University of Pittsburgh

Department of Computer Science

CS/COE 0447 – Computer Organization and Assembly Language
Programming Assignment #4
NOTE: your program should be submitted via e-mail to your TA (mhanna@cs.pitt.edu). The subject line of your message should be 447: Programming Assignment 4 - your name.
In many practical situations, various I/O and other peripheral devices are controlled by setting or resetting specific bits in memory. Typically, we read a byte from a memory location that is mapped to certain I/O device register (we call this arrangement “memory-mapped I/O”), then modify a bit and then write the modified byte to the same memory location (this is called READ-MODIFY-WRITE). In other situations, we want to monitor certain I/O status by reading some memory locations and examining certain bits.
For this assignment, your tasks are to write the following functions, and then call them as specified below.
char bit_set (char* addr, int bit_loc);

// read a byte from addr

// set the bit defined by bit_loc (0: LSB, 7: MSB)

// write the modified byte to addr

// return the specified bit (before modification) to the caller (0 or 1)

char bit_reset (char* addr, int bit_loc);

// read a byte from addr

// reset the bit defined by bit_loc (0: LSB, 7: MSB)

// write the modified byte to addr

// return the specified bit (before modification) to the caller (0 or 1)

char bit_flip (char* addr, int bit_loc);

// read a byte from addr

// flip the bit defined by bit_loc (0: LSB, 7: MSB)

// write the modified byte to addr

// return the specified bit (before modification) to the caller (0 or 1)

char bit_read (char* addr, int bit_loc);

// read a byte from addr

// return the specified bit to the caller (0 or 1)

Now, define the following data in the data section as follows:
	.byte 132, 156, 88, 79

Let’s call these bytes (from left) A, B, C, D (so we can refer to them easily below). Your main program should do the following:
char bit_status;

bit_status = bit_flip (A, 1);

if (bit_status) bit_status = bit_set (B, 5);

else bit_status = bit_reset (B, 0);

if (bit_status) bit_status = bit_flip (C, 4);

else bit_status = bit_flip (C, 5);

if (bit_status) bit_status = bit_read (D, 3);

else bit_status = bit_read (D, 4);

print the content of A, B, C, D after executing the above.

Make sure that your program generates the correct output.
PAGE
2/2

