State Elements

RS latch

R,S control mode (reset, set, storage) Q, Q^{\prime} track R and S
$R=1, S=1$ invalid

D latch
C controls mode ($0=$ latched, $1=$ transparent)
D is data input ("copied" during transparent)
Signal value triggered: Q, Q' track D when $\mathrm{C}=1$ Guarantees $R=1, S=1$ can not be done

D flip-flop (falling or negative edge triggered) Two cascaded D latches
$\mathrm{C}=1$ means $1^{\text {st }}$ latch transparent, $2^{\text {nd }}$ latched $\mathrm{C}=0$ means $1^{\text {st }}$ latch latched, $2^{\text {nd }}$ transparent Output changes on falling edge ($\mathrm{C}: 1=>0$)

Signaling Behavior

Signaling Behavior

Signaling Behavior

Signaling Behavior

> D flip-flop (falling edge triggered)

Example circuits and clocking

- Suppose we want to:
- 1-bit value A stored in a D flip-flop
- 1-bit value B stored in a D flip-flop
- 1-bit value C stored in a D flip-flip
- Do addition of A and B, producing C
- $C=A+B$
- What is the circuit?
- Need three D flip-flops
- Need one 1 bit adder

Example circuits and clocking

Example circuits and clocking

- Is there any difference in the delay with this one?

- In fact, sequential logic often looks like this....

Example circuits and clocking

- Now, suppose we want to build a 4-bit counter?
- Counter increments by 1 for a clock pulse (falling edge event)
- 4 1-bit adders
- 4 1-bit D flip-flops
- What's the circuit?
- How often to "pulse" the clock (increment counter)?

Example circuits and clocking

Recall: The flip-flops are edge triggered -- assuming falling edge (negative)
How often can an edge event happen?
No more frequent than the maximum propagation delay
Let's compute the delay -- assume 2 ns for latch to stabilize and 4 ns for adder

Example circuits and clocking

- Values of output bits must all be stable
- I.e., can't pulse the clock (increment) until all four bits are computed
- Adder circuit is ripple-carry: Must wait for carries
- 4ns per adder
- 4-bit adder
- thus, 4 * $4 \mathrm{~ns}=16 \mathrm{~ns}$ for the adder
- Flip-flops
- Must wait for $1^{\text {st }}$ latch of last bit to stabilize (others done in parallel)
- Must wait for $2^{\text {nd }}$ latch of all bits to stabilize (all done in parallel)
- thus, $2 n s+2 n s=4 n s$
- Overall delay $=16 \mathrm{~ns}+4 \mathrm{~ns}=20 \mathrm{~ns}$. Clock pulse is 20 ns .

Example circuits and clocking

Clock pulse is 20 ns

Flip-flops are falling edge triggered
Thus, a clock falling edge every $20 n s$

Example circuits and clocking

Can we build a counter with just flip-flops?

What's the maximum clock pulse rate?

