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The	simplicity	enabled	DRAM	to	continuously	scale
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Do	we	still	need	DRAM	to	continue	scale?
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Increasing	Computation Tight	Power	BudgetsData	Intensive	Apps

DRAM	must	keep	scaling	to	meet	demands
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Fast	restore	via	reorganization	and	page	alloc
[CkRemap’DATE15,	Alloc’TODAES17]➋DDR
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Charge	leakage
- Cell	charge	decays over	time

Refresh	operation
- Periodically fully	charge	cells	to	avoid	data	loss
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- Data	is	safe	as	long	as	the	voltage	is	above	decay	curve
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RT-next is	15% over	Baseline	because	of	restore	truncation
RT-all becomes	worse because	of	refresh	penalty
RT-sel achieves	the	best result	by	balancing	refresh	and	restore
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While	ArchShield+ is	close	to	PRT-free,	RT-sel is	5.2% better

While	losing	50%	capacity,	MCR is	still	worse



SUMMARY:	RT-

Prolonged	restore	issue	in	future	DRAM
Restore	and	refresh	are	strongly	correlated
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RT-next:	truncate	restore	w/	refresh	distance
RT-sel:	expose	more	restore	opportunities

Balances	refresh	and	restore,	beats	state-of-arts
Performance:	19.5%	improvement

results



OUTLINE

26

DDR
CkRemap
Fast	restore	via	reorganization	and	allocation

DrMP
Mitigate	restore	with	approximate	computing

Summary	and	Research	Directions



OUTLINE

26

DDR
CkRemap
Fast	restore	via	reorganization	and	allocation

DrMP
Mitigate	restore	with	approximate	computing

Summary	and	Research	Directions



DRAM	ORGANIZATION

27

 

 



DRAM	ORGANIZATION

27

 

 

Chip



DRAM	ORGANIZATION

27

 

 

Rank Chip



DRAM	ORGANIZATION

27

 

 

Rank Chip



DRAM	ORGANIZATION

27

Physical	bank:	chip	level,	a	portion	of	memory	arrays
 

Rank Chip Physical	Bank



DRAM	ORGANIZATION

27

Physical	bank:	chip	level,	a	portion	of	memory	arrays
Logical	bank:	rank	level,	one	physical	bank	from	each	chip

Rank

Logical
Bank

Chip Physical	Bank



DRAM	ORGANIZATION

27

How	to	utilize	the	organization	to	solve	restore?

Physical	bank:	chip	level,	a	portion	of	memory	arrays
Logical	bank:	rank	level,	one	physical	bank	from	each	chip
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How	to	fully	utilize	the	exposed	fast	regions?

Cluster chips	into	bins	using	similarity
Construct ranks	using	chips	from	each	bin
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Chunk-remap	&	rank-construction	expose	more	fast	chunks
- provide	more	opportunities	for	page-allocation

Restore-aware	page	allocation	effectively reduce	time
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SUMMARY:	CkRemap

Further	scaling	restore	has	serious	PV	effects
Worse-case	based	approaches	are	ineffective

35

CkRemap:	construct	fast	chunks	via	remapping
PageAlloc:	fully	utilize	the	exposed	fast	regions

Performance:	as	high	as	25%	avg improvement
Page	alloc:	hotness-aware	alloc maximize	gains	

results
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DrMP
Mitigate	restore	with	approximate	computing

Summary	and	Research	Directions
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Credit: www.itbusiness.ca/Credit: www-d0.fnal.gov Credit: image-net.org

Machine	Learning Computer	Vision Big	Data	Analytics

Many	applications	can	tolerate	accuracy	loss



RESTORE-BASED	APPROXIMATION

38



RESTORE-BASED	APPROXIMATION

38

RT-Next
CkRemap

precise



RESTORE-BASED	APPROXIMATION

38

RT-Next
CkRemap

precise

Just Errors

approximate



RESTORE-BASED	APPROXIMATION
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Will	the	final	output	always	be	acceptable?

RT-Next
CkRemap

precise

Just Errors

approximate
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Accuracy	loss	steadily	enlarges along	tWR	decrease
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CRITICAL	DATA

40

pointers

jump	targets

meta	data

pixels

neuron	weights

video	frames

error-sensitive error-resilient

Critical	data	cannot	be	approximated
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Int/byte

BITS	ARE	NOT	EQUALLY	IMPORTANT
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There	is	a	tradeoff	between	accuracy	and	overhead

R BG

50%
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DrMP achieves	19.8% performance	improvement
- For	apps	with	dominant	approx	data	accesses,	DrMP outperforms	PRT-free

Orthogonal	to	RT
- RT+DrMP is	8.7% better	than	PRT-free
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SUMMARY:	DrMP

Many	applications	can	tolerate	output	quality	loss
Restore	can	be	used	for	approximate	computing

46

DrMP:	balance	restore	reductions	and	accuracy	
DrMP’:	support	both	approximate	and	precise

Output	quality:	no	more	than	1%	accuracy	loss	
Performance:	19.8%	improvement

results
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SUMMARY

48

RT-next:	truncate		restore	using	the	time	distance	to	next	refresh
CkRemap:	construct	fast	access	regions	using	DRAM	organization
DrMP:	mitigate	restore	while	guarantee	acceptable	output	loss

Performed	pioneering	studies	on	restore	via	modeling	&	simu
Developed	comprehensive	schemes	to	mitigate	restore	issue

DRAM	must	keep	scaling	to	meet	increasing	demands
Prolonged	restore	time	has	become	a	major	hurdle

Supported	under	NSF	grants:	CCF-1422331,	CNS-1012070,	CCF-1535755	and	CCF-1617071



sense

restore

COMPARISON	TO	PRIOR	ARTS

49

Sharing/Sensing	timing	reduction
- Optimize	DRAM	internal	structures [CHARM’ISCA13,	TL-DRAM’HPCA13,	etc]
- Utilize	existing	timing	margins	[NUAT’HPCA14,	AL-DRAM’HPCA15,	etc]

DRAM	restore	studies
- Identify	the	restore	scaling	issue	[Co-arch’MEM14,	tWR’Patent15,	etc]
- Reduce	restore	timings	[AL-DRAM’HPCA15,	MCR’ISCA15,	etc]

Memory-based	approximate	computing
- Optimize	storage	density	and	lifetime	[PCM/SSD’MICRO13,	PCM’ASPLOS16,	etc]
- Skip	DRAM	refresh	[Flikker’ASPLOS11,	Alloc’CASES15,	etc]

approx
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We	are	working	at	orthogonal	restore	issue	in	future	DRAMs	

DRAM	restore	studies
- Identify	the	restore	scaling	issue	[Co-arch’MEM14,	tWR’Patent15,	etc]
- Reduce	restore	timings	[AL-DRAM’HPCA15,	MCR’ISCA15,	etc]

We	are	working	at	future	DRAMs	with	more	effective	solutions

Memory-based	approximate	computing
- Optimize	storage	density	and	lifetime	[PCM/SSD’MICRO13,	PCM’ASPLOS16,	etc]
- Skip	DRAM	refresh	[Flikker’ASPLOS11,	Alloc’CASES15,	etc]

approx



sense

restore

COMPARISON	TO	PRIOR	ARTS

49

Sharing/Sensing	timing	reduction
- Optimize	DRAM	internal	structures [CHARM’ISCA13,	TL-DRAM’HPCA13,	etc]
- Utilize	existing	timing	margins	[NUAT’HPCA14,	AL-DRAM’HPCA15,	etc]

We	are	working	at	orthogonal	restore	issue	in	future	DRAMs	

DRAM	restore	studies
- Identify	the	restore	scaling	issue	[Co-arch’MEM14,	tWR’Patent15,	etc]
- Reduce	restore	timings	[AL-DRAM’HPCA15,	MCR’ISCA15,	etc]

We	are	working	at	future	DRAMs	with	more	effective	solutions

Memory-based	approximate	computing
- Optimize	storage	density	and	lifetime	[PCM/SSD’MICRO13,	PCM’ASPLOS16,	etc]
- Skip	DRAM	refresh	[Flikker’ASPLOS11,	Alloc’CASES15,	etc]

We	are	the	first	work	on	restore-based	approximation
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Solve	restore	from	reliability perspective
- Treat	Slow	restore	cells	as	faulty	ones
- Design	stronger	error	correction	codes

Study	security issues	of	restore	variation
- Restore	variation	info	is	DRAM’s	fingerprint
- Solve	both	info	leakage	and	slow	restore

Explore	restore	in	3D	stacked DRAM
- Stacking	has	thermal	management	issue
- Reduce	restore	with	temperature-aware	solutions
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