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Abstract—Semantic composition in distributional semantic
models (DSMs) offers a powerful tool to represent word meaning
in context. In this paper, we investigate methods to utilize
compositional DSMs to improve word sense discrimination and
word sense disambiguation. In this work, we rely on a previ-
ously proposed multiplicative model of composition. We explore
methods to extend this model to exploit richer contexts. For
word sense discrimination, we build context vectors, which are
clustered, from the word representations based on the extended
compositional model. For word sense disambiguation, we aug-
ment lexical features with their word representations based on the
same extended compositional model. For both tasks, we achieve
substantial improvement.

I. INTRODUCTION

Distributional semantic models (DSMs) [1], [2], [3] provide
a means for representing word meaning. They are based on the
assumption that the meaning of a word can be inferred from its
distribution in text and that words appearing in similar contexts
tend to have similar meanings [4]. As a tool to represent
word meaning, DSMs have been successfully applied to many
NLP tasks. Some examples are word sense discrimination [5],
paraphrases [6], thesaurus compilation [7] and language tests
[8].

A DSM is a co-occurrence matrix such that each row
represents the distribution of a target word across contexts in a
large corpus. The context can be defined in many ways. It can
be a document, a sentence or a word window around the target
word. A DSM allows a type-based representation. This means
that the rows of the co-occurrence matrix represent word types
rather than word tokens. Thus, all contexts and senses of a
target word are accumulated into one vector. There have been
recent approaches addressing this issue. [9], [10], [11] develop
specialized models for semantic composition that allow them
to derive representations of word meaning in context. These
compositional models are built on top of conventional DSM.
The meaning of a target word in a specific context (i.e. word
token) is computed through vector operations applied to the
co-occurrence vector of the target word and the co-occurrence
vectors of the words in the specific context. The result is a new
co-occurrence vector that holds the meaning of the target word
token. These models demonstrate so far promise for paraphrase
ranking and phrase similarity rating tasks.

In this paper, we propose to utilize these compositional
models for word sense discrimination and word sense disam-
biguation (WSD). To be specific, we investigate using element-
wise multiplication model introduced in [10], since this model
has been shown to perform consistently well without the need
for parameter tuning. This compositional model represents
word meaning in context in a reliable way. Our hypothesis is
that we can make use of this token-based meaning representa-
tion to improve word sense discrimination and word sense dis-
ambiguation. Unfortunately, [10] and others define their model
to compute the meaning of a target word in specific depen-
dency relations (e.g. verb-object). This treatment is restricting
if we want to use this model for representing the meaning of
a target word token in arbitrarily long context where the target
word token can be related to various context words via various
dependency paths. Thus, we investigate methods to extend the
underlying model and apply it to arbitrary target words in
arbitrary contexts. We apply the extended model to word sense
discrimination by clustering target word instances according
the semantic vectors derived from the extended compositional
model. We compare this approach to two previous approaches
based on work in [5], [12]. Then, we apply the extended
model to supervised word sense disambiguation by feature
expansion, making it semi-supervised. That is, we expand the
lexical features of a supervised word sense disambiguation
system using their co-occurrence vectors derived from the
extended compositional model. We compare this approach to
several other word representations including brown clusters
[13], which is an effective word representation for feature
expansion [14]. Our experiments show that the extended model
can be effectively utilized for word sense discrimination and
word sense disambiguation (WSD) outperforming previous
approaches.

The rest of the paper is structured as follows. In section
II, we give a short introduction to DSM. In section III, we
explain element-wise multiplication model introduced in [10].
We illustrate the obstacles we face when we want to apply
this compositional model in complex contexts. In section IV,
we introduce our efforts to extend the model. In section V,
we introduce the target tasks and we explain how we apply
our extended compositional model to them. In Section VI, we
conduct experiments to evaluate our approach and compare



computer cheese button cat
−−−−→mouse 22 8 17 13
−−→
click 23 0 18 0
−−−→
catch 0 2 0 11

TABLE I
A HYPOTHETICAL WORD-WORD CO-OCCURRENCE MATRIX

to previous work. In Section VII, we review related work. In
Section VIII, we draw conclusions.

II. DISTRIBUTIONAL SEMANTIC MODELS

Distributional semantic models (DSM) are based on the
assumption that the meaning of a word can be inferred from
its distribution in text. A DSM is basically a co-occurrence
matrix – also called semantic space – such that each row
vector represents the distribution of a target word across
contexts. The context can be a document, a sentence, or a
word window around the target word. In this paper, we focus
on the latter one. In that setting, a DSM is a word-word co-
occurrence matrix. The dimensions of the vector represent
co-occurring context words and hold some score based on
the occurrence frequency of the context word near the target
word in the specified window. This co-occurrence vector builds
the semantic signature of the target word. Basically, each
target word is described in terms of co-occurring words in
its textual proximity. Table I represents a hypothetical word-
word co-occurrence matrix for the words “mouse”, “click” and
“catch”. The dimensions of the semantic space are “computer”,
“cheese”, “button” and “cat”. In this example, the matrix holds
simple co-occurrence frequencies but it can be defined to have
an association score between the target and context words
such as point-wise mutual information. Note that DSMs model
meanings of words out of context (i.e., of word types).

III. COMPOSITIONAL DSMS

Compositional DSMs [9], [10], [11] offer a powerful tool
to represent words in context. They build on top of the
conventional DSMs introduced in section II. The meaning
of a word in context (i.e., word token) is computed through
composition operations applied to the target word and its con-
text. [10] evaluate a good amount of composition operations.
Vector summation and element-wise vector multiplication are
two sample composition operations from [10]. To illustrate,
Table II gives compositional vectors for the word “mouse”
in the context of “click” and “catch” for both operations.
click+mouse is computed by summing co-occurrence vectors
of “click” and “mouse” from the semantic space in Table I.
click·mouse is computed by element-wise multiplication of
the co-occurrence vectors of “click” and “mouse” from the
same semantic space. The same is true for catch+mouse and
catch·mouse. Note that the vectors in Table I and in Table II
have the same dimensions. The difference is that the semantic
space in TableI is type-based, where the semantic space in
Table II is token-based. In the token-based semantic space,
“mouse” will have a different semantic vector depending on

computer cheese button cat
click +mouse 45 8 35 13
catch+mouse 22 10 17 13
click ·mouse 506 0 306 0
catch ·mouse 0 16 0 143

TABLE II
ADDITIVE AND MULTIPLICATIVE COMPOSITION OF CO-OCCURRENCE

VECTORS

its context. From now on, we will refer to the co-occurrence
vectors in the type-based semantic space as type vectors and
the co-occurrence vectors in the token-based semantic space
as token vectors.

It is appealing that the multiplicative model allows one
vector to pick out the relevant content of the other. Indeed, [10]
show that element-wise multiplication performs overall better
than vector addition and other composition operations on a
phrase similarity task without the need of parameter tuning.
Thus, in our work, we rely on element-wise multiplication to
derive contextual meaning of words.

[10] consider composition only between specific word pairs,
namely word pairs related by a verb-object relation. In a
later paper, [15] also consider noun-noun and noun-adjective
relations. This treatment is restricting if we want to use this
model for representing the meaning of a target word token in
arbitrarily long contexts where the target word token can be
related to various context words via various dependency paths.
Consider the following example in Figure 1. Considering
only the verb-object relation and taking begin·strike as the
compositional meaning of “strike” is not sufficient in this con-
text. The words that are most informative for disambiguating
“strike” are “workers” and “mines”. “workers” is related to
strike over a “nsubj←|dobj→” dependency path and “mines”
is connected to “strike” over a “prep–at←| nsubj←|dobj→”
dependency path. That simple example shows that we need
to utilize longer dependency paths to reach informative and
discriminative context words. Thus, we propose to extend the
model proposed in [10] to include longer arbitrary dependency
paths.

A simple strategy would be to utilize all possible context
words connected to the target word through a dependency
path to compute the compositional representation of the target
word. But, that might introduce too much noise, since we
can reach every word in the sentence if we fully traverse the
dependency tree. Thus, we propose to investigate methods to
filter out uninformative dependency paths (i.e. context words).

IV. EXPLOITING RICHER CONTEXTS

In this section, we introduce the methods we use to choose
informative context words of a target word to incorporate into
the compositional representation of that target word.

From now on, we will refer to context words that are
related to the target word over a dependency path as context
clues. The most important question is how to filter out the
uninformative context clues. We try four different methods



Fig. 1. Example for compositional representation

for this purpose. The first two of them are simple in nature.
They define constraints on the type of the context clue :

• content : the context clue should be a content word (i.e.,
noun, verb, adjective, or adverb).

• nostop : the content clue cannot be a stop word.

The next two are more elaborate filtering mechanisms. We
define two scoring functions to assign an importance score to
each context clue. Our intuition is that context clues which
carry more information to disambiguate the sense of the
target word token should get a higher score and be chosen
to contribute to the compositional representation of the target
word (e.g. “workers” and “mines” in the figure 1 rather than
“began”).

The first scoring function keeps track of the change of the
type vector of the target word after applying the type vector
of the context clue to it. The hypothesis is that a context clue
which selects out a specific sense of the target word will zero
out a substantial amount of dimensions of the type vector of
the target word. I.e., the more dimensions the context clue
zeros out, the better the disambiguation should be. We count
the dimensions of the type vector of the target word which
become zero after applying the context clue. In order to avoid
very infrequent context words getting high scores (since they
will have lots of zero dimensions), we put a normalizing factor,
the number of zero dimensions of the context clue. The scoring
function, maxzero, is as follows: (zero is a function which
returns the number of zero dimensions in a vector).

maxzero =
zero(target)− zero(target · clue)

zero(clue)

The second scoring function takes into account distribu-
tional substitutes of the target word based on the dependency
path and the context clue. By distributional substitutes, we
mean the set of words which are connected to the context
clue via the same dependency relation in our corpus (described
in section VI). Our hypothesis is that the substitute sets can
provide us useful information about the discriminative power
of the corresponding context clues. If one of the substitutes
related to a context clue is similar to one of the senses of the
target word more strongly than other senses, we can conclude
that the context clue is discriminative and should be scored

high. For this purpose, we make use of WordNet similarity
measure introduced by [16]. First we assume that each sense
of a target word is equally probable and find the similarity
of a substitute to different senses of the target word. Then,
we normalize the similarity score over the senses and obtain
a probability distribution over the senses of the target word.
We apply the Kullback Leibler (KL) divergence to determine
how much the new distribution differs from the uniform
distribution. The context clues with substitution sets which
have high maximum KL divergence scores are also scored
high. Below is the formula for the discsubs scoring function.
subs is a function which returns the set of distributional
substitutes of a target word in context of a dependency path
and context word. disc is a function which computes the KL
divergence value as described above.

discsubs = max
s∈subs(target,clue,path)

disc(s, target)

To illustrate, in Figure 2, we see examples of distributional
substitutes of strike for two context clues “workers” and
“begin”. One of the substitutes derived from the context clue
“workers” is “protest”, which is strongly related to the “work
stoppage” meaning of “strike” in WordNet. On the other
hand, substitutes derived from the context clue “began” (e.g.
“eating”) are more general in nature and do not favour a
specific sense of “strike” in WordNet. As a consequence,
“workers” will get a higher score than “began”, which is
exactly what we want.

These two scoring functions give us two filtering mecha-
nisms where we accept the best scoring context clues. We
can choose more than one context clue to apply to the target
word. By “applying” we mean element-wise multiplication of
the type vector of the context clue with the type vector of the
target word. We apply each chosen context clue separately to
the target word resulting in multiple token vectors for the target
word. We average these token vectors to obtain an ultimate
single token vector of the target word. Our intuition is that
each context clue chooses out some relevant dimensions of the
target word and by averaging them, we smooth the contribution
of the various context clues to create the final representation.



Fig. 2. Example for distributional substitutes

V. APPLICATIONS

A. Word Sense Discrimination

Word sense discrimination is the automatic identification
of the senses of a target word. The goal of word sense
discrimination is to cluster target word instances, so that the
induced clusters contain instances used with the same sense.
Word sense discrimination accepts as input a set of target word
instances represented as feature vectors – also called context
vectors – which are then clustered based on the similarity
of their feature vectors. The input is similar to the input of
supervised word sense disambiguation (WSD) systems. The
main difference is that the sense labels are missing.

[5] and [12] are two prominent works in this field. The
biggest difference between them is the representation of the
feature vectors. [5] relies on a DSM based on a word-word
co-occurrence matrix to create feature vectors. Recall that a
distributional semantic model represents word types, not word
tokens. For a token-based treatment, [5] utilizes a second-
order representation. That is, [5] represents each target word
token by averaging type vectors of the neighbouring words
that occur in its context. In contrast, (Purandare and Pedersen,
2004) creates feature vectors from local feature representations
similar to the feature vectors common to supervised WSD.

[5] is basically using an additive model for compositional
representation. Our approach is similar to [5], except that,
instead of averaging type vectors, we average the token
vectors of the neighbouring words, which we compute with
our extended compositional model. Below in Section VI, we
compare our approach to using second-order representation
relying on type vectors as in [5].

Additionally, we compare our approach to one based on
the local feature representation as described in [12]. We use
the following features from [17] to build the local feature
representation:

CW : the target word itself
CP : POS of the target word
CF : surrounding context of 3 words and their POS
HNP : the head of the noun phrase to which the target word
belongs
NB : the first noun before the target word
NA : the first noun after the target word
VB : the first verb before the target word
VA : the first verb after the target word
SK : at most 10 context words occurring at least 5 times;

determined for each sense.

B. Feature Expansion for Semi-supervised WSD

Second, we apply our compositional representation to super-
vised WSD. Supervised WSD, as many other supervised NLP
applications, suffers from data sparsity. Consider following
WSD example, where the learner has seen two instances of the
target word fine and needs to disambiguate a third instance.
For simplicity, we assume that the classifier utilizes only two
lexical features: one word before and one word after the target
word we want to disambiguate.

.. a finesense a distinction .. → a, distinction, sense a

.. a finesense b film of oil .. → a, film, sense b

.. a fine? layer of chocolate .. → a, layer, ?

According to WordNet, the first instance has the meaning
of minutely precise especially in differences in meaning and
the second instance has the meaning of thin in thickness or
diameter. Unfortunately there is not enough evidence for the
learner in the seen instances to classify the third example as
sense b. It is easy to classify for a human the third example as
sense b, since we know that “film” and “layer” are synonyms
and can substitute one another in the given context. The
information is implicitly there but the learner has no means to
make use of it.

Researchers previously investigated methods to induce word
representations from unlabeled large corpora and augment
lexical features with their corresponding word representations.
The aim is to incorporate shared semantic content between
word features without changing the underlying learning al-
gorithm or the training method as in other semi-supervised
methods. This can be thought as a form of feature smoothing.
These word representations are created without any labeled
data in a general way. They can be used as plug-and-play
modules in any system relying on lexical features to handle
data sparsity.

There are many ways to build these word representations.
Researchers used word clustering [18], [19], [20], [21], word
embeddings via neural language models [14] and distributional
semantic models [2] to augment features in supervised NLP
systems, thereby making them semi-supervised. Most of these
approaches except [21] use type-based word representations.
This means these representations are compiled as static lists
or vectors. Thus, they do not take into account that the same



nofilter content nostop maxzero discsubs
1 2 3 weighted 1 2 3 weighted

L1 45.86 44.5 48.72 45.87 45.03 45.21 45.64 49.48 48.39 48.98 49.01
L2 44.78 45.05 48.23 49.18 46.34 45.72 45.57 49.48 48.73 48.54 48.76
L3 45.91 46.29 48.4 49.86 47.9 46.58 45.66 49.52 48.09 47.36 48.65
L4 45.87 44.9 48.1 50.34 49.22 46.88 46.82 48.54 48.5 48.24 48.80

TABLE III
EFFECT OF THE VARIOUS DEPENDENCY PATH LENGTHS AND FILTERING TECHNIQUES USED TO COMPUTE THE CONTEXTUAL REPRESENTATION ON THE

CLUSTERING PERFORMANCE

word can have different meanings depending on its context
and should have different representations depending on it.

We use our compositional representation to augment a
vanilla WSD system. This is a token-based feature augmen-
tation approach, where each word can have different repre-
sentations depending on its context, as opposed to a type-
based augmentation. The vanilla WSD system we augment
uses the same set of features described in Section V-A. We
augment all lexical features (i.e. CW and CF features) with
their compositional representations.

Below in Section VI, we make various comparisons be-
tween representation obtained from our extended composi-
tional model and other word representations for feature expan-
sion. To be specific, we compare token vectors obtained from
our extended compositional model to brown clusters, which
has been shown to work well in NLP [14], to the additive
context representation we see in [5] and to simple type vectors
from our semantic space.

VI. EXPERIMENTS

In this section, we evaluate the application of our extended
compositional model to both word sense discrimination and
word sense disambiguation. For both tasks, we use the union of
the SENSEVAL II [22], and the SENSEVAL III [23] datasets
as our evaluation data.

A. Semantic Space

In this paper, all approaches making use of a DSM –
including our extended compositional model – use the same
semantic space. The semantic space we use in our experiments
is built from a text corpus consisting of 120 billion tokens.
We compile the corpus from various resources in order to
have a balanced corpus. The corpus consists of news articles
from GIGAWORD and editorials from NewYorker, NewYork
Times, Slate, Townhall, BBC and Guardian. It also consists
Open American National Corpus.

The rows of our semantic space correspond to word forms
and the columns of the semantic space correspond to word
lemmas present in the corpus. We adopt a window size of 10.
We keep 2000 dimensions (i.e., 2000 most frequent lemmas)
and do not filter out stop words, since they have been shown to
be useful for various semantic similarity tasks in [3]. We use
positive point-wise mutual information to compute values of
the vector components, which has been shown to be favourable
in [3].

B. Word Sense Discrimination
As described in Section V, our approach is very similar

to [5]. [5] represents each target word token by averaging
type vectors of the neighbouring words that occur in its
context. In our approach, instead of averaging type vectors, we
average the token vectors of the neighbouring words, which
we compute with our extended compositional model. Our first
goal is to measure the effect of longer dependency paths and
different filtering strategies. For this purpose, we cluster all the
evaluation data with hierarchical clustering – average linkage
clustering. For clustering, we require 7 clusters as it is done
in [12]. We choose cluster purity as our evaluation metric. To
compute cluster purity, we assign each cluster to a sense label,
which is the most frequent one in the cluster. The number of
the correctly assigned instances divided by the number of all
the clustered instances gives us cluster purity. Following [12],
we assign each sense label to at most one cluster so that the
assignment leads to a maximally accurate mapping of senses
to clusters.

In our experiments we consider dependency paths of length
up to four. For the maxzero and the discsubs filtering strategies,
we need to specify how many context clues we want to choose.
We try following variants : choosing highest ranking context
clue, choosing two highest ranking context clues and choosing
three highest ranking context clues. We also try a variant
where we let all context clues contribute to the compositional
representation of the target word, but we weight them by the
inverse of their rank. The results are reported in Table III. The
rows are the dependency path lengths (e.g. L2 means we are
using dependency paths of length at most 2) and the columns
are the filtering strategies.

The results show that using longer dependency paths can
improve cluster purity. The best result is obtained when we
consider dependency paths up to length 4 and utilize maxzero
filtering strategy choosing only the highest scoring context
clue. The results illustrate the benefit of using longer depen-
dency paths. Among the filtering strategies, maxzero, discsubs
are consistently better than using no filtering, especially when
we only use the highest scoring context clue. nostop also
achieves good performance. On the other hand, content is not
better than using no filtering.

Our second goal is to compare our approach to previous
approaches [5] and [12] as described in Section V. We split our
evaluation dataset randomly into a development and a test set.
The development set contains around 25% of all target words
in our evaluation data. In the development set, we find the



Cluster Purity
token averaging 51.19
type averaging 45.46
local features 47.08

TABLE IV
WORD SENSE DISCRIMINATION : COMPARISON TO PREVIOUS APPROACHES

best parameter setting for our extended compositional model
– maxzero filtering with a dependency path length up to four
gives best results. In the test set, we compare the performance
of our approach with this setting to previous approaches.
We use the same clustering parameters and evaluation metric
as before. Table IV holds the comparison. type averaging is
the system based on [5], local features represents the system
utilizing local feature representation as described in [12] and
token averaging in bold is our system relying on the extended
compositional model. The result show that our model improves
over previous approaches. The improvements are statistically
significant at the p < .05 level based on a paired t-test.

C. Feature Expansion

In this section, we use our compositional representation to
augment a vanilla WSD system. We expand lexical features
(i.e. CW and CF features) with token vectors derived from
our extended compositional model. For comparison, we also
use other word representations to augment the vanilla WSD
system. One of them is brown clusters [13], which has been
effectively used for feature expansion[14], [19] before. We
induce brown clusters from the same corpus as we build the
semantic space. We use in our experiments 400 brown clusters.
We additionally utilize the additive context representation
described in [5] and simple type vectors from our semantic
space for further comparison.

We use the same development and test set from Section
VI-B. In the development set, we find the best parameter set-
ting for our extended compositional model via 10-fold cross-
validation. For feature expansion, we have the best setting if
we do not have any filtering and use dependency paths up to
length four. In the test set, we compare the performance of
our approach with this setting to other word representations
via 10-fold cross-validation. Table V holds the comparison.
token vector in bold is the word representation relying on
our extended compositional model. type averaging is the
word representation based on context vectors described in [5].
type vector is the word representation based on simple type
vectors from the semantic space. brown clusters is the word
representation based on brown clusters and noexpansion is the
plain WSD system. The results show that our model achieves a
better performance than other word representations for feature
expansion. The improvements are statistically significant at the
p < .05 level based on a paired t-test.

VII. RELATED WORK

Recently, several researchers have investigated composition
in distributional semantic models [9], [24], [15], [25], [26].

Accuracy
token vector 65.52

brown clusters 61.63
type averaging 62.25

type vector 62.76
noexpansion 59.96

TABLE V
FEATURE EXPANSION : COMPARISON TO PREVIOUS APPROACHES

These models offer a powerful tool to represent meaning in
context. Composition is achieved through algebraic operations
on word vectors or word matrices. Our work relies on the
methods introduced in [10]. [10] defines the composition
between specific word pairs related over a grammatical depen-
dency relation. Our work extends this model to longer arbitrary
dependency relations and investigates methods to filter out
uninformative dependency paths and context clues.

Our work on word sense discrimination is similar to [5],
except that, instead of averaging the type vectors, we average
the token vectors of the neighbouring words, which we com-
pute with our extended compositional model. Note that, [5]
uses an additive model by averaging type vectors of all words
in a context. In contrast, our model relies on a multiplicative
model as introduced in [10].

In this paper, we use token-based vectors from our ex-
tended compositional model for feature expansion. Several
researchers have investigated methods to induce word repre-
sentations from unlabeled large corpora and augment lexical
features with their corresponding word representations such
as word clustering [18], [19], [20], [21], word embeddings
via neural language models [14] and distributional semantic
models [2]. Most of these approaches except [21] use type-
based word representations. Our method is one of the few
token-based approaches for feature expansion.

VIII. CONCLUSIONS

In this paper, we utilize an extended compositional DSM
for word sense discrimination and word sense disambiguation.
Building on previous work, we extend element-wise multi-
plication model introduced in [10] to effectively incorporate
richer contexts. We use arbitrary longer dependency paths and
investigate methods to filter out uninformative context clues.
Our experiments show that longer dependency paths introduce
useful information improving performance and that filtering
mechanisms are essential.

For word sense discrimination, we build context vectors
from the word representations based on the extended compo-
sitional model. For word sense disambiguation, we augment
lexical features with their word representations based on
the same extended compositional model. We show that our
approach can improve both word sense discrimination and
word sense disambiguation.

To our knowledge, we are the first ones to apply a composi-
tional DSM to feature expansion. It is one of the few instances
of token-based feature expansion with [21].
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