CS 2710 Foundations of AI Lecture 16

Bayesian belief networks

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Uncertainty

To make diagnostic inference possible we need to represent knowledge (axioms) that relate symptoms and diagnosis

Problem: disease/symptoms relations are not deterministic

- They are uncertain (or stochastic) and vary from patient to patient

Modeling the uncertainty.

Key challenges:

- How to represent the relations in the presence of uncertainty?
- How to manipulate such knowledge to make inferences?
- Humans can reason with uncertainty.

Methods for representing uncertainty

Probability theory

- A well defined theory for modeling and reasoning in the presence of uncertainty
- A natural choice to replace certainty factors

Facts (propositional statements)

- Are represented via random variables with two or more values Example: Pneumonia is a random variable values: True and False
- Each value can be achieved with some probability:

$$
\begin{aligned}
& P(\text { Pneumonia }=\text { True })=0.001 \\
& P(\text { WBCcount }=\text { high })=0.005
\end{aligned}
$$

Modeling uncertainty with probabilities

Probabilistic extension of propositional logic.

- Propositions:
- statements about the world
- Represented by the assignment of values to random variables
- Random variables:
! - Boolean Pneumonia is either True, False Random variable Values
! - Multi-valued Pain is one of \{Nopain,Mild,Moderate, Severe\}, Random variable Values
- Continuous HeartRate is a value in $\langle 0 ; 250\rangle$ Random variable Values

Probabilities

Unconditional probabilities (prior probabilities)
$P($ Pneumonia $)=0.001$ or $\quad P($ Pneumonia $=$ True $)=0.001$
$P($ Pneumonia $=$ False $)=0.999$
$P($ WBCcount $=$ high $)=0.005$

Probability distribution

- Defines probabilities for all possible value assignments to a random variable
- Values are mutually exclusive
$P($ Pneumonia $=$ True $)=0.001$
$P($ Pneumonia $=$ False $)=0.999$

Pneumonia	$\mathbf{P}($ Pneumonia $)$
True	0.001
False	0.999

Probability distribution

Defines probability for all possible value assignments

Example 1:

$P($ Pneumonia $=$ True $)=0.001$
$P($ Pneumonia $=$ False $)=0.999$

Pneumonia	$\mathbf{P}($ Pneumonia $)$
True	0.001
False	0.999

$P($ Pneumonia $=$ True $)+P($ Pneumonia $=$ False $)=1$

Probabilities sum to 1 !!!

Example 2:

$P($ WBCcount $=$ high $)=0.005$
$P($ WBCcount $=$ normal $)=0.993$
$P($ WBCcount $=$ high $)=0.002$

WBCcount	$\mathbf{P}($ WBCcount $)$
high	0.005
normal	0.993
low	0.002

Joint probability distribution

Joint probability distribution (for a set variables)

- Defines probabilities for all possible assignments of values to variables in the set
Example: variables Pneumonia and WBCcount
\mathbf{P} (pneumonia, WBCcount)
Is represented by 2×3 matrix
WBCcount

	high	normal	low
True	0.0008	0.0001	0.0001
False	0.0042	0.9929	0.0019

Joint probabilities

Marginalization

- reduces the dimension of the joint distribution
- Sums variables out
\mathbf{P} (pneumonia, WBCcount) $\quad 2 \times 3$ matrix

Pneumonia	WBCcount				\mathbf{P} (Pneumonia)
		high	normal	low	
	True	0.0008	0.0001	0.0001	0.001
	False	0.0042	0.9929	0.0019	0.999
		0.005	0.993	0.002	

\mathbf{P} (WBCcount)
Marginalization (here summing of columns or rows)

Full joint distribution

- the joint distribution for all variables in the problem
- It defines the complete probability model for the problem

Example: pneumonia diagnosis
Variables: Pneumonia, Fever, Paleness, WBCcount, Cough
Full joint defines the probability for all possible assignments of values to Pneumonia, Fever, Paleness, WBCcount, Cough
$P($ Pneumonia $=T$, WBCcount $=$ High, Fever $=T$, Cough $=T$, Paleness $=T)$
P(Pneumonia $=T$, WBCcount $=$ High, Fever $=T$, Cough $=T$, Paleness $=F)$
$P($ Pneumonia $=T, W B C$ count $=$ High, Fever $=T$, Cough $=F$, Paleness $=T)$

Conditional probabilities

Conditional probability distribution

- Defines probabilities for all possible assignments, given a fixed assignment to some other variable values

$$
P(\text { Pneumonia }=\text { true } \mid \text { WBCcount }=\text { high })
$$

$\mathbf{P}($ Pneumonia \mid WBCcount $) \quad 3$ element vector of 2 elements WBCcount

Pneumonia

	high	normal	low
True	0.08	0.0001	0.0001
False	0.92	0.9999	0.9999
	1.0	1.0	1.0

$P($ Pneumonia $=$ true $\mid W B C$ count $=$ high $)$
$+P($ Pneumonia $=$ false \mid WBCcount $=$ high $)$

Conditional probabilities

Conditional probability

- Is defined in terms of the joint probability:

$$
P(A \mid B)=\frac{P(A, B)}{P(B)} \text { s.t. } P(B) \neq 0
$$

- Example:
$P($ pneumonia $=$ true \mid $W B C$ count $=$ high $)=$

$$
\frac{P(\text { pneumonia }=\text { true }, \text { WBCcount }=\text { high })}{P(\text { WBCcount }=\text { high })}
$$

$$
\begin{aligned}
& P(\text { pneumonia }=\text { false } \mid \text { WBCcount }=\text { high })= \\
& \frac{P(\text { pneumonia }=\text { false }, \text { WBCcount }=\text { high })}{P(\text { WBCcount }=\text { high })}
\end{aligned}
$$

Conditional probabilities

- Conditional probability distribution.

$$
P(A \mid B)=\frac{P(A, B)}{P(B)} \text { s.t. } P(B) \neq 0
$$

- Product rule. Join probability can be expressed in terms of conditional probabilities

$$
P(A, B)=P(A \mid B) P(B)
$$

- Chain rule. Any joint probability can be expressed as a product of conditionals

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{n} \mid X_{1,} \ldots X_{n-1}\right) P\left(X_{1,} \ldots X_{n-1}\right) \\
& =P\left(X_{n} \mid X_{1,} \ldots X_{n-1}\right) P\left(X_{n-1} \mid X_{1,} \ldots X_{n-2}\right) P\left(X_{1,} \ldots X_{n-2}\right) \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1,} \ldots X_{i-1}\right)
\end{aligned}
$$

Bayes rule

Conditional probability.

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}>P(A, B)=P(B \mid A) P(A)
$$

Bayes rule:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

When is it useful?

- When we are interested in computing the diagnostic query from the causal probability

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

- Reason: It is often easier to assess causal probability
- E.g. Probability of pneumonia causing fever
vs. probability of pneumonia given fever

Bayes Rule in a simple diagnostic inference.

- Device (equipment) operating normally or malfunctioning.
- Operation of the device sensed indirectly via a sensor
- Sensor reading is either high or low

Bayes Rule in a simple diagnostic inference.

- Diagnostic inference: compute the probability of device operating normally or malfunctioning given a sensor reading
$\mathbf{P}($ Device status \mid Sensor reading $=$ high $)=$?
$=\binom{P($ Device status $=$ normal \mid Sensor reading $=$ high $)}{P($ Device status $=$ malfunctio ning \mid Sensor reading $=$ high $)}$
- Note that typically the opposite conditional probabilities are given to us: they are much easier to estimate
- Solution: apply Bayes rule to reverse the conditioning variables

Probabilistic inference

Various inference tasks:

- Diagnostic task. (from effect to cause)

$$
\mathbf{P}(\text { Pneumonia } \mid \text { Fever }=T)
$$

- Prediction task. (from cause to effect)

$$
\mathbf{P}(\text { Fever } \mid \text { Pneumonia }=T)
$$

- Other probabilistic queries (queries on joint distributions).

$$
\begin{aligned}
& \mathbf{P}(\text { Fever }) \\
& \mathbf{P}(\text { Fever }, \text { ChestPain })
\end{aligned}
$$

Inference

Any query can be computed from the full joint distribution !!!

- Joint over a subset of variables is obtained through marginalization

$$
P(A=a, C=c)=\sum_{i} \sum_{j} P\left(A=a, B=b_{i}, C=c, D=d_{j}\right)
$$

- Conditional probability over set of variables, given other variables' values is obtained through marginalization and definition of conditionals

$$
\begin{aligned}
P(D=d \mid A=a, C=c) & =\frac{P(A=a, C=c, D=d)}{P(A=a, C=c)} \\
& =\frac{\sum_{i} P\left(A=a, B=b_{i}, C=c, D=d\right)}{\sum_{i} \sum_{j} P\left(A=a, B=b_{i}, C=c, D=d_{j}\right)}
\end{aligned}
$$

Inference.

Any query can be computed from the full joint distribution !!!

- Any joint probability can be expressed as a product of conditionals via the chain rule.

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{n} \mid X_{1,} \ldots X_{n-1}\right) P\left(X_{1,} \ldots X_{n-1}\right) \\
= & P\left(X_{n} \mid X_{1,} \ldots X_{n-1}\right) P\left(X_{n-1} \mid X_{1,} \ldots X_{n-2}\right) P\left(X_{1,} \ldots X_{n-2}\right) \\
= & \prod_{i=1}^{n} P\left(X_{i} \mid X_{1,} \ldots X_{i-1}\right)
\end{aligned}
$$

- Sometimes it is easier to define the distribution in terms of conditional probabilities:
- E.g. $\quad \mathbf{P}($ Fever \mid Pneumonia $=T)$
$\mathbf{P}($ Fever \mid Pneumonia $=F)$

Modeling uncertainty with probabilities

- Defining the full joint distribution makes it possible to represent and reason with uncertainty in a uniform way
- We are able to handle an arbitrary inference problem

Problems:

- Space complexity. To store a full joint distribution we need to remember $O\left(\mathrm{~d}^{\mathrm{n}}\right)$ numbers.
n - number of random variables, d - number of values
- Inference (time) complexity. To compute some queries requires $O\left(\mathrm{~d}^{\mathrm{n}}\right)$ steps.
- Acquisition problem. Who is going to define all of the probability entries?

Medical diagnosis example.

- Space complexity.
- Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), WBCcount (3: high, normal, low), paleness (2: T,F)
- Number of assignments: $2 * 2 * 2 * 3 * 2=48$
- We need to define at least 47 probabilities.
- Time complexity.
- Assume we need to compute the marginal of Pneumonia=T from the full joint
$P($ Pneumonia $=T)=$
$=\sum_{i \in T, F} \sum_{j \in T, F} \sum_{k=h, n, l} \sum_{u \in T, F} P($ Fever $=i$, Cough $=j$, WBCcount $=k$, Pale $=u)$
- Sum over: $2 * 2 * 3 * 2=24$ combinations

Modeling uncertainty with probabilities

- Knowledge based system era (70s - early 80 's)
- Extensional non-probabilistic models
- Solve the space, time and acquisition bottlenecks in probability-based models
- froze the development and advancement of KB systems and contributed to the slow-down of AI in 80 s in general
- Breakthrough (late 80 s , beginning of 90 s)
- Bayesian belief networks
- Give solutions to the space, acquisition bottlenecks
- Partial solutions for time complexities
- Bayesian belief network

Bayesian belief networks (BBNs)

Bayesian belief networks.

- Represent the full joint distribution over the variables more compactly with a smaller number of parameters.
- Take advantage of conditional and marginal independences among random variables
- A and B are independent

$$
P(A, B)=P(A) P(B)
$$

- A and B are conditionally independent given \mathbf{C}

$$
\begin{aligned}
& P(A, B \mid C)=P(A \mid C) P(B \mid C) \\
& P(A \mid C, B)=P(A \mid C)
\end{aligned}
$$

Alarm system example.

- Assume your house has an alarm system against burglary. You live in the seismically active area and the alarm system can get occasionally set off by an earthquake. You have two neighbors, Mary and John, who do not know each other. If they hear the alarm they call you, but this is not guaranteed.
- We want to represent the probability distribution of events:
- Burglary, Earthquake, Alarm, Mary calls and John calls

Causal relations

Bayesian belief network.

1. Directed acyclic graph

- Nodes = random variables Burglary, Earthquake, Alarm, Mary calls and John calls
- Links = direct (causal) dependencies between variables. The chance of Alarm is influenced by Earthquake, The chance of John calling is affected by the Alarm

Bayesian belief network.

2. Local conditional distributions

- relate variables and their parents

Bayesian belief networks (general)

Two components: $B=\left(S, \Theta_{S}\right)$

- Directed acyclic graph
- Nodes correspond to random variables
- (Missing) links encode independences

- Parameters
- Local conditional probability distributions for every variable-parent configuration

$$
\mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

Where:

$$
p a\left(X_{i}\right) \text { - stand for parents of } X_{i}
$$

$\mathbf{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E})$		
B	E	\mathbf{T}
F		
T	T	0.95
T	F	0.05
F	T	0.24
	0.06	
F	F	0.001

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$
\mathbf{P}\left(X_{1}, X_{2}, . ., X_{n}\right)=\prod_{i=1, . . n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

Example:

Assume the following assignment of values to random variables

$$
B=T, E=T, A=T, J=T, M=F
$$

Then its probability is:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& \quad P(B=T) P(E=T) P(A=T \mid B=T, E=T) P(J=T \mid A=T) P(M=F \mid A=T)
\end{aligned}
$$

Bayesian belief networks (BBNs)

Bayesian belief networks

- Represent the full joint distribution over the variables more compactly using the product of local conditionals.
- But how did we get to local parameterizations?

Answer:

- Graphical structure encodes conditional and marginal independences among random variables
- \mathbf{A} and B are independent $P(A, B)=P(A) P(B)$
- A and B are conditionally independent given \mathbf{C}

$$
\begin{gathered}
P(A \mid C, B)=P(A \mid C) \\
P(A, B \mid C)=P(A \mid C) P(B \mid C)
\end{gathered}
$$

- The graph structure implies the decomposition !!!

Independences in BBNs

3 basic independence structures:
1.

2.

3.

Independences in BBNs

1. JohnCalls is independent of Burglary given Alarm

$$
\begin{gathered}
P(J \mid A, B)=P(J \mid A) \\
P(J, B \mid A)=P(J \mid A) P(B \mid A)
\end{gathered}
$$

Independences in BBNs

1.

2. Burglary is independent of Earthquake (not knowing Alarm) Burglary and Earthquake become dependent given Alarm !!

$$
P(B, E)=P(B) P(E)
$$

Independences in BBNs

1.

2.

3. MaryCalls is independent of JohnCalls given Alarm

$$
\begin{gathered}
P(J \mid A, M)=P(J \mid A) \\
P(J, M \mid A)=P(J \mid A) P(M \mid A)
\end{gathered}
$$

Independences in BBN

- BBN distribution models many conditional independence relations among distant variables and sets of variables
- These are defined in terms of the graphical criterion called dseparation
- D-separation and independence
- Let X, Y and Z be three sets of nodes
- If X and Y are d-separated by Z, then X and Y are conditionally independent given Z
- D-separation :
- A is d-separated from B given C if every undirected path between them is blocked with \mathbf{C}
- Path blocking
- 3 cases that expand on three basic independence structures

Undirected path blocking

A is d-separated from B given C if every undirected path between them is blocked

- 1. Path blocking with a linear substructure

X in A
Z in C
Y in B

Undirected path blocking

A is d-separated from B given C if every undirected path between them is blocked

- 2. Path blocking with the wedge substructure

X in A
Y in B

Undirected path blocking

A is d-separated from B given C if every undirected path between them is blocked

- 3. Path blocking with the vee substructure

Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls

Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) ?

Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake ?

Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake T
- Burglary and RadioReport are independent given MaryCalls ?

Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls \quad F
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake T
- Burglary and RadioReport are independent given MaryCalls F

Bayesian belief networks (BBNs)

Bayesian belief networks

- Represents the full joint distribution over the variables more compactly using the product of local conditionals.
- So how did we get to local parameterizations?

$$
\mathbf{P}\left(X_{1}, X_{2}, . ., X_{n}\right)=\prod_{i=1, . . n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

- The decomposition is implied by the set of independences encoded in the belief network.

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:
$P(B=T, E=T, A=T, J=T, M=F)=$

$=P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)$
$=\underline{P(J=T \mid A=T}) \underline{P(B=T, E=T, A=T, M=F)}$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
P(B=T, E=T, A=T, J=T, M=F)=
$$

$=P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)$
$=\underline{P(J=T \mid A=T}) \underline{P(B=T, E=T, A=T, M=F)}$
$P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T)$
$P(M=F \mid A=T) P(B=T, E=T, A=T)$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& =P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
& =\frac{P(J=T \mid A=T)}{} \frac{P(B=T, E=T, A=T, M=F)}{P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T)} \\
& \frac{P(M=F \mid A=T)}{P(B=T, E=T, A=T)} \\
& \underline{P(A=T \mid B=T, E=T)} \underline{P(B=T, E=T)}
\end{aligned}
$$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
P(B=T, E=T, A=T, J=T, M=F)=
$$

$=P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)$
$=\underline{P(J=T \mid A=T}) \underline{P(B=T, E=T, A=T, M=F)}$

$$
P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T)
$$

$$
P(M=F \mid A=T) P(B=T, E=T, A=T)
$$

$$
\frac{P(A=T \mid B=T, E=T)}{P(B=T) P(E=T)}
$$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& =P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
& =\frac{P(J=T \mid A=T)}{} \frac{P(B=T, E=T, A=T, M=F)}{P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T)} \\
& \quad \frac{P(M=F \mid A=T)}{} \frac{P(B=T, E=T, A=T)}{P(A=T \mid B=T, E=T)} \\
& \\
& =P(J=T \mid A=T) P(M=F \mid A=T) P(A=T \mid B=T, E=T) P(B=T) P(E=T)
\end{aligned}
$$

Bayesian belief network.

- In the BBN the full joint distribution is expressed using a set of local conditional distributions

Parameter complexity problem

- In the BBN the full joint distribution is defined as:

$$
\begin{aligned}
& \quad \mathbf{P}\left(X_{1}, X_{2}, . ., X_{n}\right)=\prod_{i=1, \ldots n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right) \\
& \text { - What did we save? }
\end{aligned}
$$

Alarm example: 5 binary (True, False) variables \# of parameters of the full joint:

$$
2^{5}=32
$$

One parameter is for free:

$$
2^{5}-1=31
$$

Parameter complexity problem

- In the BBN the full joint distribution is defined as:

$$
\mathbf{P}\left(X_{1}, X_{2}, . ., X_{n}\right)=\prod_{i=1, \ldots n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

- What did we save?

Alarm example: 5 binary (True, False) variables \# of parameters of the full joint:

$$
2^{5}=32
$$

One parameter is for free:

$$
2^{5}-1=31
$$

\# of parameters of the BBN: ?

Bayesian belief network.

- In the BBN the full joint distribution is expressed using a set of local conditional distributions

