWR/tRAS of its corresponding DIMM

chunk) and saved in non-volatile storage in the DIMM [Seshadri et al., 2013].

The memory controller loads this table at boot time and schedules memory accesses ac-

cordingly to maximize bandwidth and avoid conflicts. As an example, two READ operations

cannot be scheduled back to back to a DIMM bank if the later one accesses a fast chunk and

shall compete with the preceding READ for using the data bus.

Cmd/Addr from Memory Controller 

DRAM DRAM … DRAM DRAM … 
Ctrl Logic 

Addr Remap 
Table 

Addr Remap 
Table 

Address 
Remap Table 

cmd 
addr 

Figure 3.6: The on-DIMM architectural enhancement.

To enable chunk re-organization, we need one extra chunk remapping table as shown in

Figure 3.6. Similar as HP’s MC-DIMM [Ahn et al., 2009] and Mini-rank [Zheng et al., 2008],

our design integrates an enhanced registering clock driver (RCD) [JEDEC, 2009c] to remap

and redrive the physical address. Differing from rank-subsetting designs where only partial

chips are involved for each memory access, our proposed design follows the chips’ original

lockstep working fashion, but only requires each chip to receive a dedicated row address.

Compared to conventional DIMM RCD, additional register, together with some pins, and

29



DIMM PCB traces [Micron, 2008] are needed to implement address remapping. For the

chunk remapping table, each entry maps the corresponding DIMM-chunk to the chip-chunk

at each chip. Given the following table, when the bridge chip receives a request asking for

data in the 10th DIMM-chunk, it translates the requests to asking for segment data from

the 1220th chunk from chip 0, the 124th chunk from chip 1, etc.

Table 3.3: Remap table

DIMM chunk chip0 chunk chip1 chunk ... chip7 chunk

... ... ... ... ...

10 1220 124 ... 256

... ...

3.4 EXPERIMENTAL METHODOLOGY

3.4.1 Configuration

To evaluate the effectiveness of our designs, we compared them to traditional repair solutions

[Jacob et al., 2007] using an in-house chip-multiprocessor system simulator. We modeled

a quad-core system with the parameters shown in Table 3.4. For both 20nm and 14nm

technology nodes, we used VARIUS to generate 90 chips, and then form ranks in different

fashion as discussed in Table 3.2. The memory system to be simulated is composed of two

ranks. We constructed five rank pairs and tested the proposed designs with all pairs.

The DRAM timing constraints follow Hynix DDR3 SDRAM data sheet [Hynix, 2010]

and are summarized in Table 3.5. For the schemes exploiting chunk level timing constraints,

we added two CPU cycles to access the timing table. For the schemes performing chunk-

remapping, we added one extra DRAM cycle to access the mapping table.
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Table 3.4: System Configuration

Processor four 3.2Ghz cores; four-issue; 128 ROB size

L1(private): 64KB, 4-way, 3 cycles

Cache L2(shared): 2MB, 6-way, 32 cycles

64B cacheline

Memory Bus frequency: 1066 MHz

Controller 128-entry queue; close page

1channel, 2ranks/channel, 8banks/rank,

DRAM 16K rows/bank, 8KB/row,

1066 MHz, tCK=0.935ns, width: x8

Table 3.5: Memory Timings

Timing Parameters Time(ns) DRAM Cycles(CLK)

CL 13.09 14

tRCD 13.09 14

tRC 46.09 50

tRAS 33.0 36

tRP 13.09 14
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3.4.2 Workloads

We used SPEC CPU2006 [SPEC, 2006] and simulated 1 billion instructions after skipping

the warm-up phase of each benchmark. The Read and Write MPKI (memory accesses per

kilo instructions) for each workload is profiled to indicate the memory intensiveness. Based

on MPKI, the applications are classified into three categories (Spec-High/Spec-Med/Spec-

Low), as shown in Table 3.6. The workloads are running in rate mode, where all cores

execute the same task.

We performed timing simulation until all cores finish the execution, and averaged the

execution time of all the four cores. We constructed five rank pairs, i.e., DIMMs. One

simulation run used one DIMM while the reported results are the average of the runs using

different DIMMs.

3.5 RESULTS

We evaluated the following schemes:

— Baseline. The baseline sets tWR to 15ns, the same as existing DRAM specification.

It is the ideal baseline due to scaling. The results of other schemes are normalized to the

baseline for comparison.

— Relax-x. Given that scaling in deep sub-micron regime leads to worse timing, this

scheme relaxes time constraints to achieve x% yield. We relaxed tWR and set tRAS/tRC

accordingly. We tested x=85 and x=100, respectively.

— Spare-x. One commonly adopted post-fabrication repair approach is to integrate

sparing rows/columns to mitigate performance and yield loss. It is implemented by using

a laser programmable link to disconnect the abnormal rows/columns and connect the spare

ones [Jacob et al., 2007]. In our experiments, we set the spare density as high as 16 spare

rows per 512-row block, which resides in the aggressive spectrum [Kirihata et al., 1996;

Koren and Krishna, 2010]. Given that spares may be reserved for high-priority repairs, such

as defects and retention failures, we testsed x=0, 2, 8, 16 spares out of each 512-row block,
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Table 3.6: Benchmark Characteristics

Class Workload Read MPKI Write MPKI

429.mcf 58.07 4.56

470.lbm 31.31 23.38

450.sop 26.77 2.69

433.mil 24.85 8.38

471.omn 19.26 0.04

Spec-High 459.Gem 19.04 2.66

462.lib 17.48 0.52

484.xal 16.89 0.45

403.gcc 14.69 0.52

482.sph 14.14 1.11

410.bwa 10.04 1.67

437.les 8.70 2.48

481.wrf 5.18 1.40

436.cac 5.13 1.52

Spec -Med 434.zeu 4.69 1.22

401.bzi 3.92 1.72

473.ast 3.53 0.96

447.dea 3.15 0.20

456.hmm 3.11 2.88

400.per 1.73 0.22

464.h26 1.47 0.66

445.gob 1.27 0.92

435.gro 1.06 0.28

Spec -Low 458.sje 0.90 0.45

454.cal 0.66 0.35

444.nam 0.65 0.62

465.ton 0.30 0.03

416.gam 0.18 0.04

453.pov 0.01 0
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respectively.

— ECC. ECC is implemented by placing one extra ECC chip to correct errors in data

chips. Though ECC is conventionally used to correct soft errors, it can be potentially used to

tolerate weak cells. Exploiting ECC chips to rescue slow rows sacrifices soft error resilience

and hurts reliability [Su et al., 2005].

— Chunk-x. This scheme implements the chunk-specific restore time control, with each

bank being divided into x chunks. Each DIMM chunk has its own timing constraints, which

are exposed to the variation-aware memory controller.

— ChunkSort-x. This scheme implements the chunk-specific restore time control with

chunk remapping, with each bank being divided into x chunks. Similar as Chunk-x, the

timing constraints of each chunk are exposed to the memory controller.

— ChunkBin-x. This schemes is similar as Chunk-x. The difference is that it constructs

ranks using the proposed bin-based matching scheme.

— ChunkSortBin-x. This schemes is similar as ChunkSort-x. The difference is that it

constructs ranks using the proposed bin-based matching scheme.

We compared these schemes on memory access latency and system performance, and

studied their sensitivity to different system configurations.

3.5.1 Impacts on Program Execution Time

Figure 3.7 compares the execution time with random page allocation policy under different

schemes for 20nm (Figure 3.7(a)) and 14nm (Figure 3.7(b)) technology nodes. The execution

time is normalized to the ideal baseline, i.e., tWR is 15ns. The figure reports the results from

representative benchmarks of all classified categories (e.g., Spec-High is the set of highly

memory-intensive subset), and the full set (Spec-All).

3.5.1.1 20nm Technology Node From Figure 3.7(a), we observed that (1) DRAM

scaling has a large impact on restore time. To maintain a high yield rate, the timing con-

straints have to be vastly relaxed from 16 cycles to over 30 cycles, which significantly hurts

performance. On average, Relax-100 and Relax-85 prolong the execution time by 25.3%
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Figure 3.7: The execution time comparison of different schemes for 20nm and 14nm technology
nodes under random page allocation policy. Representative applications and the geometric means
for highly memory-intensive (Spec-High) and all applications (Spec-All) are presented here.
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and 22.1%, respectively. Highly memory-intensive applications tend to have large degrada-

tion (i.e., over 30%). (2) Adding spare rows helps to mitigate performance losses: Spare-8

is 20.6% worse than the ideal. (3) ECC works only slightly better than Spare-8. This is

because SEC-DED ECC can only correct one bit in each 64-bit block. Since there might be

multiple cells violating timing constraints within such a 64-bit block, ECC lacks the abil-

ity to effectively adapt restore time variations. (4) Chunk-4k is 1% better than ECC as it

exposes chunk-level restore time variations. There are a small number of chunks that have

smaller tWRs than the single tWR in ECC. Due to random page allocation policy, the ex-

posed fast chunks cannot be fully exploited, and thus the performance improvement is pretty

limited. (5) ChunkSort-4k works better than Chunk-4k because it helps to construct more

fast chunks. On average, ChunkSort-4k helps to reduce the performance loss from 25.3% in

Relax-100 to 16.6%, and 3% better than Chunk-4k for Spec-High.

In addition, restore time aware rank construction helps to reduce tWR — ChunkBin-4k

is 2% better than Chunk-4k while ChunkSortBin-4k is 4.3% better than ChunkSort-4k. In-

terestingly, ChunkBin-4k and ChunkSort-4k achieve comparable performance improvements

over the baseline. While both schemes require post-chip-fabrication testing to extract chunk

level tWR values, the former needs rank clustering, which imposes extra step and cost during

fabrication; the latter needs to embed mapping table and thus introduces extra runtime over-

head. ChunkSortBin-4k achieves the best performance while it incurs both extra fabrication

cost and runtime overhead.

3.5.1.2 14nm Technology Node Figure 3.7(b) shows the normalized execution time

for 14nm Technology node. Comparing with Figure 3.7(a), the performance difference from

the ideal increases as the technology node scales down. For example, Relax-100 exhibits

a 25% loss at 20nm node while a 37% loss at 14nm node. In general, highly memory

intensive applications, e.g., 403.gcc, show large losses. Due to the fact that more memory

cells violating timing constraints, it becomes increasingly difficult to mitigate performance

loss at small technology nodes.

With more slow cells at 14nm, both ECC and Sparing become less effective and their

impacts on performance become smaller. ChunkSort-4k shows a tendency of better im-
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Figure 3.8: The execution time comparison of different schemes at 20nm technology node.
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Figure 3.9: The execution time comparison of different schemes at 14nm technology node.
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provement over traditional solutions and Chunk-4k. For Spec-High, ChunkSort-4k executes

7% faster comparing to Spare-8 and ECC. ChunkSortBin-4k achieves over 20% performance

improvements over Spare-8 and ECC, and 27.5% over Relax-100.

3.5.2 Restore Time Aware Page Allocation

Figure 3.8 and 3.9 compare the results using random and restore-time-aware page allocation

schemes at 20nm and 14nm technology nodes, respectively. From the figure, by making

better use of fast chunks, restore time aware page allocation speeds up the execution of

all chunk based schemes, e.g., for ChunkSortBin-4k, restore time aware allocation achieves

10% and 15% improvement over random allocation for 20nm and 14nm nodes respectively.

Restore time aware allocation is very effective for most benchmark programs — on average,

ChunkSortBin-4k is only 2% worse than the ideal Baseline.

In the figure, 470.lbm achieves small improvement because it evenly accesses a large

number of memory pages and lacks very hot pages. Given that a small number of chunks have

shorter than 15ns tWR values, it is not surprising to find that some benchmark programs,

e.g., 403.gcc and 400.per, have their hot pages fit in these fast chunks and thus outperform

Baseline.

Also in the figure, we observed that the effectiveness of restore time aware rank construc-

tion is diminishing after adopting restore time aware allocation. For example, on average,

ChunkSort-4k and ChunkSortBin-4k have less than 1% difference when using restore time

aware allocation at 20nm node. Nevertheless, those benchmarks with large footprint and

relatively uniform access pattern, e.g., 470.lbm, can still achieve distinct benefits.

3.5.3 Impacts on Memory Access Latency

Figure 3.10 compares the average memory access latencies under different schemes. Among

these schemes, ChunkSortBin-4K achieves the lowest latency, which is 7% lower than ChunkBin-4K,

about 12% lower than Spare-8 and ECC, and 17% lower than Relax-100 for 20nm technology

node with random page allocation. There is a clear latency increase for 14nm technology

node, e.g., the average memory access latency of ChunkSortBin-4K increases from 280ns to
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434ns. This is mainly due to further relaxed timing constraints. In addition, restore time

aware allocation offers great help to lower the latency for chunk-based schemes.
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Figure 3.10: Comparing memory latencies under different schemes (values are averaged over all
SPEC benchmarks).

3.5.4 Sensitivity Studies

The effectiveness of conventional Sparing technique strongly depends the sparing levels being

used [Jacob et al., 2007]; the proposed chunk-based schemes depends on the chunk granu-

larity. We conducted the sensitivity studies on these two key parameters.

3.5.4.1 Varying Variation Correlation As discussed in Section 3.1, restore variation

is the combination of systematic and random components: systematic part is characterized

by the spatial correlation, which is depicted by φ; random variation is reflected by the weight

of sigmas, i.e., w = σrand/σsys. To study the correlation effects, we sweep over different

combinations of σ-w, as reported in Figure 3.11. As φ decreases and w increases, cells’

restoring becomes more randomly distributed; to the opposite, combination 1.0−0 gives the

extreme case that all cells in the chip are correlated and the distribution is solely systematic.

Figure 3.11 shows that our proposed scheme is always efficient because of the exposed

cell variation, which agrees with the existing observation that manufacturing defects always

provide some weak cells [Agrawal et al., 2014]. In addition, the achieved results are even
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better under some extreme cases, e.g., 0.0-10 and 1.0-0. The reason is that both provide more

fast cells and thus larger remap opportunities to expose fast regions to improve performance.
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Figure 3.11: Sensitivity study of scheme ChunkSortBin-4k for both 20nm and 14nm tech nodes,
under different cases (φ-w), in terms of spatial correlation parameter (φ) and ratio of systematic
and random distributions (w).

3.5.4.2 Varying Sparing Levels Figure 3.12(a) compares the performance with dif-

ferent spare rows 5 in each 512-row block. The X axis shows the results for Spec-High

and Spec-All benchmark sets at 20nm and 14nm nodes. While better performance can

be achieved with more spares, the improvement gradually diminishes. For example, the

difference between Spare-8 and Spare-16 is only 0.4% at 14nm node. The reason is that

after rescuing a very small number of super slow rows, we expect to encounter a relatively

large number of slow rows (due to scaling effect), which is beyond the ability that a sparing

approach has.

3.5.4.3 Varying the Number of Chunks Figure 3.12(b) compares the performance

with different numbers of chunks for chunk-specific restore time scheduling. The X axis Anm B

indicates the results for the schemes using B chunks at A-nm technology node. The results

5Note that Spare-0 is different from Relax-100 — while Spare-0 places no spares, and uses the chip-
specific tWR, Relax-100 sets tWR to ensure all chips can work. As a result, Spare-0 usually has a lower
tWR.

40



are normalized to the ideal Baseline. From the figure, all schemes show better performance

when using more chunks. For example, ranging from 1K to 16K chunks, ChunkSortBin-16K

reduces the performance losses from 15% to 2% at 14nm node. ChunkSortBin-16K achieves

better than Baseline performance at 20nm node because exposing tWR at fine-granularity

leads to more faster chunks, which reduces the average memory access latencies.

We observed that the performance gap between Chunk and ChunkBin reduces significantly

when there are more than 4K chunks. This is because restore time aware allocation makes

better use of fast chunks, exposing tWR at 8K granularity is often sufficient to identify the

set of fast chunks to service the hot page set of the tested benchmark programs. The gap

between ChunkSort and ChunkSortBin reduces similarly.

The performance gap enlarges between Chunk and ChunkSort with more chunks. This

is because remapping finer granularity chunks helps to form a number of faster chunks,

which brings down the average memory access latency when they are fully exploited through

restore time aware allocation. From the figure, we also found that ChunkSort-4K is better

than Chunk-8K while ChunkSortBin-4K is better than ChunkSort-8K, showing that chunk

remapping is very effective in reducing average memory access latency.

3.5.5 Testing Overhead

The proposed method requires memory manufacturers to test the restoring time of each

chunk 6, and then to cluster chips into different ranks/DIMMs. Hence, the manufacturing

time will be definitely lengthened. To avoid dramatical increase, chunk-level timing mea-

surement can be performed in a binary search fashion, i.e., starting from middle value (e.g.,

22ns), and then halving to left (e.g., 16-21ns) or right part (e.g., 23-30ns). And further, the

number of chunks is fixed to be smaller than that of rows, and thus the testing time of each

chip is O(1).

For rank construction, thousands of chips should be clustered into different bins, as

discussed in Section 3.2.4, for later rank formation. To make the algorithm more practical,

we propose to run the algorithm for a group of, e.g. 10K, already manufactured chips,

6 As [Wang et al., 2015], manufacturing testing results are unnecessary to be saved inside DRAM.
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Figure 3.12: Sensitivity study using different spares and chunks under hot page allocation policy.
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instead of running until after one-day production. Apparently, the algorithm cost would

not be too high given the moderate number of chips, and the chip production would have

tolerable impact.

3.5.6 Storage, Area and Latency Overheads

To enable variation aware memory scheduling, we added two tables: one is for extracting the

timing constraints of each chunk while the other is for chunk address remapping. Table 3.7

summarizes the storage overhead with different chunks.

Table 3.7: Tested Chunk Configuration

#CKs MC area (KB) DIMM area (KB) total area (KB)

1k 24 224 248

4k 96 896 992

8k 192 1792 1984

16k 384 3584 3968

From Table 3.7, ChunkSort-4k requires 896KB DIMM storage to save the chunk map-

ping. The table is evenly divided among the banks in the DIMMs, i.e., 56KB per bank. We

used CACTI 5.3 [HP, 2008] to model the table as a direct-mapped cache with 8B line size.

For 32nm 7 technology, it has 0.348ns access latency, 0.229mm2 area overhead, 0.0181W

standby leakage power, and consumes 0.012nJ dynamic energy per access. Similarly, for the

96KB cache at the memory controller side, we have 0.414ns access latency, 0.349mm2 area

overehead, 0.015nJ energy per access, and 0.03W standby leakage power. The area, power

and energy overheads are very moderate for the DIMM and the memory controller.

Remap table occupies about 1.83mm2 area in total, which is trivial compared to con-

ventional RCD area of 108mm2 [JEDEC, 2009c] and DIMM area of over 4000mm2 [Micron,

2009b]. The overheads of added register and DIMM PCB traces are moderate [Ahn et al.,

2008], and the overheads can be even smaller by combining adjacent chips into groups [Ahn

7Different from sub-20nm DRAM chips, caches are constructed with 32nm process technology, which is
supported by CACTI tool.
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et al., 2008]. Based on the latency overheads calculated by CACTI, we charged 1 mem-

ory cycle 8 and 2 CPU cycles to access the chunk mapping table and the timing table,

respectively. We observed less than 1% performance overhead on average.

3.6 CONCLUSION

In this chapter, we modeled DRAM process variation, studied the scaling effects on restore

time, and showed that future DRAM chips need relaxed timing constraints to maintain high

yield and to keep the manufacturing cost low. Existing approaches are worst-case determined,

and thus they are ineffective to address the performance losses. We proposed schemes to

expose restore time variations at chunk level and devised architectural enhancements to

enable find-grained variation-aware scheduling. We then proposed restore time aware rank

construction and page aware page allocation schemes to make better use of fast chunks. The

experimental results show that our schemes achieve as high as 25% average performance

improvement over traditional solutions.

8One memory cycle is enough because only one eighth of the table is being looked up for each access,
whereas the total size of the remap table is hundreds of KBs.
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4.0 SHORTEN RESTORE USING REFRESH

4.1 MOTIVATION OF PARTIAL RESTORE

Scaling DRAM to 20nm and below faces significant manufacturing difficulties: cells become

slow and leaky [Son et al., 2014; Wang, 2015] and exhibit a larger range of behavior due to

process variation (i.e., there is a lengthening of the tail portion of the distribution of cell

timing and leakage) [Kang et al., 2014; Zhang et al., 2015a; Mukundan et al., 2013].
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Figure 4.1: Access latency and execution time increase due to relaxed restore timing. Baseline

adopts standard timing constraints in specifications.

As bit cell size is reduced, the supply voltage Vdd also reduces, causing cells to be leakier

and store less charge [Mukundan et al., 2013]. For instance, DDR3 commonly uses 1.5V Vdd,

while DDR4 at 20nm uses 1.2V [Samsung; Mukundan et al., 2013]. Performance oriented

DRAM enhancements, such as high-aspect ratio cell capacitors [Kang et al., 2014; Mukundan

et al., 2013], often worsen the situation. DRAM scaling also increases noise along bitline and
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sensing amplifier [Mukundan et al., 2013; Ryan and Calhoun, 2008; Kurinec and Iniewski,

2013], which leads to longer sensing time. Scaling also degrades DRAM restore operation due

to smaller transistor size, lower drivability and larger resistance [Kang et al., 2014; Zhang

et al., 2015a; Mukundan et al., 2013; Wang, 2015].

The growing number of slow and leaky cells has a large impact on system performance.

Among the three general strategies, as discussed in Section 2.3, to address this challenge, we

choose to relax timing constraints to strive for high chip density and yield.

Partial restore. Due to intrinsic leakage, the voltage level of a DRAM cell reduces mono-

tonically after a full restore. The solid curve in Figure 4.2 illustrates the voltage decay of

an untouched cell (i.e., not accessed) within one refresh window. Stored data is safe as long

as the voltage remains above Vmin (0.73Vdd here, discussed in Section 4.4) before the next

refresh. If a read or write access occurs, the post-access restore operation fully charges the

cell by default, as shown in the figure. However, the full charge is often unnecessary if the

access is close in time to the next refresh, which will fully restore the cell anyway.

Vmin

Vfull

Cell 
Voltage

Timerefresh refreshRd  a Rd  b 

voltage level if the 
cell is not accessed voltage level with 

post-access restore

Figure 4.2: DRAM cell voltage is fully restored by either refresh commands or memory accesses.
(Vfull indicates fully charged; Vmin is the minimal voltage to avoid data loss).

Based on this observation, we propose that post-access restore partially charges a cell’s

voltage to the level that the cell would have if the cell had been untouched in one refresh

window. The restore operation is truncated when this target voltage level is reached.

The cell charging curve starts with a deep slope and flattens when approaching Vfull

[Lee et al., 2015; Demone, 2011], as shown in SPICE modeling and simulation results in
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Section 4. Hence, reducing target voltage can drastically shorten restore time. For example,

SPICE modeling indicates that restoring a cell’s charge to 0.89Vdd rather than 0.975Vdd

(fully charged) reduces tWR from 25 to 15 DRAM cycles, i.e., a 40% reduction.

We next describe two schemes, RT-next and RT-select, to enable partial restore. These

schemes are applied by the memory controller.

4.2 PROPOSED DESIGNS

4.2.1 RT-next: Refresh-aware Truncation

RT-next truncates a long restore operation according to the time distance to its next refresh.

The sooner the next refresh is, the less charge the cells in the row need, and the earlier the

restore operation can be terminated.

Table 4.1: Adjusted restore timing values in RT-next (using the model in Section 4.4)

sub-window Distance to next refresh Target restore tRAS tWR tRCD

64ms-row 128ms-row 256 ms-row voltage (Vdd) (DRAM cycles)

1st [64ms, 48ms) [128ms, 96ms) [256ms, 192ms) 0.975 42 25 15

2nd [48ms, 32ms) [96ms, 64ms) [192ms, 128ms) 0.92 27 18 15

3rd [32ms, 16ms) [64ms, 32ms) [128ms, 64ms) 0.86 21 14 15

4th [16ms, 0ms) [32ms, 0ms) [64ms, 0ms) 0.80 18 11 15

No Truncation 0.975 42 25 15

RT-next works as follows. We partition one refresh window into multiple sub-windows.

While accesses falling in different sub-windows use different sets of timing parameter values,

those falling in the same sub-window use the same set of values. In the following, we use four

sub-windows to discuss our proposed schemes — Table 4.1 lists the adjusted timing values

for the device that we model in this thesis. The smaller the timing values are, the larger

truncation opportunity the truncation has. While distinguishing more sub-windows provides
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finer-grained control and the potential to exploit more truncation benefits, it complicates the

control and provide little further benefits as shown in our experiments.

When servicing a read or write access, RT-next uses the following formula to calculate

the time distance to the next refresh command and determine the sub-window that the

access falls in. It then truncates its restore operation using the adjusted timing parameters,

e.g., the right most columns in Table 4.1.

Distance = ((8192 +Binc −Bina)%8192 + 1)× 64ms

8192
(4.1)

where Binc is the last bin that was refreshed; Bina is the refresh bin to which the row

being accessed belongs. In multi-rate scenario, the calculation is adjusted to include the

further 64ms refresh rounds, which will be discussed later.

The above calculation needs the mapping from row address to bin address. While the bin

counter is maintained in the memory controller and incremented sequentially, the actual row

addresses (responding to each bin-refresh command) are generated internally inside DDRx

devices [JEDEC, 2009b, 2012]. This mapping may be non-linear because of vendor’s full

flexibility to implement the refresh. Recent studies [Bhati et al., 2015b; Kim et al., 2014]

assume this mapping can be made known to the memory controller. We make the same

assumption in this thesis.

Vmin

Vfull

Timerefresh refresh
Rd  a 

approximate restore curve

voltage decay curve

Rd  b Rd  c 

Cell 
Voltage

Figure 4.3: RT-next safely truncates restore operation.

The memory controller also needs to consider the page policy (open or close). A restore
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is truncated by a PRE command from the memory controller. For a closed-page policy, every

access can potentially benefit from restore truncation. For an open-page policy, truncating

restore of a preceding access may not beneficial if its following access is a row buffer hit. We

evaluate both policies in the experiments.

To adapt to cell variations within a DRAM row, RT-next takes a conservative approach,

as illustrated in Figure 4.3. In the example, reads ’a’, ’b’, and ’c’ are serviced in the first,

the second, and the fourth sub-windows, respectively.

• RT-next assumes the worst case scenario, i.e., the currently accessed row has weak cells

that barely meet timing constraints and these weak cells are leaky enough that their

voltage levels are reduced to Vmin before the next refresh. The weak cells are difficult to

restore because fully charging them requires long latency. The adjusted restore timings

in Table 4.1 ensure that slow and leaky cells can accumulate charge more than what they

have under natural decay, i.e., they are not accessed in one refresh window.

• RT-next restores to the target level at the beginning of each sub-window. In particular,

while it is possible to partially restore an accessed row in the first sub-window, e.g., read

’a’ in Figure 4.3, RT-next conservatively fully restores the row, i.e., with no truncation.

• Due to a slightly faster rate of leakage at higher voltage (as shown in Section 4), a DRAM

cell has an exponential decay curve that is close but always below the linear line between

Vfull and Vmin in Figure 4.3. This curve varies from row to row, which implies that

different restore timing values are needed. To simplify the control in memory controller,

RT-next conservatively sets up the voltage restore targets, at the beginning of each sub-

window, as the voltage levels on the linear line, rather than on the curve. This allows

RT-next to use the same timing parameters for all rows.

RT-next in multi-rate refresh. Applying RT-next in a multi-rate refresh environment

works similar to the case that has only one rate. To calculate the distance between a memory

access and the next refresh to its bin, RT-next uses the same formula except adding the extra

refresh rounds for low rate, i.e., 128/256ms, bins. Here we assume the underlying multi-rate

refresh scheme has profiled and tagged each bin with its best refresh rate, e.g., 64ms, 128ms,

or 256ms.
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Figure 4.4: Restoring voltage according to linear line simplifies timing control in multi-rate refresh
— a 64ms-row and a 256ms-row share the same timing values in each correspond sub-window.

As shown in Figure 4.4, it simplifies the timing control in memory controller by restoring

a cell’s post-access voltage according to the linear line between Vfull and Vmin (rather than

the exponential decay curve). Given a 64ms-row and a 256ms-row, accesses falling in the

same corresponding sub-window can use the same timing values in Table 4.1.

4.2.2 RT-select: Proactive Refresh Rate Upgrade

We next present RT-select, a scheme that upgrades refresh rate for more truncation op-

portunities. Refresh and restore are two correlated operations that determine the charge

in a cell. Less frequently refreshed bins can be exploited to further shorten the post-access

restore time.

Figure 4.5 illustrates the benefit of refreshing a 256ms-row (in multi-rate refresh) at

128ms rate. Given that this row is a 256ms-row, its voltage level decreases to Vmin after

256ms. As shown in Figure 4.5(a), the refresh commands sent at +64ms, +128ms, and

+192ms marks are dummy ones. The access “Rd” appears in the 2nd sub-window; it has

a distance within [192ms, 128ms) to the next refresh command. According to RT-next, the

restore can be truncated after reaching 0.92Vdd (using the 256ms-row column in Table 4.1).

Now, suppose the dummy refresh at +128ms is converted to a real refresh, i.e., the row is
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“upgraded” to a 128ms-row. With this earlier refresh, the access ”Rd” is at most 64ms away

from the next refresh. Using the 128ms-row column in the timing adjustment table, RT-next

can truncate the restore after it reaches 0.86Vdd, achieving significant timing reduction for

the restore operation (Figure 4.5(b)).

Refreshing a 256ms-row at 128ms rate exposes more truncation benefits, as shown in

Figure 4.5(c). For access ”Rd”, it is sufficient to restore the voltage to 0.80Vdd rather than

0.86Vdd in above discussion. This is because a 256ms-row, even if being refreshed at 128ms

rate, leaks slower than a real 128ms-row. We can adjust the timing values by following the

solid thick line in 4.5(c), rather than the dashed thick line from a real 128ms-row, as shown

in 4.5(b). In particular, as summarized in Table 4.2, a row access, even if it is 128ms away

from the next refresh to the row, just needs to restore the row to 0.86Vdd, rather than Vfull

(=0.975Vdd) for a real 128ms-row.

RT-select scheme. While upgrading refresh rate reduces restore time, it generates

more real refresh commands, which not only prolongs memory unavailable period but also

consumes more refresh energy. Previous work shows that refresh may consume over 20% of

the total memory energy for a 32Gb DRAM device [Bhati et al., 2015a; Liu et al., 2012a].

Blindly upgrading the refresh rate of all rows is thus not desirable.

RT-select upgrades the refresh rate of selected bins, those were touched, for one re-

fresh window. It works as follows. A 3-bit rate flag is attached to each refresh bin to

support multi-rate refresh. When there is a need to upgrade, e.g., from 256ms to 128ms

rate, RT-select updates the rate flag as shown in Section 3.5, which converts the dummy

refresh at +128ms in Figure 4.5. A real refresh command rolls the rate back to its original

rate, i.e., RT-select only upgrades the touched bin for one refresh window, which incurs

modest refreshing overhead to the system.

4.2.3 Discussion

Restore truncation (RT) is an orthogonal design to the state of the art DRAM enhancements.

We have discussed how to support multi-rate refresh [Bhati et al., 2015b; Liu et al., 2012a].

As another example, NUAT [Shin et al., 2014] reduces tRCD/tRAS timings by exploiting the
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(a) the voltage target of a 256ms-row (b) the voltage target of a 128ms-row

(c) the voltage target decreases when a higher refresh rate (128ms) is employed

Figure 4.5: The voltage target can be reduced if a strong row is refreshed at higher rate.
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Table 4.2: Adjusted restore timing values in RT-select

Upgrade Distance to Next Target restore tRAS tWR tRCD

refresh voltage (Vdd) (DRAM cycles)

256ms→128ms [128ms, 64ms) 0.86 21 14 15

[64ms, 0ms) 0.80 18 11 15

256ms→64ms [64ms, 0ms) 0.80 18 11 15

128ms→64ms [64ms, 32ms) 0.86 21 14 15

[32ms, 0ms) 0.80 18 11 15

potential between Vmin and the voltage of a cell under natural decay. RT restores a cell’s

post-access voltage to no less than this level and thus is fully compatible with NUAT.

RT also works with strong error correction (e.g., ArchShield [Nair et al., 2013b]) and

the recently proposed restore time mitigation scheme [Zhang et al., 2015a]. As shown in

experiments, these schemes improve performance close to the one with no timing degradation.

RT can be integrated with these designs. RT does not take advantage of thermal impact

on restore timing. The timing parameters used in the thesis ensure reliable operation in

the chip’s recommended temperature range. Additional truncation opportunities may be

exploited if thermal behavior is considered.

Recent studies revealed the complication in profiling the retention time of DRAM mod-

ules, which comes from two phenomena: data pattern dependence (DPD) and variable re-

tention time (VRT) [Liu et al., 2013; Mukundan et al., 2013]. DPD can be alleviated by

repeated testing and ECC protection. VRT can be alleviated by enhancing profiling through

ECC and guardbanding techniques [Khan et al., 2014; Qureshi et al., 2015]. Our study works

in conjunction with existing profiling techniques on these issues.
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4.3 ARCHITECTURAL ENHANCEMENTS

To enable RT-next and RT-select, we enhance the memory controller, as shown in Fig-

ure 4.6. RT adds a truncation controller, to adjust the timing for read, write, and refresh

accesses. This control is similar to past schemes that change timings [D. Lee et al., 2013;

Son et al., 2013; Shin et al., 2014]. The memory controller has a register that records the

next bin to be refreshed, referred to as Binc, which rolls over every 64ms. It can also infer

the mapping from row address to refresh bin, the same as that in [Bhati et al., 2015b; Kim

et al., 2014].

Table 4.3: Refresh rate adjustment table

Profiled refresh rate Rate flag Flag after rate upgrade

64ms 000 n/a

128ms 01A 128→64ms: 010

256ms 1BC 256→128ms: 1BC⊕0B0

256→64ms: 100

To support multi-rate refresh, the memory controller keeps a small table that uses 3

bits to record the refresh rate of each refresh bin, similar to that in [Liu et al., 2012a; Bhati

et al., 2015b]. As shown in Table 4.3, a 64ms-/128ms-/256ms- bin is set as ‘000’/‘01A’/‘1BC’,

respectively. Here ‘A’ and ‘BC’ are initialized to ones and decrement every 64ms. While

the refresh bin counter increments every in 7.8µs(=64ms/8K), a real REF command is sent

to refresh the corresponding bin only if its bin flag is ‘000’, ‘010’, or ‘100’. ‘A’ and ‘BC’ are

changed back to ‘1’ and ‘11’ afterwards, respectively.

When upgrading the refresh rate of a refresh bin, we update the rate flag according to

the last column in Table 4.3. For example, when upgrading a 128ms-bin to 64ms rate, we set

the rate flag as ‘010’, which triggers the refresh in the next 64ms duration and roll back to

‘011’ afterwards. This effectively upgrades for one round. Upgrading 256ms-row to 128ms

rate sets the flag as ‘1BC⊕0B0’, which always sets the middle bit to zero to ensure that
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the refresh distance is never beyond 128ms, and thus the sub-window can only be 3rd and

4th referring to Table 4.1. In general, the distance calculation in RT-select is adjusted by

adding value in Equation (4.1) with the further refresh rounds indicated by the two least

significant bits (LSB) of rate flag.

……
DIMMs

address
read/write

timing controller

RT
Controller

refresh controller

Onchip Memory Controller

Multi-rate 
refresh flags

dummy or real 
refresh commands

Figure 4.6: The RT architecture (the shaded boxes are added components).

To enable multi-rate refresh, the rate table is accessed before each refresh to determine

if a real or dummy command should be sent. To enable RT-select, the rate table is also

accessed before each memory access to decide the refresh distance, and then to complete the

upgrade after the access. The extra energy and latency overheads are minimal, as shown in

Section 4.6.4.

4.4 MODELING DETAILS

In this section, we present the details of modeling DRAM that are the underpinning of our

RT schemes, including sensing delay, restore time, and retention time.

4.4.1 Voltage Drop

The stored charge in a DRAM cell capacitor leaks over time through its access transistor. The

leakage current Ileak is mainly sub-threshold leakage [Chen and Peh, 2003; Jeon et al., 2010],
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and it is exponentially relates to Vcell, which indicates that the cell voltage drops following

an exponential curve. We further built a SPICE model and reported the cell voltage drop

within a normal refresh window in Figure 4.7, which confirms the exponential decay.
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Figure 4.7: SPICE modeling of cell voltage drop. SPICE Decay is the exponential curve from
SPICE simulation; Approximate Restore is a linear line from Vfull to Vmin, which is exploited to
set up restore voltage targets in each refresh sub-windows.

4.4.2 Retention Time and Refresh

The amount of time that a DRAM cell can safely retain data is defined as retention time,

Tret, which is determined by the magnitude of the leakage current and the total charge that

is allowed to lose [Hu, 2009; Wong et al., 2008; Uyemura, 2002]. Following previous work

[Agrawal et al., 2014; Wong et al., 2008], we define Tret as the time until the capacitor

charge/voltage leaks to the minimum sustainable value (i.e., (0.975−0.73)Vdd, which is more

conservative than the 60% maximum lose used in [Agrawal et al., 2014; Wong et al., 2008]).

Tret can be denoted as

Tret =
(Vcell − Vf )× Ccell

Ileak
=

(Vcell − 0.73Vdd)× Ccell

Ileak
(4.2)

where, Ileak is the leakage current, and Vf is the minimum readable stored voltage, which is

0.73Vdd.
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(a) Current technology
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(b) Future technology

Figure 4.8: Tret trend as DRAM scales down. [Kim and Lee, 2009; Liu et al., 2012a]

We modeled DRAM retention time distribution based on [Kim and Lee, 2009; Liu et al.,

2012a; Nair et al., 2013b], and reported the the results of current and future technologies

as shown in Figure 4.8. Similar to prior works [Liu et al., 2012a; Bhati et al., 2015b; Wang

et al., 2014a], leaky cells are randomly distributed throughout DRAM. We derive the weak

row distribution by converting the weak cell failure probability into failure row probability.

Our modeling results show that (i) while cells are becoming more leaky, the number

of cells and rows that have less than 64ms retention time is still very small, which can be

corrected by enhanced error rescue schemes, like ArchShield [Nair et al., 2013b]. Hence,

refreshing all DRAM chip rows per 64ms is sufficient to prevent data loss. (ii) The retention

timing for cells in current commodity DRAM chips is conservative, which inspired designs

to tighten timing for performance improvement [Chandrasekar et al., 2014; Lee et al., 2015].

The opportunity is diminishing in future chips as more cells become leaky.

4.4.3 Sensing and Restoring Time

DRAM scaling has negative impact on sensing and restore time. DRAM cell is read out by

sensing the voltage difference on bit line after charge sharing. The difference is given by the

expression[Keeth et al., 2007; Jiang et al., 1994; Kurinec and Iniewski, 2013]:
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∆VBL =
(Vcell − VBL)× Ccell

CBL + Ccell

(4.3)

where ∆VBL is the small voltage increase on bitline, and CBL (VBL) and Ccell (Vcell) are

the capacitance (voltage) of bitline and cell, respectively. However, offset noise [Mukundan

et al., 2013; Liu et al., 2013] weakens ∆VBL [Hong et al., 2002], which might lead to read

failure. To correctly read the cell content, the effective signal is required to be larger than

zero:

∆Veffective = ∆VBL −∆Vnoise > 0 (4.4)

The noise voltage of existing DRAM [Shin et al., 2014; Lee et al., 2015; Vogelsang, 2010]

is conservatively set to 25mV as shown in [Hong et al., 2002]. For further scaling, a smaller

Vdd of 1.0V is used referring to [Sinha et al., 2012; Iwai, 2009]. In this thesis, we make

a conservative assumption that doubles the existing offset value of 25mV to 50mV, which

indicates a 0.73Vdd minimum cell voltage following Equations (4.3) and (4.4).

DRAM restore time is degraded due to deceasing transistor drivability. While tWR has

been kept at 15ns across generations, it is challenging to continue this value for sub-20nm

technologies [Kang et al., 2014]. We followed [Zhang et al., 2015a] to obtain the distribu-

tion of tRAS and tWR, where extremely slow cells/rows are rescued by existing redundancy

techniques.

We built core circuits for a DRAM array, including cell, sense amplifier, write driver

and column mux, etc, and simulated them in SPICE. The circuits have generic topologies

[Jacob et al., 2007] and their transistor parameters were taken (and projected) from a DRAM

modeling tool [Vogelsang, 2010]. The obtained circuit curve is as shown in Figure 4.9. From

the figure, we can see that both tRCD and tRAS are increased in future DRAM.

In this thesis, we focus on the relationship between restore and retention. Consequently,

unrelated timing values, such as tRCD, are unchanged 1.

1Whereas this thesis places a particular focus on restoring time study, the proposed schemes are orthogonal
to tRCD reduction designs.
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Figure 4.9: SPICE modeling on tRCD and tRAS. jedec follows the JEDEC specification and scale

meets the projected values. tRCD ends at 0.75Vdd [Shin et al., 2014; Lee et al., 2015], and tRAS

completes at 0.975Vdd.

4.5 EXPERIMENTAL METHODOLOGY

4.5.1 System Configuration

To evaluate the effectiveness of our proposed designs, we performed the simulation using the

memory system simulator USIMM [Chatterjee et al., 2012], which simulates DRAM system

with detailed timing constraints. USIMM was modified to conduct a detailed study of refresh

and restore operations.

We simulated a quad-core system with settings listed in Table 5.3, similar to those in

[Nair et al., 2013a; Shin et al., 2014]. The DRAM timing constraints follow Micron DDR3

SDRAM data sheet [Micron, 2009a]. By default, DRAM devices are refreshed with 8K REF

within 64ms, and tRFC is 208 DRAM cycles, which translates into a tREFI of 7.8 µs (i.e.,

6240 DRAM cycles). As [Nair et al., 2013a], the baseline adopts closed page policy, which

is preferred in multicore systems [Liu et al., 2012b].
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Table 4.4: System Configuration

Processor four 3.2Ghz cores; 128 ROB size

Fetch width: 4, Retire width: 2, Pipeline depth: 10

Bus frequency: 800 MHz

Write queue capacity: 64

Memory Write queue high watermark: 40

Controller Write queue low watermark: 20

Address mapping: rw:cl:rk:bk:ch:offset

Page management policy: closed-page with FRFCFS

2channels, 1rank/channel, 8banks/rank,

64K rows/bank, 8KB/row, 64B cache line

tCK=1.25ns, width: x8

DRAM tCAS(CL): 13.75ns, tRCD: 13.75ns, tRC: 48.75ns

tCWD: 6.25ns (5 cycles), tBURST: 5.0ns (4 cycles)

tRAS: 35ns, tRP: 13.75ns, tFAW: 24 cycles,

tRRD: 5 cycles, tRFC: 208nCK, tREFI: 7.8µs
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4.5.2 Workloads

Table 4.5 lists the workloads for evaluation. They are from the Memory Scheduling Cham-

pionship [MSC, 2012], and cover a wide variety of benchmarks, including five commercial

applications comm1 to comm5, nine benchmarks from PARSEC suite and two benchmarks

each from the SPEC suite and the Biobench suite. Among them, MT-fluid and MT-canneal

are two multithreaded workloads. As [Nair et al., 2013a], the benchmarks are executed in

rate mode, and the time to finish the last benchmark is computed as the execution time.

Table 4.5: Workloads

COMMERCIAL comm1, comm2, comm3, comm4, comm5

PARSEC Black, face, ferret, fluid, freq, stream,

swapt, MT-canneal, MT-fluid

SPEC leslie, libq

BIOBENCH mummer, tigr

4.6 RESULTS AND ANALYSIS

4.6.1 Schemes to Study

To evaluate the effectiveness of RT schemes, we studied the following schemes:

— Baseline. This scheme adopts the projected relaxed timing (tRCD=15, tRAS=42, and

tWR=25) in future DRAM chips. The timing is applied to all rows and chips, and fits

the worst-case.

— ConvTm. This scheme assumes the conventional timings (tRCD=11, tRAS=28, and tWR=12)

for future DRAM chips. This is an ideal scheme as it is unclear how to efficiently handle

the large number of weak cells that cannot meet these timings.
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— NoRefresh. This scheme assumes no refresh activity in Baseline, which eliminates its

impact on performance as well as energy consumption. It marks the performance upper

bound of multi-rate refresh and other enhancement designs, including RAIDR[Liu et al.,

2012a], RefreshPausing [Nair et al., 2013a] and ArchShield [Nair et al., 2013b].

— RT-next-f64/-var. This scheme is built on top of Baseline, and truncates a long

DRAM restore operation based on its distance to the next refresh event. Whereas

RT-next-f64 assumes that all rows adopt 64ms refresh rate, RT-next-var explores the

retention time variation to truncate refresh operations.

— RT-all-up128/-up64. This scheme is to trade refresh for restore truncation benefits by

converting dummy refresh commands to real ones. It upgrades the refresh bins that have

lower than 128/64ms rate to use 128/64ms rate.

— RT-sel-up128/-up64. This scheme is similar to RT-all-. The difference is that it does

upgrade only for the touched bins.

Next, we compared the schemes on system performance, memory access latency and

energy, and then studied their sensitivities to different configurations. To study different

aspects of RT, we analyze different set of schemes in each part.

4.6.2 Impact on Performance
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Figure 4.10: Performance comparison of different schemes.
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Figure 4.10 compares the execution time of different schemes. The results are normalized

to Baseline. In the figure, Gmean is the geometric mean of the results of all workloads.

On average, RT-next-f64 achieves 10% improvement over Baseline by truncating re-

store time. RT-next-var identifies more truncation opportunities in multi-rate refresh

DRAM modules and achieves better, i.e., 15%, improvement. While RT-all-up128 trun-

cates more restore time through refresh rate upgrade, it introduces extra refresh overhead

and thus is slightly worse than RT-next-var. RT-sel-up128 achieves 2.4% improvement

over RT-next-var by balancing refresh operations and restore benefits. The performance

gap between upgrading all rows and selective upgrading is even larger when we aggressively

upgrade refresh rate to 64ms. RT-sel-up64 achieves the best performance — it is 19.5%

speedup over Baseline, or 4.5% better than RT-next-var. The performance trend across

the schemes demonstrates that our restoring schemes achieves a good balance between refresh

and restore.

Generally, memory access intensive workloads such as com1, libq and mumm benefit

most from the reduced restore timing. Particularly, MT-f obtains the largest performance

improvement because of the parallel access patterns and relatively tight gaps between ac-

cesses, which greatly enlarges the effect of shortened RAS and WR.

4.6.3 Impact on Access Latency

Figure 4.11 compares the memory access latencies using different schemes. The average

access latency of Baseline is 283 DRAM cycles. Restore time reduction effectively reduces

the latency for all workloads. RT-all-up64 is worse than RT-all-up128 due to more real

refresh operations slowing down normal memory accesses. RT-sel-up64 reduces the average

latency to 210 DRAM cycles, indicating a 25.8% reduction over Baseline.

4.6.4 Energy Consumption

Figure 4.12 compares the energy consumption of different schemes. We reported the en-

ergy consumption breakdown — background (bg), activate/precharge (act/pre), read/write

(rd/wr) and refresh (ref). We summarized the results according to benchmark suites, where
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Figure 4.11: Access latency comparison of different schemes.

results are averaged over workloads within each suite. We used the Micron power equations

[Micron, 2007], and the parameters from vendor data sheets [Micron, 2009a] with scaling.

To enable truncation in multi-rate refresh DRAM modules, we need to query the refresh

rate for each access. The refresh rates for 8K bins are organized as 3KB direct mapped cache

with 8B line size. We used CACTI5.3 [HP, 2008] to model the cache with 32nm technology

— it requires 0.22ns access time, occupies 0.02mm2 area, consumes 1.47mW standby leakage

power, and spends 3.33pJ energy per access. The extra energy is trivial (less than 0.5%) and

is reported together with bg.

From the figure, we observed that the device refresh energy for 4Gb chips is small. Due

to increased refresh operations, RT-all-up128/-up64 consume more refresh energy than

RT-sel-up128/-up64, respectively. RT-sel-up64 saves 17% energy compared to Baseline,

and consumes slightly lower energy than NoRefresh due to decreased execution time. And,

as expected, RT-sel- refresh schemes is more energy efficient than RT-all- refresh peers.

4.6.5 Comparison against the State-of-the-art

Figure 4.13 compares RT with three related schemes in the literature.
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Figure 4.12: Comparison of memory system energy.

• Archshield+ implements a scheme that treats all the cells with long restore latency as

failures and adopts Archshield [Nair et al., 2013b] to rescue them.

• MCR is the recently proposed scheme that trade DRAM capacity for better timing pa-

rameters [Choi et al., 2015]. 2x MCR and 4x MCR are the two options that reduce DRAM

capacity to 50% and 25% of the original, respectively.

• ChunkRemap implements the scheme that differentiates chunk level restore difference and

constructs fast logic chunks through chunk remapping [Zhang et al., 2015a].

The figure shows that Archshield+ and ChunkRemap are approaching ConvTm while

RT-sel-up64 is 5.2% better than ConvTm, exploiting more benefits from reduced restore

time.

MCR shares similarity with RT-select, i.e., we share the observation that a line that is

refreshed more frequently can be restored to a storage level lower than Vfull. MCR exploits

this with significant DRAM capacity reduction while RT-select takes a light weight design

that upgrades used bins only for one refresh window, and leaves all the other bins being

refreshed at original rates.

From the figure, 4x MCR outperforms RT-sel-up64 by a modest percentage. This is be-
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Figure 4.13: Comparison against the state-of-the-art.

cause MCR improves the baseline by reducing not only restore time but also sensing time while

RT-sel-up64 focuses only restore time. RT-sel-up64 works better than 2x MCR because it

upgrades the refresh rate of a bin for one refresh window at a time, which significantly

reduces refresh overhead (as shown with the difference from RT-all-up64).

Table 4.6: Comparing EDP between RT and MCR (lower is better).

Cases ConvTm RT-sel-up64 2x MCR 4x MCR-4

Same Chip 1.0× 0.715× 0.753× 0.713×

Same Capacity 1.0× 0.715× 0.918× 1.068×

Given that MCR improves performance at a significant capacity reduction. We next com-

paring the energy-delay-product (EDP) — “Same Chip” is optimistic assumption as 4x MCR

has only 25% available capacity, which is likely to have more page faults in practice. “Same

capacity” enlarges the raw chip in MCR by two/four times, which introduces more background

power. RT-sel-up64 shows good potential as its EDP closely matches that of MCR under

“Same chip” setting, and is much better under “Same capacity” setting.
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4.6.6 Comparison against the Ideal

Table 4.7: Bound schemes to study.

Schemes tRAS tWR tRCD Refresh rate

Baseline 42 25 15 64ms

NoRefresh 42 25 15 -

ConvTm 28 12 11 64ms

BestInterval 18 11 15 64ms

BestIntNoRef 18 11 15 -

To further evaluate the effectiveness of RT, Figure 4.14 compares the proposed RT schemes

against several ideal schemes. These schemes are ideal because they are infeasible in practice

— Table 4.7 summarizes their timing values. NoRefresh eliminates all refresh operations

in Baseline to set the performance upper bound of refresh enhancement schemes; ConvTm

adopts conventional timings. BestInterval uses the the best timings (tRAS=21, tWR=11

and tRCD=15) reported in Table 4.1; BestIntNoRef further eliminates refresh operations in

BestInterval.
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Figure 4.14: Comparison of RT-sel-up64 to candidate ideal schemes.

From the figure, NoRefresh and ConvTm are 6.3% and 13.6% better than Baseline,

respectively, showing the large performance impacts from refresh activities and degraded
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timing. RT-sel-up64 is 12.4% better than NoRefresh, indicating that improving restore

timing is more valuable than reducing refresh operations. RT-sel-up64 beats both ConvTm

and BestInterval. This is promising because, even though matching the conventional

timing becomes challenging in future DRAM, more benefits can be gained by exposing and

exploiting restore time differences. For most benchmarks, the gap to BestIntNoRef is less

than 3%.

4.7 SENSITIVITY STUDIES

Next, we evaluated the performance sensitivity by varying configurations including chip

density, refresh granularity, refresh sub-window division and page management policy.

4.7.1 Chip Density

Given that one refresh command is sent to refresh all rows in one refresh bin, the larger the

chip capacity, the more rows the command needs to refresh, and further the larger tRFC is.

[Micron, 2009a; Mukundan et al., 2013; Nair et al., 2013a] show that tRFC may grow from

260ns for 4Gb chips to 640ns for 32Gb chips.
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Figure 4.15: Impact of chip size on performance.

Figure 4.15 compares the results under different chip densities. The results show that
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refresh penalties go up as chip size increases. RT-sel-up64, while outperforming NoRefresh

and ConvTm at 4Gb chip, shows decreasing benefits in larger chip sizes, and is beaten by

NoRefresh and is only slightly better than the ideal ConvTm at 32Gb chip size. In addition,

we observed that RT-all-up128 and RT-sel-up128 are the same as RT-next-var at 16Gb

and 32Gb. The reason is that as bin size increases, from 64 to 256 and then to 512 rows, it is

hard to find a bin that can be refreshed at 256ms or lower rate. This leaves no difference for

RT-all-up128 and RT-sel-up128. While the improvement of RT-sel-up64 diminishes as

chip size increases, it still achieves the best result among schemes except the ideal NoRefresh.

And hence, RT-sel-up64 still serves as an effective scheme to mitigate restoring issues in

the long future.

4.7.2 Refresh Granularity

DDR4 standard starts to support fine-grained refresh (FGR) modes [JEDEC, 2012; Mukun-

dan et al., 2013; Bhati et al., 2015b], that is, by lowering refresh interval (tREFI) by a factor

of 2× or 4× to reduce tRFC, it can send 2x (i.e., 16K) or 4x (i.e., 32K) refresh commands,

instead of the 8K commands in the normal setting.

Figure 4.16 compares the performance of schemes using different FGR modes (X-axis).

1x/2x/4x schemes maintain 8K/16K/32K refresh bins, respectively. In Row scheme, the

number of bins equals the number of rows in one bank.

Whereas RT-all- schemes observe degraded performance, all other schemes achieve bet-

ter results. This is because less number of rows per REF in FGR modes help to expose more

non-leaky bins, which can be further utilized to shorten the restoring timings; to the con-

trary, blindly refresh rate upgrading in RT-all- introduces more refresh operations, and thus

lead to performance degradation. And, as the figure shows, the performance gap between

RT-sel- and RT-all- schemes becomes larger at finer mode. Particularly, RT-sel-up64

achieves 32.9% performance improvement over Baseline at row granularity.

4.7.3 Sub-window Division

RT adopts sub-window based timing adjustment. It becomes more complicated for the mem-
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Figure 4.16: Sensitivity of refresh granularity on 32Gb chip (using multi-rate refresh).
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Figure 4.17: Using different sub-windows. Timings values are denoted as tRAS/tWR in each grid.

70



ory controller to schedule memory requests if the number of sub-window is large. We next

study the impact of the number of sub-windows on performance.

Due to the exponential (close to linear) voltage drop curve and the long-tail charge

restore curve, the timing difference of the sub-window in the second half of refresh window

becomes small. And Figure 4.14 has shown that our 4-sub-windows division is very close to

the best case BestInterval. As such, it is often not necessary to differentiate more windows.

Figure 4.17 shows the settings with two or four equal/non-equal sub-windows. The adjusted

tRAS/tWR timing parameters are also listed in each sub-window.
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Figure 4.18: Comparing different numbers of sub-windows.

Figure 4.18 compares the performance improvements with different sub-window settings.

There is a large gap between 2- and 4-sub-window designs for most schemes. And, in general,

adopting four sub-window, i.e., 4-equal, achieves better performance. RT-sel-up64 is less

sensitive to a small number of sub-window because RT-select charge the voltage of an

upgraded row to a level much lower than Vfull, which exploits most performance benefits.

4.7.4 Page Management Policy

By default, RT schemes adopt closed-page policy. We next evaluated its integration with

open page-policy. We followed the recent adjustment on open-page policy [Kaseridis et al.,

2011; Bhati et al., 2015b].
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Figure 4.19: Performance comparison of 4Gb chip under open- and closed-page policies.

Figure 4.19 compares the results using different policies at 4Gb chip size. In open-page

policy, the access hits in row buffer are not constrained by tRAS/tWR. Comparing to closed-

page, not every access in open-page can benefit from restore truncation. Therefore, lower

performance (13.3% open-page v.s. 19.5% closed-page for RT-sel-up64) improvement is

expected, as shown in the figure. Similar results were observed on 8/16/32Gb chips.

4.8 CONCLUSION

In this thesis, we studied the restoring issues in further scaling DRAM, identified the fact

that both post-access restore and periodical refresh will charge the cells. Further, with the

insight that restore is more critical than refresh on performance impact, we proposed to

early truncate restore operations with respect the distance in time to the coming refresh.

The nearer to the refresh, the lower charge goals and thus shorter restore timing constraints.

Two restore truncation (RT) schemes were proposed to divide the refresh windows (each

with a unique set of timings), and also to combine multi-rate refresh concept in smart way

to balance the refresh overheads and restore benefits. Our experimental results showed that,

on average, RT improves performance by 19.5% and reduces energy consumption by 17%.
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5.0 MITIGATE RESTORE IN APPROXIMATE COMPUTING SCENARIO

Whereas the performance loss can be effectively mitigated using the proposed techniques dis-

cussed in the previous chapters, prolonged restore time (PRT) remains a major performance

bottlenecks in DRAM systems. Recently, approximation for DRAM has been proposed to

improve energy consumption by trading off computation accuracy [Liu et al., 2011; Lucas

et al., 2014]. By exploiting the intrinsic error resilience of many modern applications, a

DRAM sub-system can save approximate data, while still achieving satisfactory computa-

tional results. Existing works on DRAM, e.g., Flikker [Liu et al., 2011], focus on refresh

energy reduction, which unfortunately has limited impact on improving memory access la-

tency [Arnab et al., 2015; Lucas et al., 2014]. Consequently, these schemes cannot mitigate

the large performance degradation due to PRT. In addition, the benefits of these schemes can

only be realized through error-resilient applications, which greatly limits their applicability

for general-purpose computation.

This chapter proposes a fine-grained precision-aware restore scheduling technique, DrMP,

that aggressively reduces restore time to achieve high performance. DrMP is a suite of

progressively capable techniques to support approximate, precise and hybrid approximate-

precise computing.

5.1 MOTIVATION OF RESTORE-BASED APPROXIMATE COMPUTING

To motivate DrMP, we first examine the severity of PRT. We followed the models in [Zhang

et al., 2015a, 2016a] as described above. Although PRT appears as a major scaling challenge,

the number of weak cells (i.e., cells that take a longer time to restore) actually remains small
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in our observations. However, the portion of slow cells is significantly beyond the desired

DRAM reliability in modern computer systems. For example, recent in-filed study [Sridharan

et al., 2013] shows that the reliability is as low as 25 FIT (failure in time per billion device

hours) per Mbit, making it impractical to integrate ECC with practical space overhead to

rescue the weak cells.

Rather than trying to rescue the weak cells, an alternative solution to boost system

performance is to aggressively reduce tWR for approximate computing. This approach

exploits the error-resilience of many modern applications. Intuitively, if the errors induced

by restoring bit cells faster than their required restore timing cause a tolerable number of

application errors (similar to the errors induced by reducing refresh frequency [Liu et al.,

2011]), then we may adopt existing approximate designs to mitigate PRT.
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Figure 5.1: The QoS degradation with larger tWR values.

We did an experiment to gradually reduce tWR to evaluate the QoS degradation 1

for a suite of benchmark programs that were used for approximate computing from the

literature. The results are summarized in Figure 5.1. The experimental setting is described in

Section 5.3. From the figure, it is clear that application-level errors increase with decreasing

tWR. This effect happens because, given the same DRAM row, restoring data with smaller

1QoS degradation is used to evaluate the output quality of approximate computing, which is calculated
by comparing the approximated outputs to precise ones. The metrics are application dependent [Sampson
et al., 2011; Miguel et al., 2014]
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tWR leads to more cells failing to reach the target voltage level for reliable operation. The

figure also illustrates that different programs exhibit vastly different error resilience. Some

benchmarks, such as smm, only begin to suffer from high application-level errors when tWR

is reduced to 15ns or smaller. Other applications, such as lu, begin to suffer from significant

errors at a larger tWR value of 20ns. The high error rate (over 60%) observed for lu at

20ns is generally considered unacceptable for approximate computing [Sampson et al., 2011;

Miguel et al., 2014].

The figure shows that programs are sensitive to the selected tWR value, and consequently,

it is impractical to uniformly reduce tWR. Instead, we propose to reduce tWR at finer row

granularity. DrMP exploits process variation (PV) within and across DRAM rows such that

it can perform precision-aware restore scheduling.

5.2 PROPOSED DESIGNS

5.2.1 DrMP Design Details
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Figure 5.2: Baseline DIMM configuration. One row consists of eight row segments, one segment
per chip. The number in the row segment indicates the segment’s tWR value (in memory cycles).
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5.2.1.1 Baseline Memory Organization Figure 5.2 depicts the baseline memory or-

ganization in the thesis. A DIMM has two ranks while each rank has eight banks that are

spread across eight DRAM chips (the baseline has no ECC chip). We assume linear row

layout across all banks and ranks as follows. One row has 8KB data.

• Consecutive physical rows (i.e., the rows in physical address space) are mapped to dif-

ferent banks. For example, rows 0,1,...,15 are mapped to memory banks 0,...,7 in

rank 0 and then to banks 0,...,7 in rank 1.

• The physical address space is divided in half. Rows from the two halves are interleaved.

That is, after mapping rows 0,...,15, rows 0+K,...,15+K are mapped to banks 0,...,7

in rank 0 and banks 0,...,7 in rank 1, respectively. We then continue to map rows

16,...,31 and so on. There are 2K memory rows in the memory space.

In this configuration, each DRAM row has 8 segments spread across 8 chips. Each segment

is termed a row segment.

The memory controller sends addresses and commands to the Register Clock Driver

(RCD) on a DIMM, which enables the synchronous operation of all eight DRAM chips.

The data are sent from each chip to the data bus independently. The baseline follows

JEDEC’s DDR3 specification [JEDEC, 2009b]; we give timing details in the experiments

(see Section 5.3).

5.2.1.2 DRAM Restore Time Profiling DrMP requires timing information about the

memory. Although both reads and writes are affected by PRT, for simplicity, we describe

only the design issues for tWR. In the experiments, the affect on reads (tRAS) and writes

(tWR) are both fully considered and evaluated.

To determine the required information, post-fabrication profiling is done. In essence, this

profiling tests memory under different settings of tWR and tRAS to find the best restore

timing for DRAM row segments. The memory controller and the OS are enhanced to do

the profiling similarly to prior work [Lee et al., 2015; van de Goor and Tlili, 1998]. The

enhancements are: (1) the OS and the memory controller can alter timing values (tWR and

tRAS) to check whether specific timing values work correctly; (2) a March test [van de Goor
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and Tlili, 1998] checks the data integrity of each row by writing, reading and verifying test

bit patterns in different access orders; and, (3) the test bit patterns are checked multiple

times to ensure reliability with given timing values.

Since DRAM restore has worse timing at lower temperature [Kang et al., 2014; Son

et al., 2014], profiling after a cold boot is safe. The timing profile is then used in the online

operation of DrMP. For higher assurance, a temperature sensor could monitor memory tem-

perature and disable DrMP if the temperature falls below the one during profiling, likewise

to LPDDR [Micron, 2001]. Profiling may need to address VRT through enhanced ECC and

large guardband, as described in prior work [Khan et al., 2014; Qureshi et al., 2015].

Since DRAM cells use a similar charging process for both reads and writes, tWR and

tRAS are correlated, i.e., a row segment having faster tWR also has a faster tRAS. Thus,

we only need to test a subset of typical combinations. For example, tRAS and tWR have

ranges [19,42] and [12,25], respectively, in cycles. When setting tRAS=19, we try tWR=12

or 13. In total, we conduct binary search for 30 tRAS and tWR combinations, resulting in

around 5 tries to find the best timing. Past work has demonstrated that a March test can

be performed at high speed, e.g., 0.4ms per row [van de Goor and Tlili, 1998; Rahman et al.,

2014]. Therefore, the complete profiling can be done within 20 minutes.

The profile keeps two timing values (tWR and tRAS, 6 bits each) for each row segment,

i.e., 12B per row, or 6MB of profile data for a 4GB DIMM. The OS saves the profile (including

processed data, as we show next) in system storage, i.e., hard drive or SSD, and loads it at

boot-up.

5.2.2 DrMP-A: Approximate DRAM Restore

This section presents DrMP-A for high-performance approximate computing. In analyzing

the ineffectiveness of the simple approximation scheme in Figure 5.1, we observe that restore

errors may occur at random places in a row. Although these rows store non-critical data,

depending on their data types, the importance of erroneous data bits varies. As an example,

the sign bit and exponent bits of a floating point representation tend to be more important

than the last several bits of the mantissa [Lucas et al., 2014; Guo et al., 2016]. For an integer
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that records RGB colors, the first two or four bits of each byte are often more important.

Figure 5.3(a) shows the importance of bits of a memory row located at different places

for different data types. If tWR is reduced below a reliable value, then errors from the “too

fast restore” will occur at fixed positions in an application data value. If these positions

are important bits, then catastrophic errors can be induced. Based on this observation, we

propose DrMP-A to enable per row approximate computing that achieves extremely low

error rate. Figure 5.3(b) illustrates how DrMP-A works.
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Figure 5.3: The details of DrMP-A.

Assume an approximate data declaration “float vf[...]”, where the first 16 bits of each

array element are tagged as important. The OS support and the process to tag important

bits is discussed in later sections. DrMP-A attaches three flags (Ui, Mi, tWRi) to each row

i in the memory space (0≤i<2K). The flags are used by the memory controller:

(i) Ui is a 3-bit usage flag to indicate how the important bits of a row are categorized.

DrMP-A uses the flags in Table 5.1; more flags can be added if needed.

(ii) Mi is an 8-bit bit vector to record the four fastest row segments. For example, we

have Mi=“0111100” in Figure 5.3(b), which indicates that the row segments from chips

1/2/3/4 are faster.

(iii) tWRi is a 6-bit tWR value that records the tWR of the second or the fourth (depending

on Ui) fastest row segment of a row. In the example, tWRi=19 indicates that reducing
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the row tWR to 19 memory cycles ensures there is no restore error in row segments from

chips 1/2/3/4 while there might be errors in other row segments.

Table 5.1: Definition of Usage Flag

“001” the first 2B of each 4B data are important

“010” the first 4b of each 1B data are important

“101” the first 2B of each 8B data are important

“110” the first 2b of each 1B data are important

“000” all bits are important; this is the baseline

“111” all bits are important; used in DrMP-P and DrMP-U

The memory controller schedules requests using the flags as depicted in Figure 5.3(b).

First, the controller uses Ui to shuffle data bits into groups of important bits. Second, the

controller uses Mi to map the important bits to four reliable faster row segments, i.e., the

segments from chips 1/2/3/4 in the example. At this point, the data are ready to be sent

to the memory module. Lastly, the memory controller uses tWRi to determine when to

schedule the next memory command to maximize memory bandwidth usage.

DrMP-A is designed to achieve a good trade-off between memory performance and com-

putation accuracy. Using the fourth fastest row segment’s tWR to determine the tWR of the

whole row ensures quick access to the row, improving performance over a fully reliable base-

line using the worst-case row segment tWR. The majority of cells can be reliably accessed

with the fast tWR. In addition, by mapping important bits to row segments with tWR val-

ues less than or equal to the row tWR, DrMP-A reduces the impact of restore errors, which

minimizes the error rate at the application level.

5.2.3 DrMP-P: Pairing Rows for Fast Precise Computing

While DrMP-A speeds up approximate computing by shortening the restore time, its effec-

tiveness is often limited by the amount of non-critical data. We next reuse this hardware

enhancement to speedup precise general-purpose computing.
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By studying the tWR values at row segment level, we have found that the slowest row

segments of different rows often fall within different chips. Figure 5.4 shows typical tWR

values for two consecutive device rows. In the experiment, we generate a large number

of chips and construct DIMMs from random chip selection. In the figure, the slowest row

segments of row i and i+K are from chip 0 and chip 6 (with tWRs of 40 and 36), respectively.

Based on this observation, we pair two consecutive device rows to construct a fast row and

a slow row so that the average restore time can be effectively reduced, which helps to speed

up precise computing.

DrMP-P first creates K row pairs so that pair i contains row i and row i+K (there are

2K rows in total and 0≤i<K). These two rows are K rows apart in physical address space

and, as shown in Figure 5.2, next to each other on the device. Each chip j contributes two

row segments to each row pair, referred to as LRSj and HRSj, respectively, as in Figure 5.4.

Here, we have:

LRSj Low device address row segment from chip j

HRSj High device address row segment from chip j

Without pairing, row i always contains LRS segments while row i+K always contains HRS

segments. With pairing, we re-distribute the 16 row segments in a pair such that a new row

(composed of 8 row segments from 8 chips) is a mix of LRS and HRS segments. Forming a

pair is simple: for two device row segments of a pair in a chip, DrMP-P assigns the faster

one to row i and the slower one to row i+K. As a result, DrMP-P constructs one fast row,

i, and one slow row, i+K, respectively.

For the example shown in Figure 5.4, row i is composed of HRS0, HRS1, LRS2, LRS3,

LRS4, HRS5, LRS6, and HRS7. Row i+K consists of the complementary row segments for

the pair. The tWR of each row is determined by the worst tWR of the composed segments,

i.e., 24 and 40, respectively for these two constructed rows.

Bit flags. DrMP-P reuses the bit flags from DrMP-A. For row pair i, we attach

(Ui,Mi,tWRi) and (Ui+K,Mi+K, tWRi+K) to the two rows, respectively. First, Ui and Ui+K

are always set to “111” for precise computing. Second, Mi records the faster row segment

from each chip — ‘0’/‘1’ indicate LRS/HRS. For the above example, Mi=“11000101” so that

Mi+K = ∼Mi = “00111010”. Lastly, DrMP-P sets the tWR of each physical row using the
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largest tWR value from its component row segments.

Memory scheduling. Like DrMP-A, the flags are used by DrMP-P to schedule memory

operations. Figure 5.5 illustrates the scheduling for DrMP-P. In this discussion, we use a

closed page policy. The memory controller always fetch a row’s DrMP bit flags before

accessing the row (simlar to DrMP-A). If Ui is “111”, then ACT/RD/PRE commands are

sent to operate eight DRAM chips. The commands may operate on either LRS or HRS

of a row pair. DrMP-P activates and accesses the LRS or HRS segments in a chip in two

consecutive bus cycles as follows.

When sending ACT, DrMP-P supplies the row address i, which is used to index into the

mapping vector table on the DIMM. In the example, this retrieves Mi = “11000101”. With

this mapping vector, chips 2/3/4/6 are activated first. The complementary others (chips

0/1/5/7) are activated in the next cycle. The activations are shown in bold fonts in Figure

5.5. Given that the two chip groups receive ACT and RD commands in two consecutive

cycles, their output data have one memory cycle difference in the time of arrival at the

processor (assuming two rows have the same tRAS).

While DrMP-P occupies two consecutive memory cycles for activation, it does not trigger

tRRD constraint (i.e., the row to row delay, which restricts the number of ACT commands

with a time window) as the total number of row segments activated is eight, the same as the

baseline.

Extra timing. In DrMP-P, the RCD of each DIMM integrates a 256-entry mapping

vector table that holds recently used mapping vectors, Mi. In addition, a one-bit enable wire

is added from the RCD to each chip, as shown in Figure 5.4.

Compared to traditional memory scheduling, DrMP-P introduces two extra memory

cycles on an access (modeled using CACTI [HP, 2008] as detailed in Section 3.8): (1) one

cycle is used to search the mapping vector table to determine which chips to activate and

access; (2) a second cycle is required due to the delayed access to the second chip group.

DrMP-P for precise computing. DrMP-P speeds up precise computing by adopting

the new tWR timings when accessing memory rows. As a comparison, in the row pairing-

oblivious baseline, row i has all LRS segments and row i+K has all HRS segments — their

tWR values are 40 and 36, respectively. The average tWR is 38 assuming both rows are
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accessed with same frequency. For the same access pattern, DrMP-P has an average tWR

of 32 = (24+40)/2+2 including the 2-cycle extra access overhead.

5.2.4 DrMP-U = DrMP-A + DrMP-P

In DrMP-A and DrMP-P, a row pair is used either for approximate computing or precise

computing, but not a mix of both. In this section, we propose DrMP-U, which combines

DrMP-A and DrMP-P to fully exploit fine-grained differences in restore time of row segments.

DrMP-U relies on the fact that the slow logical row of a pair for DrMP-P still has several

fast row segments. For example, row i+K in Figure 5.4 has two row segments with tWR

values smaller than or equal to 19. If this row is used to save approximate data with usage

flag “110”, the important bits can be saved in fast segments, such that the row tWR can be

reduced to 19, achieving a large performance improvement for approximate computing. In

addition, the simple segment grouping strategy in DrMP-P is sub-optimal. Given that the

tWR of row i is 24, it is unnecessary to take the faster row segment (LRS, tWR=16) from

chip 2. Using a slower row segment (HRS, tWR=20) has no impact on the fast physical

row. Yet, this choice improves the chance of a smaller tWR when using the slow row for

approximate computing — the important bits can be saved in LRS of chip 2.

DrMP-U exploits this observation to construct two fast rows, instead of only one in

DrMP-P. A row pair is created from two physical rows that are K rows apart, similar to

DrMP-P. For the pair containing rows i and i+K (0≤i<K), DrMP-U uses row i to save

precise data and row i+K to save approximate data. The pair bit flags (PUi, PMi, PtWRi)

combine the flags from the two rows, e.g., PUi consists of two sub-flags Ui and Ui+K .

DrMP-U integrates DrMP-A and DrMP-P in one framework with the flags. When

PUi=“000/000”, the baseline is adopted for the row pair and DrMP is disabled (no ap-

proximation). When PUi=“111/111”, the row pair is in the DrMP-P mode (precise-only

computing). When PUi=“aaa/bbb” and “aaa” is neither 111 or 000, the mode is DrMP-A

and “bbb” cannot be 111 or 000 (approximate-only computing). If PUi is not one of these

cases, then PUi must be “111/bbb” where bbb can be 001, 010, 101, or 110, depending on

what approximate data to save in row i+K. This mode is DrMP-U (hybrid approximate- and
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precise-computing).

PMi has two 8-bit bit vectors. The first vector assists the access of row i for precise

computing, as discussed for DrMP-P. DrMP-U uses (1) the negation of the first bit vector;

and (2) the second bit vector to access row i+K . The former determines the row segments to

hold approximate data while the latter determines the subset of segments to hold important

bits, as shown in Figure 5.6. PtWRi saves two tWR values for accessing row i and i+K,

respectively. Both are fast accesses.

40 24
20

14 1619 34 20

C0 C1 C2

20 3622 1818 16 20

111001

DrMP flag table

C3 C4 C5 C6 C7

Bank

i i i

i 1,6,7 0,2,3,4,5

i+K i i+K i+K

i 0,2,3,4,5 1,6,7

i+K 2,3,4 1

1011110001111000 24 18

Ui,       Mi,                  tWRi

Ui+K,              Mi+K tWRi+K
16

Figure 5.6: DrMP-U combines DrMP flags and uses two mapping vectors to enable approximate
computing.

For the example in Figure 5.6, when accessing row i+K for approximate computing,

DrMP-U uses “∼Mi”, i.e., 01000011, to find that the approximate data are saved in LRS0,

HRS1, LRS2, LRS3, LRS4, LRS5, HRS6, and HRS7. Given that Mi+K is “01111000”, the

middle four segments save important bits in chips 1/2/3/4, i.e., HRS1, LRS2, LRS3, and

LRS4.

Row segment grouping. To maximize the scheduling opportunity for approximate

computing, DrMP-U needs to find a better row segment grouping solution.

Given a device pair, there are 16 row segments Sj (0≤j≤15). Let us assume S0 ... S7 are

the LRS from chip 0 to chip 7; S8 ... S15 are the HRS from chip 0 to chip 7; and their tWR

values are tWRj accordingly.

The physical row segment grouping problem is to find a valid partition of row segments

Sk0... Sk15 that satisfies:
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Figure 5.7: The OS assisted memory management for DrMP.

(1) Sk0... Sk15 is a permutation of row segments Sj.

(2) Sk0... Sk15 are divided into two groups: the first eight form the first new physical row

while the next eight form the second row. The row segments in each group have their tWR

values sorted, that is, we have tWRk0 ≤tWRk1 ≤...≤tWRk7,

and tWRk8 ≤tWRk9 ≤...≤tWRk15.

(3) The first physical row is a fast row, i.e., tWRk7 <= tWRk15.

The optimization goal depends how the row pair is used. For DrMP-P, the goal is to

minimize (tWRk7 + tWRk15). For DrMP-U, as an example, we want support a mix of

approximate and precise computing with the assumption that the first row is for precise

computing while the second row is for approximate computing; and half of the data bits are

important. The goal is then set to minimize (tWRk7 + tWRk11).

After profiling to determine the best row segment tWR values, the OS performs an

exhaustive search to find the best row segment grouping for different usage patterns. For a

4GB memory, it takes less than 20 seconds for one pattern, and less than 2 minutes for all

five usage patterns. If chip manufacturers conduct post-fabrication test and regrouping, we

will need a better heuristic. We leave this to future work.
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5.2.5 Precision-aware Memory Management

DrMP-P and DrMP-U couple the usage of paired rows, which brings new constraints on

memory allocation. For example, assume rows i and i+K (0≤i<K) are paired by DrMP-U

such that rows i and i+K save precise and approximate data, respectively. Row i, after

being reclaimed by the memory allocator, may not be allocated to store approximate data.

This is because storing approximate data in row i needs a new Mi while row i+K needs the

negation of the old Mi to determine data locations, which prevents loading another Mi.

We use Figure 5.7 to illustrate precision-aware memory allocation. For simplicity, we

apply DrMP only to allocate normal user data. We do not allocate memory space for device

drivers or DMA operations. Modern OSes, like Linux, adopt buddy allocation to allocate

blocks of consecutive memory pages to user applications. Linux’s buddy allocator maintains

an array of 11 freelists that link free blocks of 2l pages (0≤i≤10). A request asking for more

than 210 pages is served by multiple blocks from the freelist. Given a 2l-paged block whose

first page address is x, its paired block is defined as the 2l-paged block whose first page

address is either x+P/2 (if 0≤x<P/2) or x-P/2 (if P/2≤x<P), here P is the total number of

pages in the memory.

In DrMP, a memory request specifies not only the size but also the required precision:

void *malloc(int size, char UsageFlag);

Here, UsageF lag is a 3-bit flag as shown in Table 5.1. To service this request, DrMP adds a

6-bit usage flag “aaa/bbb” to each block in the freelist. The flag describes the usage of the

block and its paired block. That is, a block whose starting address is in the first half of the

memory uses “aaa” while its paired block uses “bbb”. The bold font in the figure indicates

the flag that is actually used by a free block.

When linking a 210-paged block to the freelist, the OS links its paired block at the same

time. The usage flags are initialized for both blocks. DrMP saves the usage flag in the first

byte of each free block and this flag is carried to smaller blocks when a large block is split,

as shown in Figure 5.7. A valid usage flag is one of the following:

1. “000/000” indicates that the two blocks are used as they are in the baseline. DrMP is
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disabled.

2. “111/111” indicates that the two blocks are paired and are used for precise computing

only.

3. “111/aaa” indicates that the two blocks are paired and used for mixed precision com-

puting. The block with the starting address in the low half of the memory is for precise

computing and the paired block (with higher address) is for approximate computing. The

flag aaa can be one of “001”,“010”,“101”, and “110”, depending on what approximate

data to save in the block.

4. “aaa/aaa” (when aaa is neither “000” nor “111”) indicates the two blocks are for ap-

proximate computing only. They are not paired. aaa is set similarly as above.

With DrMP, a memory allocation request is serviced by the memory allocator to provide

a block of a matching size and usage flag. In Figure 5.7, the request for one page of “001”-

type approximate data is satisfied by the third block in the #0-freelist. The buddy allocator

without DrMP extension would return the first block instead.

The OS maintains a DrMP flag table to assist precision-aware restore scheduling. Given

each row pair, the table keeps one entry that saves the usage flag, mapping bit vector, and

tWR values for both rows, as shown in Figure 5.7.

The OS fills in the DrMP flag table when it updates a corresponding page table entry.

The usage flags are extracted from the allocated memory block. Based on the usage flag, the

OS loads the mapping bit vectors and tWR values from the grouping results (as described

in Section 5.2).

Fragmentation optimization. A concern for memory allocation is that DrMP may in-

crease system fragmentation. In Figure 5.7, a request for a 24-paged block for precise com-

puting may not be satisfied even though there is a block with a matching size. The request

triggers a bigger block to be split, creating additional small blocks in the system. We next

discuss optimization to minimize fragmentation.

DrMP combines compatible usage flags such that the OS may return a block with a

compatible (i.e., not exactly the same) usage flag. For the example in Figure 5.7(a), to

satisfy the request for a 24-paged block with “010” flag, it is acceptable to return a block with
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Table 5.2: Evaluated Applications

Application Type Input Quality metric Approx accesses (%)

kmeans Machine Learning Color image Image difference 45.4%

blackscholes Financial Analysis Portfolio options Avg. price error 6.3%

raytracer 3D Image Renderer Light, texture, etc Image diff 4.0%

sor Scientific Computing Grid pattern Mean entry diff 79.5%

lu Scientific Computing Dense matrix Mean entry diff 98.0%

smm Scientific Computing Dense matrix Mean norm. diff 73.5%

“111/001” flag and its starting address is in the second half of the memory. We dynamically

alter the usage flag of the block to “111/010”. It is safe to do so because either “001”

or “010” set the tWR to the fourth fastest row segments, and thus, they share the same

mapping bit vectors and tWR values for the row pair.

In addition, DrMP can satisfy the request with “010” flag with a block of a “001” flag.

Here, the OS returns a more reliable but slightly slower block.

5.2.6 Architecture Enhancements

Figure 5.8 shows an overview of the architectural enhancements. The light color shaded boxes

indicate the enhancements to support DrMP-A and the dark color shaded boxes indicate the

additional enhancements to support DrMP-P and DrMP-U.

Space overhead. In the HDD, we save the row segment profiling information that marks

the best tRAS and tWR for each row segment. The profile needs 6MB of storage for a 4GB

main memory. The OS then applies the row segment grouping algorithm to get the mapping

bit vectors and tWR/tRAS values for each different pairing pattern. Given that we have five

patterns and each row is of 8KB, we need (8b+6b)×4GB/8KB×5 = 4.4MB HDD space for

the mapping bit vectors. The DrMP flag table occupies 1.1MB (= 4GB/8KB×(3b+8b+6b))

space.

Given that the bit flags are for 8KB rows, they show good access locality, i.e., similar to
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Figure 5.8: An overview of architectural enhancements.

the locality of a TLB buffer. We use a 512-entry on-chip DrMP flag table to buffer the most

frequently entries, which requires about 2KB of space. To support DrMP-P and DrMP-U,

we add a 256-entry mapping bit vector buffer in each DIMM, which occupies about 512B.

The buffer is organized as a direct-mapped cache with tag fields maintained in the memory

controller. Overall, the space overhead is modest.

Timing overhead. We used CACTI [HP, 2008] to model timing overhead. DrMP has

minimal timing overhead for DrMP-A. It introduces two CPU cycles of extra latency to

extract the DrMP flags and shuffle the data based on approximate usage flag. The overhead

is added for both read and write accesses because the data need to be remapped between

the device layout and logic layout.

DrMP introduces extra latency to pair rows for DrMP-P and DrMP-U. As described

in DrMP-P, two extra memory cycles are needed — one cycle determines which chips to

activate and the other is due to one cycle delay in sending the device command.

Energy overhead. By introducing chip enable wires, DrMP activates the same number

of subarrays as the baseline. We use CACTI to model the flag cache in the memory controller

and the map table buffer in the DIMM. The energy overhead is negligible as shown in the
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experiments.

5.3 EXPERIMENTAL METHODOLOGY

Approximate computing is an emerging paradigm to trade off performance, energy and

quality-of-service (QoS). To evaluate the effectiveness of DrMP on approximate computing,

we adopted the two-phase methodology from past work [Miguel et al., 2014, 2016].

In the first phase, we used a Pin-based simulator to instrument programs annotated for

approximate computing. The simulator tracks all loads and stores of integer and floating-

point variables and, based on the memory map of weak cells (where timing exceeds reliable

operation), injects faults into memory operands. The memory map was generated following

the model of Zhang et al. [Zhang et al., 2015a], and the timing parameters were aligned

with the industrial values [Kang et al., 2014; Son et al., 2014; Wang, 2015]. We integrated

the usage flags in the memory map so that different row segment pairing strategies lead to

different error rates at runtime. For this phase, we ran the benchmarks to completion and

compared the final output with the one from the baseline run (i.e., with no restore errors).

In the second phase, we used a cycle accurate simulator, USIMM [Chatterjee et al., 2012],

to compare performance and energy consumption. USIMM executed the instructions tracked

in the first phase to make sure the two runs had the same instruction flow. We modeled a

4-core chip multiprocessor following past research [Shin et al., 2014; Nair et al., 2013a]. For

the DRAM main memory, we used the Micron SDRAM DDR3 [Micron, 2009a]. Table 5.3

lists the configuration details.

5.3.1 Benchmarks

We selected a suite of benchmark programs that were used in the literature to evaluate ap-

proximate computing techniques. As shown in Table 5.2, the benchmarks are from different

domains, including machine learning, financial analysis and scientific computing. In addi-

tion, we selected two memory intensive applications libq and leslie from SPEC CPU2006
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Table 5.3: System Configuration

Processor four 3.2Ghz cores; 128 ROB size

Fetch width: 4, Retire width: 2, Pipeline depth: 10

Bus frequency: 800 MHz

Write queue capacity: 64

Memory Write queue high watermark: 40

Controller Write queue low watermark: 20

Address mapping: rw:cl:rk:bk:ch:offset

Page management policy: close-page with FRFCFS

1 channel, 2 ranks/channel, 8 banks/rank,

32K rows/bank, 8KB/row, 64B cache line

tCK=1.25ns, width: x8

DRAM tCAS(CL): 13.75ns, tRCD: 13.75ns, tRC: 48.75ns

tCWD: 6.25ns (5 cycles), tBURST: 5.0ns (4 cycles)

tRAS: 35ns, tRP: 13.75ns, tFAW: 24 cycles,

tRRD: 5 cycles, tRFC: 208nCK, tREFI: 7.8µs
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[SPEC, 2006]. These two applications always demand precise computing. They are used to

form workloads with mixed precision demands.

For the evaluation, we manually annotated the benchmarks to identify the data that can

be approximated. This approach is the same as past work [Miguel et al., 2015; Sampson et al.,

2011]. Table 5.2 summarizes the percentage of memory accesses that access approximate

data.

(a) Precise baseline (0%) (b) Approx-base-2 (5.97%) (c) DrMP-A-2 (1.98%)

(d) Approx-base-4 (2.16%) (e) DrMP-A-4 (0%)

Figure 5.9: Visual effects for approximated runs for kmeans.

5.3.2 Evaluation for Approximate Computing

To evaluate QoS, we compared the results from approximate execution to results from the

baseline with precise execution and followed prior studies [Sampson et al., 2011; Miguel et al.,

2014] to compute application-specific metrics. Traditionally, a flat threshold of 10% error
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rate was set as the upper bound [Sampson et al., 2011; Esmaeilzadeh et al., 2012; Miguel

et al., 2014; Wong et al., 2016]. However, this error rate often leads to a large deviation [Park

et al., 2016; Lee et al., 2016]. For example, blacksholes is a financial analysis application

from PARSEC 3.0. Its QoS metric is stock/option price difference. A 10% error for a $20

option leads to $2 difference, which is significant and generally unacceptable [Lee et al., 2016].

For this reason, we did not set a fixed percentage threshold. Our design goal is instead to

minimize the error rate with a performance improvement.

5.4 RESULTS AND ANALYSIS

We studied and compared the following schemes.

— Baseline. This scheme mitigates PRT with fully relaxed restore timing, i.e., tRAS=42,

tWR=25, and tRCD=15 [Zhang et al., 2016a]. The baseline adopts built-in spare rows and

columns to rescue the worst set of cells. The same timing is applied to all chips.

— PRT-Free. This scheme assumes future DRAM chips are free from PRT, and thus use

the current JEDEC timing, i.e., tRAS=28, tWR=12, and tRCD=11 [Micron, 2009a].

— Approx-base-#. This scheme is baseline approximation schemes without dedicated tech-

niques to protect important bits. # is either 2 or 4, indicating whether the row tWR is

set to the 2nd or 4th fastest row segment.

— DrMP-A-#. This scheme is DrMP-A, where rows are being utilized for approximate com-

puting with important data bits being protected.

— DrMP-P-#. This scheme is DrMP-P. The paired rows are used to save precise data only.

— DrMP-U-#. This scheme is DrMP-U. Given one row pair, the row with the low address

saves precise data, while the row with high address saves approximate data.

5.4.1 QoS of Approximate Computing

We first evaluated the effectiveness of our approximate computing strategy. Figure 5.10

compares the QoS of different schemes. Approx-base-n uses the tWR of the nth fastest row
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segment. It is similar to DrMP-A-n except important bits in a row are not mapped. From

the figure, we observe that mapping important bits greatly mitigates QoS degradation. For

example, mapping reduces 100% QoS degradation of lu to 0.31% in DrMP-4 when ensuring

the reliability of four row segments in each row.
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Figure 5.10: QoS degradation in different schemes.

We examined kmeans to check the visual effect of the output image, as shown in Figure

5.9. Figure 5.9(a) shows the image with no restore errors. We observe that Figure 5.9(b)-

5.9(d) shows a color change — the gray tail of the eagle turns pinkish. In addition, Figure

5.9(b) and 5.9(d) shows visible noise. DrMP-A-4 (Figure 5.9(e)) has no visible change

compared to the baseline. Therefore, it is important to reduce the error rate in approximate

computing. The bit remapping in DrMP-A is effective in mitigating the QoS degradation.

5.4.2 Performance

Figure 5.11 reports the execution time of different schemes. The results are normalized to

Baseline. In the figure, Gmean is the geometric mean of all workloads. For DrMP-A and

DrMP-U, we compared the schemes when setting the row tWR to the 2nd and 4th fastest row

segment for approximate computing. For DrMP-P, we studied two page allocation schemes

— DrMP-P-rand is the baseline allocation that returns a random page; DrMP-P-fast returns
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a random fast page first, i.e., it uses all fast pages before allocating slows ones. The latter

is slightly worse than an OS-assisted profiling-based page allocation scheme that sorts the

available pages according to their restore time and allocates pages based on their access

frequency.
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Figure 5.11: Performance comparison.

On average, DrMP-A-4, DrMP-P-fast, and DrMP-U-4 have a 17%, 10.2% and 19.8%

improvement over the baseline, respectively. Not unexpected, random page mapping in

DrMP-P-rand lowers the speedup to 5.2%. The difference between DrMP-A-2 and DrMP-A-4

(similarly, DrMP-U-2 and DrMP-U-4) is usually small. For applications that have dominant

approximate data accesses, such as lu and smm, DrMP-U does better than PRT-Free. This

improvement happens because many rows that save approximate data have a tWR faster

than the standard 15ns tWR in PRT-Free. DrMP-U achieves lower improvement for appli-

cations that are less memory intensive with fewer approximate accesses, such as kmeans and

raytracer. Given the moderate difference of performance and the notable contrast in QoS

as reported in Figure 5.10, we use the 4th fastest row segment in subsequent sections.

5.4.3 Timing Values

Table 5.4 compares the average restore timing in different schemes. PRT-Free has the best

timing, while Baseline has the worst. Baseline, PRT-Free, DrMP-A-n do not use row
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pairing, and thus, they have one set of average values. The tRAS of DrMP-A is even better

than PRT-Free because the timing is aggressively reduced, which introduces restore errors

in some row segments. DrMP-A-2 has better timing than DrMP-A-4 as it reduces the tWR

more aggressively.

Table 5.4: Restore Timing Value of Each Row Pair

Low Address Row High Address Row

Scheme tRAS tWR tRCD tRAS tWR tRCD

(memory cycles)

Baseline 42 25 15 same as left

PRT-Free 28 12 11 same as left

DrMP-A-2 20 13 15 same as left

DrMP-A-4 22 15 15 same as left

DrMP-P 30 20 15 40 24 15

DrMP-U-2 30 20 15 19 12 15

DrMP-U-4 33 21 15 20 13 15

In DrMP-P, each row pair has a fast row and a slow row. The average of slow rows

in DrMP-P is close to Baseline as the slowest row segments remain in the memory. The

average of approximate rows in DrMP-U-n is close to DrMP-A-n, indicating that DrMP-U makes

better use of device rows. DrMP-P and DrMP-U report similar timings for low address rows

because DrMP-U exploits mainly the fast row segments in the slow rows.

5.4.4 Energy Consumption

Figure 5.12 reports memory energy consumption in terms of background (bg), active/precharge

(act/pre), read/write (rd/wr) and refresh (ref). We followed the Micron power equations

and parameters [Micron, 2007, 2009a]. We used CACTI to model the DrMP flag cache in

the memory controller and in the DIMM. We observed that, by improving application per-

formance, the DrMP schemes reduce the background energy the most. Overall, DrMP-U-4

achieves 15% energy consumption reduction, which is within 7% gap of PRT-Free. The

96



primary contributor is the reduced background energy because of the shortened execution

time. Read/write power/energy is also optimized with the reduction in the restore time.
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Figure 5.12: Energy comparison.

5.4.5 System Overhead

In DrMP, the 512-entry flag cache in the memory controller is organized as 4-way set as-

sociative cache. On average, it has 97.8% hit rate. The CACTI simulation shows that the

cache has 0.35ns access latency, 0.02mm2 area, 1.5mW standby leakage power and 5.45pJ

energy per access. The DIMM mapping table is organized as a 256-entry direct-mapped

cache with tags maintained in the memory controller. It has an average 97.9% hit rate. The

CACTI simulation shows that this structure has 0.22ns access time, 0.016mm2 area, 1.14mW

standby leakage and 2.96pJ energy per access.

Frequently used flag cache entries are captured in the L2 cache and loaded to the flag

cache and mapping table on misses of these structures. The performance overhead is less

than 1% in our simulation.

Due to limitations of our evaluation framework, we did not evaluate the overhead of the

buddy memory allocation. We expect it to be low due to its invocation, i.e., to allocate

blocks of consecutive pages to processes, is less frequent per process.
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5.4.6 Design Space Exploration

5.4.6.1 Server integration. We studied using DrMP in a server environment that has

more applications for precise computing. In this study, 2 cores run applications from Table

5.3 and the remaining 2 cores run libq and leslie from SPEC [SPEC, 2006]. This workload

mix leads to a larger percentage of precise memory accesses. From Figure 5.13, DrMP-P

achieved higher speedups while DrMP-A had lower improvement. DrMP-A and DrMP-P-fast

have 14.8% and 12.6% improvements, changing from 17.0% and 10.6% improvements in

Figure 5.11, respectively. The decrease in DrMP-A is caused by an increasing number of

precise accesses, and the increase in DrMP-P is caused by touching more fast precise rows.

Fortunately, DrMP-U reaches a balance to maintain similar speedup values, show it is a general

scheme.
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Figure 5.13: Performance comparison of server workload mix.

5.4.6.2 Integration of the state-of-the-art. Restore truncation (RT) [Zhang et al.,

2016a] is a recent PRT mitigation approach. It partially restores memory cells to a low

voltage level, depending on the distance of an access to the next row refresh. Since DrMP

exploits error resilience through approximate computing, these two designs are orthogonal.

Figure 5.14 reports the results when both schemes are adopted (RT+DrMP). From the figure,
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Figure 5.14: Performance comparison of DrMP and RT [Zhang et al., 2016a].

RT+DrMP achieves a larger performance improvement over RT: on average, RT+DrMP is

13.7% better than RT, and 8.7% better than PRT-Free.

5.5 CONCLUSION

This chapter proposes DrMP, a novel fine-grained precision-aware DRAM restore schedul-

ing approach, to mitigate PRT. The approach exploits process variations (PVs) within and

across DRAM rows to save data with mixed precision. There are three variants of the ap-

proach: DrMP-A, DrMP-P, and DrMP-U. DrMP-A supports approximate computing by

mapping important data bits to fast row segments to reduce restore time for improved per-

formance at a low application error rate. DrMP-P pairs memory rows together to reduce

the average restore time for precise computing. DrMP-U combines DrMP-A and DrMP-P

to better trade performance, energy consumption, and computation precision. Our exper-

imental results show that, on average, DrMP achieves 20% performance improvement and

15% energy reduction over a precision-oblivious baseline. Further, DrMP achieves an error

rate less than 1% at the application level for a suite of benchmarks, including applications
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that exhibit unacceptable error rates under simple approximation that does not differentiate

the importance of different bits.
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6.0 CONCLUSIONS AND FUTURE WORK

6.1 SUMMARY

DRAM technology scaling has reached a threshold where physical limitations exert unprece-

dented hurdles on cell behaviors. Without dedicated mitigations, memory is expected to

suffer from serious performance loss, yield degradation and reliability decrease, going against

the demands of system designs and applications. Among the induced problems, prolonged

restore timing (PRT) has been a long time neglected issue, and it is likely to impose great

constraints to the scaling advancement. As a result, this thesis explores DRAM further

scaling from restoring perspective.

Reduced cell dimensions and worsening process variation (PV) cause increasingly slow

access and significantly more outliers falling beyond the JEDEC specifications. To quantify

the PV effects, we built circuit level SPICE models and performed Monte Carlo simulations

to capture the restore distribution parameters. With the obtained parameters, we then

faithfully generated billions of cells, which are organized into arrays, banks, chips, and ranks

following the standard DRAM organizations. On basis of the studies, we examined the high-

level organizations, detailed cell behaviors, and slow cell portions to come up with different

techniques to overcome the restore issues.

From high organization level, to alleviate the influences on performance and yield, we

propose to go beyond the conventional worse-case determined techniques, and instead man-

age the timing constraints per chip. As further improvement, we chop the chip banks into

finer chunks, and thus more fast regions can be exposed to upper level. In addition, we

devise the extra chunk remapping and dedicated rank formation to restrict the impacts of

slow cells. However, the exposed fast regions can not be fully utilized for restoring oblivious
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page allocation; accordingly, to maximize performance gains, we moved forward to profile

the pages of the workloads, and deliberately allocate the hot pages to fast parts.

Examining the cell structure and behaviors, we find that restoring can seek help from

the correlated refresh operations, which periodically fully charge the cells. We propose to

perform partial restore withe respect to the distance to next refresh: the closer to next

refresh, the less needed charge and thus the earlier the restore operation can be terminated.

For ease of implementation, we divide the refresh window into four sub ones, and apply an

separate set of timings for each. Moreover, compared to refresh, restore contributes more

critically to the overall performance, and hence we optimize the partial restore with refresh

rate upgrading. More frequent refresh helps to lower the restoring objectives, but at a risk of

raising energy consumption. As a compromise, we selectively upgrade recent touched rows

only to balance restore benefits and refresh overheads.

While PRT issue can be greatly mitigated with chunk remapping and partial restore,

the gains can be even higher when application characteristics are being taken into account.

By applying approximate computing, we devised further scaling DRAMs to provide both

reliable, i.e., precise, and non-reliable, i.e., approximate, data regions; correspondingly, we

analyzed the source codes of applications to annotate variables that can be approximated,

i.e., non-critical. With the help from hardware enhancements and operating system changes,

the non-critical data bits can be dedicatedly mapped to non-reliable regions to avoid severe

accuracy losses on final output. As a result, we can achieve a tradeoff between perfor-

mance/energy and accuracy.

Detailed experimental results show that with the proposed techniques, both performance

and energy can be greatly improved to alleviate the slow restore issue. Our comprehensive

techniques to solve restore issues, together with the prior arts on refresh optimization and

sensing reductions, are capable of enabling DRAM to scale further without significant ob-

stacles.
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6.2 FUTURE RESEARCH DIRECTIONS

Whereas a comprehensive set of techniques have been discussed to overcome restore scaling

issues, it is still open to have deeper understandings of the problems and propose more effec-

tive designs from new perspectives. This section describes potential research opportunities

to further solve PRT issue.

6.2.1 Solve Restoring from Reliability Perspective

DRAM reliability has become a major concern for servers in data centers, as reported in

recent in-field studies [Schroeder and Gibson, 2006; Sridharan and Liberty, 2012]. This has

motivated the wide adoption of chipkill protection over traditional SECDED (sing error

correction double error detection) protection. To further improve the correction capability

and reduce storage overheads, a bunch of smart designs have been proposed, e.g., V-ECC

[Yoon and Erez, 2010], LOT-ECC [Udipi et al., 2012] and Bamboo [Kim et al., 2015].

Whereas correction codes are mainly targeting at permanent faults (e.g., broken address

decoder and damaged data pins) and transient faults (e.g., cosmic rays), long restore cells

can be also treated as stuck bits to be covered by correction codes, similar to [Schechter

et al., 2010; Nair et al., 2013b; Qureshi et al., 2015]. However, the issue is that there is a

too large portion of long restore cells, and thus it requires complex coding/decoding logics

and high storage overheads. To avoid the induced impacts, one workable solution can be

applying ECC on top of our proposed mitigation techniques. Apparently, the low portion of

slow cells can now be well covered by ECC, and thus the restore timing constraints can be

further reduced. It is also possible to combine ECC with the aforementioned techniques to

keep the same benefits but with smaller overheads. In either way, innovative ECC designs

can be proposed or adapted in the restore scenario.

6.2.2 Study Security Issues of Restoring Variation

Modern computing systems suffer from increasing concerns on privacy, security and trust

issues, with timing channel attacks as a representative example. And recently, the concern on
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timing channel attack has moved from shared caches [Percival, 2005; Wang and Lee, 2007; Liu

and Lee, 2013] and on-chip networks [Wang and Suh, 2012; h. Wassel et al., 2013] to shared

main memory [Stefanov et al., 2013; Wang et al., 2014b; Shariee et al., 2015]. Memory access

pattern can leak a significant amount of sensitive information through statistical inference

[Stefanov et al., 2013].

As a remedy, ORAM [Stefanov et al., 2013] was proposed to conceal a client’s access pat-

tern to remote storage by continuously shuffling and re-encrypting data as they are accessed.

Wang et al. [2014b] proposed temporal partitioning (TP) to isolate thread accesses to hide

access pattern. As an improvement, Fixed Service (FS) policies were studied by [Shariee

et al., 2015] to reshape memory access behaviors without much performance degradation.

Compared to the simple case of a single set of timings for the whole memory system,

restoring variations in further scaling DRAM are likely to leak more information. For in-

stance, various memory access speeds to different memory regions may expose the footprint

to malicious users. And things can be much worse with the adoption of NUMA-aware page

allocation and approximate computing. The former easily leak the frequently accessed data,

and the latter correlates data to its location origin [Rahmati et al., 2015].

In addition, simply borrowing the schemes in [Wang et al., 2014b; Shariee et al., 2015]

would introduce higher overhead because of the much longer worst-case restoring timings.

As a result, it is necessary to integrate information leakage, restoring issues, page allocation

and approximate computing to come out a workable solution with acceptable performance

loss and safety guarantee.

6.2.3 Explore Restoring in 3D Stacked DRAM

Recent advances in die stacking techniques enables efficient integration of logic and memory

dies in a single package, with a concrete example of Hybrid Memory Cube [Consortium, 2015].

HMC is especially promising for its innovative architecture that stacks multiple memory dies

atop of the bottom logic die, and adopts packetized serial link interface to transfer data and

requests [Zhang et al., 2015b]. With the superior high bandwidth, low latency and packet-

based interface, lots of work have proposed to move computation units inside the logic die
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[Balasubramonian et al., 2014; Ahn et al., 2015].

However, thermal management becomes a big issue in stacked memories [Loi et al.,

2006; Eckert et al., 2014], and the deployment of bottom computation logics like simple

cores [Ahn et al., 2015] and even GPU [Zhang et al., 2014a] further worsens the issue.

Besides, temperature variations exist among vertical dies [Khurshid and Lipasti, 2013]. It is

known that DRAM is sensitive to temperature changes, including refresh [Lee et al., 2015;

Mukundan et al., 2013] and restoring time [Son et al., 2014; Kang et al., 2014]. Therefore,

it is worthwhile to explore restoring time in stacked memories, and utilize the temperature

characteristics to dig more opportunities to mitigate restore and to boost performance.
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