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Automated essay-scoring technologies can enhance both large-scale assessment

and classroom instruction. Essay evaluation software not only numerically rates

essays but also analyzes grammar, usage, mechanics, and discourse structure.1,2 In the

classroom, such applications can supplement traditional instruction by giving students 

automated feedback that helps them revise their work
and ultimately improve their writing skills. These
applications also address educational researchers’
interest in individualized instruction. Specifically,
feedback that refers explicitly to students’own writ-
ing is more effective than general feedback.3

Our discourse analysis software, which is embed-
ded in Criterion (www.etstechnologies.com), an
online essay evaluation application, uses machine
learning to identify discourse elements in student
essays. The system makes decisions that exemplify
how teachers perform this task. For instance, when
grading student essays, teachers comment on the dis-
course structure. Teachers might explicitly state that
the essay lacks a thesis statement or that an essay’s
single main idea has insufficient support. Training
the systems to model this behavior requires human
judges to annotate a data sample of student essays.
The annotation schema reflects the highly structured
discourse of genres such as persuasive writing. 

Our discourse analysis system uses a voting algo-
rithm that takes into account the discourse labeling
decisions of three independent systems. The three
systems employ natural language processing meth-
ods to extract essay-based features that help predict
the discourse labels. They also use machine learn-
ing to classify the sentences in an essay as particu-
lar discourse elements. Our tool automatically labels

discourse elements in student essays written on any
topic and across writing genres.

Essay-based discourse 
Researchers have proposed a variety of discourse

analysis schemes to capture the semantics of multi-
sentence texts. Some schemes associate a hierarchi-
cal representation to a given text, while others a lin-
ear one. The representation used in our work is linear.
It assumes that essays can be segmented into
sequences of discourse spans and that each span is
associated with an overall communicative goal.  We
focus on essay-specific communicative goals, which
we encode using intuitive labels that are frequently
used in teaching writing, such as thesis statements,
main ideas, and conclusion statements. 

Essay annotation protocol
To facilitate development of our discourse analy-

sis systems, two human judges annotated several
hundred essays. The judges labeled elements in the
essay data according to a protocol that explained how
to annotate several discourse categories:

• Title segments indicate essay titles.
• Introductory material segments provide the con-

text or set the stage in which the thesis, a main
idea, or the conclusion is to be interpreted. 
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• Thesis segments state the writer’s position
statement and are related to the essay
prompt.

• Main idea segments assert the author’s main
message in conjunction with the thesis.

• Supporting idea segments provide evidence
and support the claims made in the main
ideas, thesis statements, or conclusions. 

• Conclusion segments summarize the
essay’s entire argument.

• Irrelevant segments do not fit into the
other discourse categories and do not
meaningfully contribute to the essay. 

Figure 1 shows an example annotated essay.
Test questions on standardized tests and

in classroom instruction often elicit persua-
sive or informative essays. Persuasive writ-
ing requires students to state their opinion on
a topic and to validate that opinion with con-
vincing arguments. An informative prompt
also requires students to state their opinion
on a topic but might suggest that students use
personal experiences and observations to
substantiate their opinion. Informative essays
often involve more descriptive writing. Both
genres adhere to strict discourse strategies that
require at least a thesis statement, several main
and supporting ideas, and a conclusion.

Annotation process and
agreement results

In the beginning, or pretraining, phase,
judges practiced annotation on an initial set
of approximately 50 essays from three essay
prompts, which called for both persuasive
and informative writing styles. 

During the training phase, judges were
allowed to discuss their decisions as they
labeled identical sets of essays on three top-
ics. Using a program that implements J.S.

Uebersax’s kappa computation,4 we regu-
larly ran kappa statistics to ensure that the
judges maintained a kappa of at least 0.8 for
all categories. The kappa statistic measures
pairwise agreement among a set of judges
who make categorical judgments, correct-
ing for chance expected agreement.
Research in content analysis suggests that
kappa values higher than 0.8 reflect high
agreement.5

In the final annotation phase, the judges
could not discuss the essays. They annotated
independent data sets of 120 essays for each of
the three prompts used in the pretraining phase,
with the exception of 40 overlapping essays.
To ensure consistent labeling, we ran kappa sta-
tistics on their independent judgments to mea-
sure agreement on the overlapping cases.

Again, if kappa for any particular category fell
below 0.8, the judges reviewed the protocol (but
did not discuss individual essays).  

Agreement between judges is critical in
machine-learning applications because the
system learns from their decisions. Table 1
shows a high level of agreement on the over-
lapping sets: kappa (K) values are usually
larger than 0.8. Table 1 also shows precision
(P), recall (R), and F-measure figures that
reflect the relative performance among
human judges:

• Precision: the number of cases in which
J1 and J2 agree divided by the number of
cases labeled by J2, where J1 = human
judge 1 and J2 = human judge 2

• Recall: the number of cases in which J1
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Figure 1. An annotated essay. Judges manually labeled all sentences as belonging to
one of seven specified categories.

<Introductory material> “You can’t always do what you want to do,” my mother said. She
scolded me for doing what I thought was best for me. It is very difficult to do something that I
do not want to do. </Introductory material> <Thesis> But now that I am mature enough to
take responsibility for my actions, I understand that many times in our lives we have to do
what we should do. However, making important decisions, like determining your goal for the
future, should be something that you want to do and enjoy doing. </Thesis> 

<Introductory material> I’ve seen many successful people who are doctors, artists, teachers,
designers, etc. </Introductory material> <Main point> In my opinion they were considered
successful people because they were able to find what they enjoy doing and worked hard for
it. </Main point> <Irrelevant> It is easy to determine that he/she is successful, not because
it’s what others think, but because he/she have succeed in what he/she wanted to do.
</Irrelevant>

<Introductory material> In Korea, where I grew up, many parents seem to push their children
into being doctors, lawyers, engineer etc. </Introductory material> <Main point>Parents
believe that their kids should become what they believe is right for them, but most kids have
their own choice and often doesn’t choose the same career as their parent’s. </Main point>
<Support> I’ve seen a doctor who wasn’t happy at all with her job because she thought that
becoming doctor is what she should do. That person later had to switch her job to what she
really wanted to do since she was a little girl, which was teaching. </Support> 

<Conclusion> Parents might know what’s best for their own children on a daily basis, but
deciding a long term goal for them should be one’s own decision of what he/she likes to do
and wants to do. </Conclusion>

Table 1. Agreement between two human judges for 40 essay responses to prompts A, B, and C (precision, recall, and F-measure).

Prompt A B C

Discourse element K P R F K P R F K P R F

Conclusion 1.00 1.00 1.00 1.00 0.90 0.91 0.92 0.91 0.96 0.97 0.98 0.97

Introductory 0.86 0.82 0.94 0.88 0.82 0.85 0.82 0.83 0.88 0.97 0.81 0.89
Material

Main points 0.85 0.87 0.86 0.87 0.85 0.86 0.87 0.87 0.96 0.96 0.96 0.96

Other* 1.00 1.00 1.00 1.00 0.56 1.00 0.50 0.67 0.79 0.74 0.88 0.80

Support 0.96 0.99 0.98 0.98 0.90 0.95 0.97 0.96 0.96 0.99 0.98 0.98

Thesis 0.92 0.97 0.89 0.93 0.77 0.82 0.78 0.80 0.94 0.92 0.99 0.96

System-wide 0.95 0.97 0.97 0.97 0.86 0.92 0.92 0.92 0.94 0.97 0.97 0.97

* Because the original categories title and irrelevant occur infrequently, we collapsed them and any unlabeled text into the category other and used
this for training and testing.



and J2 agree divided by the number of
cases labeled by J1

• F-measure: 2 × precision × recall/(preci-
sion + recall)

Finally, the judges annotated approxi-
mately 250 essay responses to six prompts
(A, B, C, G, H, and N). The data sets included
persuasive and informative writing from 12th
graders and first-year college students. 

Automated discourse analysis
To train our systems, we used identical

data sets categorized by our two human
judges as introductory material, thesis, main
ideas, supporting ideas, conclusion, title, and
other. We experimented with both decision-
based and probabilistic systems. Our dis-
course analysis systems use different feature
sets and methodologies to label all sentences
in an essay.

Decision-based discourse analyzer 
We use C5.0, a decision-tree machine-

learning algorithm with boosting, to get the
best model. For model building, several fea-
ture extraction programs identify various dis-
course-relevant features for all sentences
from a training sample of essays. We input
these feature vectors into C5.0, which gen-
erates a model for subsequent labeling. To
label new, unseen data, the system reads in
an essay, and the feature extraction programs
find the relevant features for each sentence.
Another program creates feature vectors for
the sentences. The C5.0 model reads in each
vector and classifies each sentence (vector)
on the basis of the C5.0 feature set, which is
composed of the following elements. 

RST rhetorical relations and status. Accord-
ing to rhetorical structure theory (RST), peo-
ple can associate a rhetorical structure tree
to any text.6 The tree’s leaves correspond to
elementary discourse units, and the internal
nodes correspond to contiguous text spans.
A status (nucleus or satellite) and a rhetor-
ical relation a relation that holds between
two nonoverlapping text spanscharacter-
ize each tree node. The nucleus represents
elements that are more essential to the
writer’s intention than those expressed by
the satellite. Moreover, a rhetorical relation’s
nucleus is comprehensible independent of
the satellite, whereas without the nucleus,
the satellite is incomprehensible. When
spans are equally important, the relation is
multinuclear. 

Rhetorical relations reflect semantic,
intentional, and textual relations that hold
between text spans, as Figure 2 illustrates.
For example, one text span might elaborate
on another text span, the information in two
text spans might differ, or the information in
one text span might provide background for
the information presented in another. Figure
2 displays a text fragment’s rhetorical struc-
ture tree in the Mann and Thompson style.6

The figure represents nuclei as straight lines
and satellites as arcs. The parser labeled
internal nodes with rhetorical relation names
(elaboration, background, and so on).

We build rhetorical structure trees auto-
matically for each essay using Marcu’s cue-
phrase-based discourse parser,7 which assigns
RST rhetorical relations and status to essay
sentences. We associate a feature with each
sentence in an essay that reflects the status of
its parent node (nucleus or satellite), and

another feature that reflects its rhetorical rela-
tion. For example, we associate the status
satellite and the relation elaboration to the
last sentence in Figure 2 because it is the
satellite of an elaboration relation. It associ-
ates the status nucleus and the relation elab-
oration to sentence 1 because it is the nucleus
of an elaboration relation.

Discourse marker words, terms, and struc-
tures. A discourse analysis submodule iden-
tifies cue words, terms, and syntactic struc-
tures that function as discourse markers.
Earlier research indicates that these elements
relate to the organization of ideas in an
essay.8 For example, the lexicon specifies
classes of cue words containing information
about whether or not the item is a discourse
development term. So, in the sentence, “I
think that people should travel to new places
because it enhances their perspective,”
“because” marks the development of the idea
that “people should travel to new places.” A
cue word class might indicate the beginning
of a new argument, such as when “first”
occurs as an adverbial conjunct, as in the sen-
tence, “First, I think that people should travel
to new places.” Syntactic structures, such as
infinitive clauses, also indicate new argu-
ments. For example, infinitive clauses that
begin sentences and occur toward the begin-
ning of a paragraph tend to mark the begin-
ning of a new argument. These cue words,
terms, and structures correspond to particu-
lar essay-based discourse elements.

Lexical items for general essay and category-
specific language. Empirical analyses1,9 show
that particular words and terms characterize
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Mars experiences frigid
weather conditions.
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Figure 2. Example rhetorical structure tree. Nuclei are represented as straight lines and satellites as arcs. Names assigned to internal
nodes reflect their rhetorical relation.



two sublanguages: a general essay sublan-
guage and another related to certain discourse
categories. “Should,” “might,” “agree,” “dis-
agree,” and “I” relate to the general essay sub-
language; the lexical items “opinion” and
“feel” link specifically to thesis statements;
and the term “in conclusion” clearly relates to
conclusions. The system uses these kinds of
words and terms to predict discourse labels.

Syntactic structure and sentence mechanics.
In addition to rhetorical and lexical elements,
some syntactic structures and grammatical
features are relevant to essay-based discourse
elements. We identify the following syntactic
units in sentences:

• Subordinating clauses
• Complement clauses
• Infinitive clauses
• Relative clauses
• Auxiliary verbs

Four features relate to sentence and para-
graph position:

• The sentence number within the essay
• The sentence number within a paragraph
• The paragraph number in which the sen-

tence occurs
• The relative position of the paragraph in

which the sentence occurs (for example,
first paragraph, body paragraph, or final
paragraph)

Sentence-final punctuation also relates to
essay-based discourse. Our system consid-
ers four types of final punctuation:

• Full stop
• Question mark
• Exclamation point
• No sentence-final punctuation

Probabilistic-based discourse
analyzers 

Our probabilistic-based discourse analyz-
ers are couched in the noisy-channel frame-
work, as Figure 3 shows. In this framework,
we assume that a stochastic process that
assigns a probability P(L) to every label
sequence L = l1 l2 … ln generates a vector of
discourse labels L. Intuitively, we want this
stochastic process to assign high probabili-
ties to likely sequences, which resemble the
sequences found in the training data, and low
probabilities to unlikely sequences. For
example, given the nature of essay writing,

the sequence Thesis Main_idea Supporting_idea 
Supporting_idea Conclusion Conclusion is more likely
and should have higher probability than the
sequence Conclusion Supporting_idea Main_idea 
Thesis Main_idea Conclusion. (In the training data,
we found no sequence of labels starting with
a conclusion sentence or with a thesis sentence
surrounded by two main idea sentences.)

We also assume that each label li ∈ L passes
through a noisy channel and maps into a sen-
tence in a student-written essay. For example,
when passed through the noisy channel, the
first Thesis label maps into the first thesis sen-
tence in Figure 1, “But now that I am mature
enough to take responsibility for my actions,
I understand that many times in our lives we
have to do what we should do.” The next The-
sis label maps into the second thesis sentence,
“However, making important decisions, like
determining your goal for the future, should
be something that you want to do and enjoy
doing.” If we model the channel properly, the
probability that a Thesis label generates such
a sentence should be greater than the proba-
bility of it generating a sentence such as “In
Korea, where I grew up, many parents seem
to push their children into being doctors,
lawyers, engineer, etc,” which the human
annotators labeled as introductory material.

Channel modeling. Our application uses a
simple noisy-channel model. We assume that
a probabilistic finite-state transducer auto-
matically generates each pair <sequence of
discourse labels, sequence of sentences
(essay)>. The transducer has eight states, as
Figure 4 shows:

• One start state, which is also the final state
• Six intermediary states, one for each dis-

course label recognized by the system
• One end_of_sentence state, to facilitate transi-

tions between the start and intermediary states

From the start state, the system moves on an
epsilon/null transition (*e*) with equal prob-
ability to any intermediary state. In each inter-
mediary state, the system generates either

• A word on an epsilon transition according
to a given probability and remains in the
same intermediary state

• A discourse label when it receives as input
an end-of-sentence special character
(When this occurs, the system ends in the
end_of_sentence state from which it returns
to the start state with probability one)

The diagram in Figure 4 partially represents
the finite-state transducer. The finite-state
machine assumes that the words in each sen-
tence are generated independently according
to probabilities estimated from the training
data using simple maximum-likelihood tech-
niques.10 The word “conclusion,” for exam-
ple, is more likely to appear in the conclusion
state than in the introductory material state.

Language modeling. Next, we need a model
that assigns probability to each conceivable
sequence of discourse labels. These probabil-
ities should describe future label sequences:
If a sequence has high probability, it should
appear frequently in the test data. We use the
language model to select among competing
hypotheses suggested by the channel model.
Its reasoning is completely independent of
actual words; rather, it concentrates on deter-
mining which label sequence is most likely.

Our training data consists of 1,179 se-
quences correctly labeled by human annota-
tors. In the example sequences in Figure 5, we
use BR to denote paragraph breaks. Even from
this small set, we can already see patterns, such
as main ideas often being followed by sup-
porting ideas, and sequences containing a sin-
gle contiguous block of thesis labels. We
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L = l1l2...ln

Argmax P(L) P(W|L)

P(L)

source W = w1w2...wm

W = w1w2...wm
unseen essay that consists of

n sentences: w1w2...wm

L = 

L is a “grammatical”
sequence of labels 

W is a reasonable  
sequence generated by L

P(W|L)

source

decoder

Figure 3. The noisy-channel framework used by the probabilistic discourse labelers. L
represents a sequence of discourse labels, and W represents its corresponding
sequence of words. P(L) represents the probability of the sequence of labels L, while
P(W|L) represents the probability of the sequence L to generate the sequence W.



model the probabilities associated with label
sequences using two models: the local lan-
guage model and the global language model. 

The local language model exploits local
dependencies among labels. We approximate
the sequence’s probability by pretending that
each new label depends only on the previous
two labels:

P(l1 l2 l3 … ln) ≈
P(l1  START) * P(l2  l1 START) 

* P(l3  l1 l2) * … * P(END  ln ln–1)

This trigram model lets us estimate indi-
vidual probabilities such as P(l3 | l1 l2) directly
from the 1,179-sequence training set—every
time the subsequence l1 l2 appears, we tabu-

late what comes next. Sparse data creates a
technical problem in which many tabulated
trigrams have zero probability, although they
do in fact occur in unseen test data. To
smooth these probabilities we use an inter-
polation formula:

P(l3 | l1 l2) ≈ λ3 * count(l1 l2 l3) / 
count(l1 l2) + 

λ2 * P(l3  l2) + 
λ1 * P(l3) + 
λ0

We estimate the lambdas using iterative
expectation maximization (EM) training.
This model discriminates channel-generated
hypotheses by virtually ruling out any
sequence containing strange subsequences.

Local language modeling does not capture
global effects. If we ask the model to sto-
chastically generate sequences of discourse
labels, for example, we observe a lack of
overall coherence that does not match the
kinds of sequences we observe. Many such
global affects exist. For example, 96 percent
of sequences contain a single block of thesis
statements—a pattern local language mod-
eling might not catch. As another example,
a conclusion tends to come directly after a
thesis statement followed by n blocks of
Main_idea/Supporting_idea/BR. If n > 2, this ten-
dency is extremely strong (88 percent); if 
n < 3 (47 percent), the tendency is weaker.

We modeled such affects by manually cre-
ating a finite-state network of grammatical
label sequences containing 43 nodes and 70
transitions. Each transition represents a con-
tiguous block of a certain label type. We expand
the transitions to allow the finite-state machine
to generate 1, 2, 3, and so on labels within the
block. Our finite-state network did not account
for 13 percent of the training sequences. Many
of the sequences were rare and had no obvious
explanation (such as discontiguous thesis
blocks), and straightforwardly accounting for
all of them would amount to removing useful
grammatical constraints. Finally, we trained
transition probabilities from our corpus of
1,179 sequences using the EM algorithm.

We represent both language models
straightforwardly as probabilistic finite-state
acceptors.

Probabilistic systems. We train the channel
and language models using simple maximum-
likelihood techniques and the EM algo-
rithm.10 When given as input a sequence W
of unlabeled sentences (essay), we associate
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*e*/“conclusion : 0.001

*e*/confronted : 0.00002

*e*/*e*: 1.0

Conclusion

Introductory
material

Main idea Main_idea/"end_of_sentence" : 0.00002

Other

Supporting
idea

Thesis

Start End_of_sentence

Figure 4. Partial representation of the finite-state transducer that implements the
channel model. The transducer has eight states, represented as ovals, corresponding to
the start and end of a sentence as well as the discourse labels recognized by the system. 

Figure 5. Sample sequences from the training data. Human annotators labeled 1,179
sequences taken from student essays.

Other BR Introductory_material Introductory_material Introductory_material BR Thesis Thesis
Thesis BR Main_idea Supporting_idea Supporting_idea 

Thesis Thesis BR Main_point Supporting_idea Supporting_idea Supporting_idea
Supporting_idea BR Main_point Supporting_idea Supporting_idea Supporting_idea
Supporting_idea BR Main_point Supporting_idea Supporting_idea Supporting_idea BR
Conclusion Conclusion 

Introductory_material Introductory_material Introductory_material BR Main_point
Supporting_idea Supporting_idea Supporting_idea Supporting_idea Supporting_idea
Supporting_idea Supporting_idea Supporting_idea Supporting_idea Supporting_idea BR
Thesis Supporting_idea Supporting_idea Supporting_idea Supporting_idea Supporting_idea
Supporting_idea BR Main_point Supporting_idea Supporting_idea Supporting_idea
Supporting_idea BR Conclusion 



discourse labels with each sentence by
searching for the sequence of discourse
labels L that maximizes the product of the
channel and language model probabilities:

L = argmax L P(L) P(WL)

Because we represent both the channel
and language models as probabilistic finite-
state machines, finding the most probable
sequence of discourse labels L means find-
ing the path of maximum probability in the
final state machine that results from com-
posing the channel and language model
machines. 

Using the noisy-channel framework, we
can easily experiment with three systems:

• A base system assigns discourse labels
using only the lexical information in each
sentence. It uses the channel model to
assign labels to sentences in an essay.

• A local system assigns discourse labels
based on both the lexical information in
each sentence and the local, trigram-based
language model.

• A global system assigns discourse labels
based on the lexical information in each
sentence and the global essay-based lan-
guage model.

Positional baseline algorithm
Our baseline system uses a position-based

selection algorithm that assigns discourse
labels to sentences in an essay. The algorithm
implements rules that operationalize regu-
larities specific to the discourse annotations
in the training corpus. The rules are

• Introductory material: Select the first sen-
tence of the essay.

• Thesis statement: Select all text in the first
paragraph except the first sentence.

• Main ideas: Select the first sentence of all
body paragraphs.

• Supporting ideas: Select all text in the
body paragraphs, except the first sentence.

• Conclusion: Select all text in the final
paragraph.

• Other: Select all header and footer text,
and sentences with no final punctuation.
(A preprocessing program identifies all
header and footer text.)

Evaluation
We’re interested in addressing three sys-

tem-related questions:

• Can our automatic discourse analyzers
assign discourse labels at performance lev-
els higher than the baseline?

• Given that our systems use different tech-
niques and features to infer the discourse
label associated with each sentence, can
we combine the outputs of the individual
systems to produce a system that outper-
forms the systems individually?

• Can our systems analyze essays on topics
other than those used for training? To
assess the systems’generalizability—that
is, their applicability to a variety of essay
topics—we estimate the degree to which
their performance is affected when we test
them on data belonging to an essay topic
different from those used for training.

Individual system performance
We evaluated the positional-baseline sys-

tem, the decision-based system, and the prob-
abilistic-based systems using sample essays
from all prompts in the training and cross-val-
idation sets. Even though these sets are inde-
pendent, both contain sample essays from all
prompt topics. Table 2 compares the overall
performance of the decision- and probabilistic-
based systems to the positional baseline. Three
of the four systems (decision-based, proba-
bilistic-local, and probabilistic-global) signif-
icantly outperform the baseline.

In a 10-fold cross-validation, we use nine-
tenths of the data for model building and the
remaining one-tenth for testing, randomly
resampling the data 10 times. Each time we
used a different nine-tenths of the data for
training and a different one-tenth for testing.
The total data set includes 1,462 human-
annotated essays. 

We use independent samples to create
training and test sets from the 1,462 anno-
tated essays. The training set contained 1,179
annotated essays from six prompts. The test
set contained the remaining 283 annotated
essays from the six prompts.

Voting in topic-dependent systems
We tried combining the output of multiple

systems to improve overall performance. We

built a voting system using the label assign-
ments for each sentence in an essay from
three systems: decision-based, probabilistic-
based, and probabilistic-local systems. (We
didn’t include the probabilistic-global system
because it was too time consuming for a com-
mercial application.) We found that a decision-
based voting method performed better than a
majority vote. Because a decision-based
method can use the information in the deci-
sion-tree model to evaluate instances in which
all three systems assign a different label, we
used C5.0 for our voting models.

Table 3 compares the positional baseline
system, the best single system (that is, the
decision-based system), and a voting system.
For the single system, the results in Table 3
represent the same runs used in Table 2 for
the decision-based system

Using the 10-fold cross-validation, the
voting algorithm outperforms the baseline
algorithm and the single system at both the
category and overall system levels.

Topic independence
In a classroom, teachers can give students

writing assignments on any topic. Because
annotating data on all possible essay topics is
impractical, we must evaluate a system’s
ability to generate reliable labeling decisions
independent of essay topic.

We train the best single system and the vot-
ing system with five prompts and hold the
sixth prompt for testing. This lets us evaluate
system performance on new data, independent
of the essay topic. In the topic-independent
(TI) sets TIA, TIB, TIC, TIG, TIH, and TIN,
the final letter indicates the essay response set
used for testing. There are approximately
1,200 essays in each training set and 250
essays in the test sample. 

Both the single system and the voting sys-
tem clearly exceed baseline system perfor-
mance. Voting shows a slight increase in mean
system performance as compared to a single
system. More notably, the voting algorithm
shows better performance at the category level
than the single system for introductory mate-
rial, thesis, and conclusion categories. 

Table 4 shows that our discourse systems
are generalizable—that is, we can use them
to label essay responses to prompts for which
no training material is available. Figure 6
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Table 2. Performance of positional baseline, decision-based, and probabilistic systems (precision, recall, and F-measure). 

Probabilistic systems

Positional baseline Decision-based Base Local Global

Agreement P R F P R F P R F P R F P R F

Overall system 71 70 70 81 81 81 69 70 69 78 80 79 80 79 79



shows the category-specific performance dif-
ferences between the baseline, single system,
and voting system.

Most students rely on off-the-shelf
spell checkers and grammar-check-

ing software to enhance the quality of their
written work. These types of applications can
help students improve some aspects of their
writing, namely grammar and mechanics.
Certainly, students will continue to use such
tools because improvement in these areas
will remain critical to a students’ ability to
produce high-quality essays. 

As students become more sophisticated
writers, they start thinking about discourse
organization and development in their writing.
For this, they must consider discourse struc-
ture. Our discourse analysis tool offers students
feedback about their essays’ discourse struc-
ture. It gives students a comprehensive analy-
sis of the discourse elements in their essays.
For instance, if the system feedback indicates
that a student’s essay has no conclusion, the
student can work on this organizational aspect
of the essay. This kind of automated feedback,
which resembles traditional teacher feedback,
is an initial step in helping students improve
their essays’organization and development. 

Our discourse analysis tool is part of a
larger commercial application—the Criterion
online essay evaluation—that also offers feed-
back on grammar, mechanics, word usage,
style, and general essay quality. Criterion is
the first application to offer this automated dis-
course analysis capability. Teachers are
excited about its potential as a supplement to
writing instruction and as a step toward indi-
vidualized instruction in the classroom.
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Table 4. Topic-independent system agreement with a human judge: 
best single system and voting system (precision, recall, and F-measure).

Positional baseline Best single system Voting system

Agreement P R F P R F P R F

Prompt

TIA 78 78 78 82 82 82 82 82 82

TIB 74 74 74 81 81 81 81 81 81

TIC 79 79 79 80 80 80 81 81 81

TIG 63 63 63 79 79 79 80 80 80

TIH 56 56 56 73 73 73 75 75 75

TIN 54 53 54 74 74 74 74 74 74

System mean 67 67 67 78 78 78 79 79 79

Table 3. Category agreement with a human judge: best single system 
and voting system (precision, recall, and F-measure).

Positional baseline Best single system Voting system

Agreement P R F P R F P R F

Category

Introductory material 35 23 28 44 23 30 68 50 57

Conclusion 56 67 61 79 83 81 84 84 84

Main point 71 74 73 76 83 81 76 78 77

Other 28 56 37 93 63 75 90 66 76

Support 92 78 84 88 91 89 89 93 91

Thesis 42 63 51 60 67 63 74 73 73

Overall system 71 70 70 81 81 81 85 85 85
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Figure 6. Agreement between human
judges and the voting system for three
categories: (a)  introductory material, (b)
thesis statements, and (c) conclusions.
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