
Planning and Search

Classical Planning

Classical Planning 1

Outline

♦ Search vs. planning

♦ STRIPS operators

♦ PDDL

♦ Forward (progression) state-space search

♦ Backward (regression) relevant-states search

♦ Partial-order planning

Classical Planning 2

Search vs. planning contd.

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

Search Planning

States data structures Logical sentences
Actions code Preconditions/outcomes
Goal code Logical sentence (conjunction)
Plan Sequence from S0 Constraints on actions

Classical Planning 4

Classical planning

Assumptions are:

(1) Environment is deterministic

(2) Environment is observable

(3) Environment is static (it only in response to the agent’s actions)

Classical Planning 5

STRIPS operators

STRIPS panning language (Fikes and Nilsson, 1971)

Tidily arranged actions descriptions, restricted language

Action: Buy(x)

Have(x)

At(p) Sells(p,x)

Buy(x)

Precondition: At(p), Sells(p, x)
Effect: Have(x)

[Note: this abstracts away many important details!]

Restricted language ⇒ efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

Classical Planning 6

PDDL

Planning Domain Definition Language

A bit more relaxed that STRIPS

Preconditions and goals can contain negative literals

Action: Buy(x)
Precondition: At(p), Sells(p, x)
Effect: Have(x)

is called an action schema

Classical Planning 7

Planning domain

States are sets of fluents (ground, functionless atoms). Fluents which are
not mentioned are false. (Closed world assumption.)

a ∈ Actions(s) iff s |= Precond(a)

Result(s, a) = (s − Del(a)) ∪ Add(a)

where Del(a) is the list of literals which appear negatively in the effect of
a, and Add(a) is the list of positive literals in the effect of a.

Classical Planning 8

Example (slightly modified)

Action: Buy(x)
Precondition: At(p), Sells(p, x), Have(Money)
Effect: Have(x),¬Have(Money)

Del(Buy(Jaguar)) = {Have(Money)}

Add(Buy(Jaguar)) = {Have(Jaguar)}

If s = {At(JDealer), Sells(JDealer, Jaguar), Blue(Sky), Have(Money)},

Buy(Jaguar) ∈ Actions(s)

Result(s, Buy(Jaguar) = (s− {Have(Money)}) ∪ {Have(Jaguar)}

= {At(JDealer), Sells(JDealer, Jaguar), Blue(Sky), Have(Jaguar)}

Classical Planning 9

Planning problem

Planning problem = planning domain + initial state + goal

Goal is a conjunction of literals: Have(Jaguar) ∧ ¬At(Jail)

Can solve planning problem using search

Classical Planning 10

Forward (progression) planning

Searching for a solution starting from the initial state looks hopeless

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

Classical Planning 11

Forward planning 2

However, it turns out we can automatically derive good heuristics (and re-
member how much better A∗ is compared to uninformed search)

Two basic approaches:

1) add more edges to the graph (make more actions possible), and use
solutions to the resulting problem as a heuristic

Examples: remove (some) preconditions, ignore delete lists...

Action Slide(t, s1, s2))
Precond: On(t, s1) ∧ Tile(t) ∧ Blank(s2) ∧ Adjacent(s1, s2)
Effect: On(t, s2) ∧ Blank(s1) ∧ ¬On(t, s1) ∧ ¬Blank(s2)

removing Blank(s2) will enable tiles to move to occupied places: Manhattan
distance heuristic

2) abstract the problem (make the search space smaller).

Classical Planning 12

Backward (regression) planning

Also called relevant-states search

Start at the goal state(s) and do regression (go back):

Given a goal description g and a ground action a, the regression from g over
a gives a state description g′:

g′ = (g − Add(a)) ∪ {Precond(a)}

For example, if the goal is Have(Jaguar) ∧ ¬At(Jail),

g′ = ({Have(Jaguar),¬At(Jail)}− {Have(Jaguar)}) ∪

{At(p), Sells(p, Jaguar),Have(Money)} =

{¬At(Jail), At(p), Sells(p, Jaguar),Have(Money)}

note that g′ is partially uninstantiated (p is a free variable)

Classical Planning 13

Backward (regression) planning 2

Which actions to regress over?

Relevant actions: have an effect which is in the set of goal elements and no
effect which negates an element of the goal.

For example, Buy(Jaguar) is a relevant action. Steal(Jaguar) may also
result in Have(Jaguar) but if it has an additional effect of At(Jail), it is
not a relevant action.

Search backwards from g, remembering the actions and checking whether
we reached an expression applicable to the initial state.

A lot fewer actions/relevant states than forward search, but uses sets of
states (g, g′) - hard to come up with good heuristics.

Classical Planning 14

Totally vs partially ordered plans

So far we produced a linear sequence of actions (totally ordered plan)

Often it does not matter in which order some of the actions are executed

For problems with independent subproblems often easier to find a partially

ordered plan: a plan which is a set of actions and a set of constraints
Before(ai, aj)

Partially ordered plans are created by a search through a space of plans
(rather than the state space)

Classical Planning 15

Next lecture

More classical planning

Classical Planning 16

Janyce Wiebe
WrapUp: Chapter 10 through 10.2 Be sure to read all of the examples so you get used to reading the planning language.

