University of Pittsburgh

CS/COE 447 Spring 2010 Exam 1

There are a total of 100 points. You are allowed to use the Green Card (or a copy of it) that comes with the text.

Do not use any pseudo instructions. Use only instructions listed in the core instruction set on the front of the green card, as they are specified there. That is, if you were to assemble your program, the assembler should not replace any of your instructions by two or more instructions. Exception: you may use the la and li pseudo instructions.

We can't answer questions like What do you want for this question? or I don't understand this question. It would be too disruptive. It would also be unfair, since some people would get extra information.

Please just use your best judgment.

Show your work for partial credit.
Each question is on its own page, to give you plenty of room. Don't feel you need to fill up each page; just write what you need to.

Good luck!!

1. (8 points)
(a) Translate B397 hex into binary 1011001110010111
(b) Translate 10111101110011111 binary into hex 17b9f
(c) Translate 38 decimal into binary $100110-32+6+2$
(d) Translate 2^{8} decimal into binary 100000000
2. (12 points) Give the machine code for the following instructions, first in binary and then in hex:
```
subu $t1,$a1,$s1
```

```
Binary:
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 ~ 0 1 0 0 1 0 0 0 0 0 ~ 1 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 ~ 0 1 0 0 ~ 1 0 0 0 ~ 0 0 1 0 ~ 0 0 1 1 ~
```

Hex: 0x00b14823
sw \$a1, 16(\$t1)
Binary:
10101101001001010000000000010000
10101101001001010000000000010000
Hex: Oxad250010
ori \$t1, \$t1, 0x7070
Binary:
00110101001010010111000001110000
00110101001010010111000001110000
35297070
Hex: 35297070
3. (5 points) Give the machine code for the beq instruction below, first in binary and then in hex. Note that in the beq instruction, $\boldsymbol{\$} \mathbf{t} 1$ is $\mathbf{r s}$ and $\$ \mathbf{a} \mathbf{3}$ is $\mathbf{r t}$.

```
Address Source
0x0040098 len_loop: lbu $t1,0($t0)
0x004009c beq $t1,$a3,len_exit
0x00400a0 addi $t0,$t0,1
0x00400a4 sub $t1,$t1,$a0
0x00400a8 lbu $t1,0($t0)
0x00400ac j len_loop
0x00400b0 len_exit: sub $v0, $t0, $a0
0x00400b4 jr $ra
Binary:
0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Hex:
0x11270004
```

4. (26 points) Suppose memory contains the following values.

Address	Value (+0)	Value (+4)	Value (+8)	Value (+c)	Value (+10)
0×10010000	0xFEDCBA98	$0 \times 3338 F A B C$	0×81234011	0×00401111	0×00000000

What value (in hex) is placed into which register or memory location by each of the following instructions?

5. (14 points) Below is a solution to Program 1, Part 2.

```
Please answer the questions marked by #Q: There are 7 of them.
    .data
string: .space 9
    .text
        li $a0, 0xCAB123EA
la $a1, string
jal translate
    j endprogram
translate:
addi $t9, $zero, 8
addi $t8, $zero, 0
lui $t7, 0xF000
            #Q: What is $t7 now?
translate_loop:
and $t1, $a0, $t7
            #Q: The first time through the loop, what is $t1 now?
srl $t1, $t1, 28
            #Q: The first time through the loop, what is $t1 now?
sll $a0, $a0, 4
            #Q: The first time through the loop, what is $a0 now?
slti $t2, $t1, 0xA
            #Q: The first time through the loop, what is $t2 now?
beq $t2, $zero, label
            #Q: The first time through the loop, is the next instruction executed?
addi $t0, $t1, 0x30
j translate_store
label:
addi $t0, $t1, 0x37
```

```
translate_store:
```

sb \$t0, 0(\$a1)
\#Q: The first time through the loop, what value is stored in memory?
addi \$a1, \$a1, 1
addi \$t8, \$t8, 1
bne \$t8, \$t9, translate_loop
sb \$zero, 0(\$a1)
jr \$ra
endprogram:
\#Q: What is \$t7 now?
A: $0 x f 0000000$
\#Q: The first time through the loop, what is \$t1 now?
A: 0xc0000000
\#Q: The first time through the loop, what is \$t1 now?
A: 0x0000000c
\#Q: The first time through the loop, what is $\$ \mathrm{aO}$ now?
A: 0xab123ea0
\#Q: The first time through the loop, what is $\$ \mathrm{t} 2$ now?
A: 0
\#Q: The first time through the loop, is the next instruction executed?
A: no
sb \$t0, 0(\$a1)
\#Q: The first time through the loop, what value is stored in memory?
A: 0x43 (one byte)
6. (15 points) Assume $\$$ t0 has been assigned some value. Write MIPS code that sets bits 1,4 , and 8 (makes them 1) in $\$$ to. The code should preserve the contents of all the other bits in $\$ \mathrm{t0}$.
ori $\$ \mathrm{to}, \$ \mathrm{t0}, 0 \times 112$
It is 0×112 because the 1 's below are bits 1, 4, and 8100010010
7. (20 points) Assume the following:

```
.data
k: .word 2
array: .word 87,22,88,777,23,89,845
```

Write MIPS assembly-language instuctions to accomplish the following pseudocode segment. k and array in the pseudo code refer to the above variables stored in memory. You must use those labels in your code. And, your code should work even if we were to change the values stored in k and array.

```
if (array[k] >= 0):
    array[0] = 10;
else:
    array[1] = 50;
.data
k: .word 2
array: .word 87,22,88,777,23,89,845
.text
# get array[k]
la $t0,k
lw $t0,0($t0)
sll $t0,$t0,2
la $t1,array
add $t0,$t0,$t1
lw $t0,0($t0)
la $t5,array
# is array[k] >= 0?
slt $t0,$t0,$zero
# $t0 is O if it is
bne $t0,$zero,else
#Stay here to execute the ''then'' clause
li $t6,10
sw $t6,0($t5)
j end
else:
li $t6, 50
sw $t6,4($t5)
```

