
Width-Sensitive Scheduling for

Resource-Constrained VLIW Processors

Tarun Nakra, Bruce R. Childers and Mary Lou So�a

Department of Computer Science

University of Pittsburgh

fnakra, childers, so�ag@cs.pitt.edu

Abstract

As the width of processor instruction words increases,

so do the opportunities for optimizations that exploit

the widths of operands in instructions. This paper

presents a feedback-directed technique, called width-

sensitive scheduling, that packs operations on a func-

tional unit, thereby enabling sharing of a functional

unit among multiple operations. We target this tech-

nique as a static optimization to VLIW processors

that are are resource-constrained, and use pro�le data

to guide the optimization. We �rst discuss the signif-

icant factors in optimization using operand widths.

We then describe and evaluate various approaches

to optimizing operand widths on a realistic VLIW

model. We �nd that there is su�cient potential, upto

13% speedup, for performance improvement using our

technique. Packing of homogeneous operations on a

functional unit is unable to exploit most of this avail-

able potential. An approach to pack heterogeneous

operations on the same functional unit with minimal

hardware changes is discussed. This approach ex-

ploits most of the available potential in performance

savings. We also identify important factors that af-

fect the e�cacy of our technique.

1 Introduction

As processors have evolved to support wider in-
struction words, there has been an increase in
the opportunity to optimize data widths. Al-
though newer processors support up to 64 bits of
data, the applications running on these proces-

sors rarely require the entire data width. There
has been some work with compiler optimization
and computer architecture to exploit data width
by packing several operations together to ex-
ecute on a single functional unit (FU) [2, 4].
Most of this work has focused on superscalar
processors utilizing sub-word parallelism to pack
similar (homogeneous) operations with narrow
operands. This paper evaluates packing multiple
narrow operands on resource-constrained VLIW
processors. In particular, we present a static
technique, Width-Sensitive Scheduling (WSS),
that packs operations of di�erent types (hetero-
geneous operations) to execute on a FU.

Several processors have added support for
small operand widths by enhancing their instruc-
tion set with operations for sub-word parallelism
(SIMD instructions). Examples of these instruc-
tions sets include Intel MMX and SSE, AMD
3DNow!, Motorola Altivec, and HP MAX-2. Al-
though these enhanced instruction sets encode
sub-word parallelism in the form of SIMD in-
structions, most of the burden of detecting the
parallelism is left to the programmer. Vector-
ization techniques have been proposed in the
context of vector processors to exploit loop-level
parallelism within scienti�c code [5]. In the case
of applications running on �ne-grained architec-
tures, there has been recent work in hardware
and compiler support for synthesizing SIMD-like
instructions without user intervention. Brooks et
al. [2] proposed an architecture that dynamically

packs narrow integer operations on an FU, sim-
ilar to a parallel sub-word operation. Compiler
support has been proposed by Larsen et al. [4]
to synthesize SIMD instructions from basic block
statements. Both of these recent studies are ori-
ented toward superscalar processors. In this pa-
per, we exploit smaller operand widths for VLIW
processors.

One of the observations in previous studies
is that multimedia benchmarks bene�t greatly
from SIMD synthesis because they typically op-
erate on 16-bit data. Since multimedia applica-
tions are common for embedded systems, pack-
ing operations to synthesize SIMD-like instruc-
tions is very promising in this domain. However,
as embedded systems move toward an EPIC-
style Very Large Instruction Word (VLIW) com-
puting model, previous work with SIMD syn-
thesis for superscalars is not directly applicable
and there is a strong need to address scheduling
for narrow data types on VLIWs. The impor-
tance of optimization for embedded VLIWs is
underscored by the popularity of recent archi-
tectures such as Starcore's SC140, Texas Instru-
ment's TMS320C6201, and Transmeta's Crusoe.
These processors are resource-constrained due to
the stringent cost limitations of embedded sys-
tems, and by packing narrow width operations to
execute on a single FU, we can take better advan-
tage of hardware resources. Our width-sensitive
scheduling technique directly targets embedded
VLIWs that have limited hardware resources.

In the context of VLIW processors, exploit-
ing narrow data widths has several unique chal-
lenges. Among these challenges is how to de-
tect the width of operands that can be exploited
by the compiler during scheduling. The detec-
tion can be performed either by static analysis
or using run-time tools, such as pro�ling, which
provide dynamic information. When pro�le in-
formation is used for predicting operand widths,
the hardware needs to have the capability to re-
cover from mispredictions. If the misprediction
penalty is low, then the number of predictions
can be increased to allow more operations to be

packed on a FU. Another challenge is how to e�-
ciently schedule operations using operand width
information, particularly with the limited fetch
bandwidth of embedded VLIW processors. A
�nal challenge is whether there are enough op-
portunities to make statically scheduling narrow
width operations worthwhile. In previous work
related to operation packing [4, 2], only opera-
tions of the same type may be combined together
for parallel execution on a FU. For VLIW archi-
tectures, we believe there is an unique opportu-
nity to combine narrow width operations of dif-
ferent types without making signi�cant hardware
modi�cations. By adding support for heteroge-
neous operations, width-sensitive scheduling can
uncover more opportunities for improving per-
formance.

This paper discusses and addresses the chal-
lenges related to width-sensitive scheduling for
embedded VLIWs. We present a scheduling
technique that uses pro�le data to pack opera-
tions on a functional unit with minimal hardware
changes. In the next section, we describe our
scheduling technique, including a discussion of
the challenges related to combining narrow data
types. In Section 3, we evaluate the impact of
width-sensitive scheduling on performance. Sec-
tion 4 summarizes and concludes the paper.

2 Width-Sensitive Scheduling

2.1 Determining Operand Widths
with Feedback

One of the important issues in packing opera-
tions with narrow operands is to determine the
width of an instruction's operands. One ap-
proach to determine width uses dataow anal-
ysis to compute bounds on the operand widths.
Static bitwidth analysis has recently been pro-
posed in the context of synthesizing recon�g-
urable architectures to identify the width of
operands [7]. Although this information is accu-
rate, it is conservative and cannot consider run-
time information such as program input within

the analysis. In WSS, a feedback-directed ap-
proach is used to predict the width of operand
values and speculatively pack narrow operations
on a FU.
In VLIW processors, pro�le techniques have

been widely used to increase parallelism by spec-
ulating operations. Using pro�ling for WSS is
particularly well suited for embedded VLIWs
where the applications are known and can be an-
alyzed beforehand. Although static scheduling
in a VLIW compiler allows aggressive schedul-
ing over a larger window than the scheduling
window of a dynamic schedulable processor, ac-
curate run-time information is not available at
compile-time. The compiler schedules operations
conservatively preserving all control and data de-
pendencies. Some of the conservative dependen-
cies are overcome by speculating operations us-
ing pro�le information. Control speculation is
used to move an operation above a branch by
predicting the path to be taken after the branch.
Data speculation is used to move loads above
potentially non-conicting stores (memory dis-
ambiguation), and to predict operand values to
break true data dependencies (value prediction)
enabling parallelism. We use speculation to pack
narrow width operations in the same instruction.
In each case, pro�le information is used to guide
speculation by estimating the program behavior
in terms of either branches taken or computed
values.

3URJUDP
9/,:

+DUGZDUH&RPSLOHU�

3URILOH�
GDWD

6FKHGXOHG�FRGH�
ZLWK�VSHFXODWLRQ

6FKHGXOHG�FRGH�

3URILOHU

Instrument

Execute

Exe
cu

te

Annotate IR

Figure 1: High-level view of pro�ling

The pro�ling procedure for WSS is shown in
Figure 1. In this �gure, the program is initially

instrumented to collect pro�le information about
the width of instruction operands. The program
is executed with training inputs to gather the
pro�le information, and its intermediate repre-
sentation (IR) is annotated with the collected in-
formation about data width. Next, the compiler
uses the annotated IR to generate an instruc-
tion schedule that packs operations with narrow
widths. Instructions are packed on the same FU
if the pro�le data indicates their operands to be
narrow enough to share the FU.

2.2 Exploiting Fetch Bandwidth

As mentioned before, resource constrained
VLIWs are limited by the amount of parallelism
they can exploit. An example demonstrates such
a case. Consider a �ve-wide VLIW processor
with two integer FUs, and assume that the fetch
unit is tightly coupled with the FUs. Hence,
there is a one-to-one correspondence between the
FUs and the fetched operations. Some VLIW
processors with limited resources use this tight
coupling to simplify issue logic. In Figure 2(a),
we show part of a schedule for a region from the
compress function in the compress benchmark.
Each operation is assigned the FU that would ex-
ecute the operation. Note that although the in-
structions are independent, they need two cycles
to be scheduled since only two integer operations
can be accommodated per cycle. However, pro-
�le information indicates that each of the integer
operations have operand widths that are at most
16 bits. This information can be used to pack
two add operations on a single ALU and fetch
them as a single SIMD operation. Performing
this SIMD synthesis yields the schedule shown
in Figure 2(b). In order to pack the two adds as
a SIMD operation, the instruction set architec-
ture (ISA) needs to have the capability to specify
pairs of registers in an add operation. The rea-
son is that most of embedded VLIW ISAs do not
have vector registers.

One observation from Figure 2(a) is the pro-
cessor has the capability to fetch �ve operations

L_H <r 49> <r 15> CMPP <pr 2> <r 4> i< 0>

ADD <r 18> <r 25> i<2>

<r 6> <r 4> i<–2>

<r 20> <r 4> i<-1>

L_H <r 49> <r 15>

ADD <r 18> <r 25> i<2>

CMPP <pr 2> <r 4> i< 0>

ADD <r 6> <r 4> i<–2>

ADD <r 20> <r 4> i<-1>

(a) Original Schedule

(b) Schedule after homogeneous packing

Memory Integer Integer FP Branch

ADD

Figure 2: (a)Example of homogeneous operation packing

L_H <r 49> <r 15>

ADD <r 18> <r 25> i<2>

CMPP <pr 2> <r 4> i< 0>

ADD <r 6> <r 4> i<–2>

ADD <r 20> <r 4> i<-1>

(a)

L_H <r 49> <r 15> CMPP <pr 2> <r 4> i< 0>

ADD <r 18> <r 25> i<2>

ADD <r 6> <r 4> i<–2> ADD <r 20> <r 4> i<-1>

(b) Schedule after homogeneous packing using fetch bandwidth

Memory Integer Integer FP Branch

Original Schedule

Figure 3: Example of homogeneous packing exploiting fetch bandwidth

per cycle, yet two of these slots, for branch and
oating-point operations, remain unused in both
cycles shown. Instead of coalescing similar oper-
ations together as a SIMD operation, the opera-
tions can be fetched separately using the empty
slots. In this way, the ISA does not need to be
modi�ed to support SIMD operations. At run-
time, the processor steers operations to an ap-
propriate FU for execution as determined by the
compiler. Using available fetch slots prevents an
increase in register ports used per cycle. The
steering involves redirecting the source operand
values to the FU and the output value to the
port that will write the value to the register �le.
This steering logic is not complex and similar
logic is already provided in several VLIW proces-
sors that have more FUs than fetch bandwidth.
Examples are Starcore's SC140 and Trimedia's
TM-1000 processor. Although operand steering
has some latency cost, we expect the additional
latency would not a�ect the machine cycle time.

The reason is that typically register �le accesses
determine machine cycle time and other pipeline
stages scale proportionate to the register �le cy-
cle time. Previous studies make this observa-
tion in context of superscalar processors and ex-
pect similar performance limits for VLIW pro-
cessors [3]. The unused fraction of the cycle time
in the issue and execution stages can be used to
perform the steering of the operation values.

To assign FUs to operations, the compiler an-
notates the operations with a FU identi�er and
the issue logic directs a fetched operation to
its corresponding FU. This technique permits
packing operations without generating SIMD in-
structions. Figure 3(b) shows the schedule of
the previous example after packing operations
using the FP slot. We expect that adequate
unused fetch bandwidth can be made available
for fetching additional ALU operations. From
the analysis of several benchmark programs, we
found that oating point and branch operations

L_H <r 49> <r 15>

ADD <r 18> <r 25> i<2>

CMPP <pr 2> <r 4> i< 0>

ADD <r 6> <r 4> i<–2>

ADD <r 20> <r 4> i<-1>

(a) Original Schedule

L_H <r 49><r 15> ADD <r 18><r 25>i<2> CMPP <pr 2><r 4>i< 0> ADD <r 6><r 4>i<–2> ADD <r 20><r 4>i<-1>

(b) Schedule after heterogeneous packing

Memory Integer Integer FP Branch

Figure 4: Example of heterogeneous packing

comprise less than 1% of dynamic instructions.
This observation indicates that fetch bandwidth
is severely under-utilized, and by scheduling nar-
row operations in unused slots, we can take bet-
ter advantage of the available bandwidth.

2.3 Narrow Width Operations

In the example above, packing operations did not
reduce the schedule length since one add opera-
tion had to be delayed by a cycle. One of the re-
strictions of packing operations in previous work
is that only similar operations are allowed to ex-
ecute together on a functional unit. A study by
Scott et al. [6] observes that most of the bene�ts
of packing homogeneous operations into SIMD-
like instructions can be achieved by instruction-
level parallelism on a machine with two or more
ALUs. If heterogeneous operations are packed
on a FU, the performance savings would poten-
tially be higher. Packing heterogeneous oper-
ations permits scheduling all of the operations
in the example above in one cycle, as shown in
Figure 4(b). In this example, the add and com-
pare operations can be scheduled together be-
cause they use at most 16 bits. The compiler
assigns the position within the ALU for each op-
eration allowing the issue logic to steer these op-
erations to an appropriate ALU sub-component.

In order to pack heterogeneous operations to-
gether, a FU needs to execute operations of dif-
ferent types in parallel. It is possible to con-
sider a 32-bit ALU as a group of 8-bit sub-
ALUs executing the same operation and con-

nected through carry lines. A pictorial view of a
32-bit ALU partitioned into sub-components is
shown in Figure 5. Since an ALU is a combina-
tional circuit of cascaded logic gates, this kind of
partitioning can be made. If the sub-components
were allowed to execute independently, each one
would need a separate mode select to determine
the type of operation to execute. Our work tar-
gets simple functional unit design applicable to
processors limited by power and area constraints.
There may be some design restrictions for par-
titioned FUs in multi-GHz processors. We are
currently investigating the issues associated with
next generation processor FU design and how
our technique would address these issues.

a0:7 a8:15 a16:23 a24:31b0:7 b8:15 b24:31b16:23
a0:31 b0:31

s0:31 s0:7 s8:15 s16:23 s24:31

(a) Normal 32-bit ALU (b) A 32-bitALU partitioned into 8-bit slices

c8 c16 c24

Figure 5: ALU structure

Note that it is not possible to pack het-
erogeneous operations on an ALU using static
SIMD synthesis because each combination of
operations requires a separate SIMD opcode.
For VLIW processors, the compiler can as-
sign heterogeneous operations to the same ALU
along with their placement positions within the

ALU. For superscalars, performing heteroge-
neous packing at run-time incurs additional com-
plexity to select the operations to be packed. If
8-bit and 16-bit heterogeneous operations were
interleaved on a 32-bit ALU, a processor with
a central issue window would require additional
control logic to �nd and select the operations
to pack on an ALU. Packing heterogeneous op-
erations works well for VLIWs because we can
statically schedule the operations to avoid the
run-time overhead of detecting narrow width op-
erations.

2.4 Prediction and Recovery

One of the observations in the previous exam-
ple is that scheduling using pro�le information
about operand width decreases schedule length.
Because this scheduling relies on pro�le informa-
tion, we must predict the data width of operands,
which requires a mechanism to recover from mis-
predictions at run-time. If we de�ne a prediction
threshold(b) for an operand to be the percent-
age of times that the operand is less than b bits
wide, then we can vary the prediction threshold
to control when to apply narrow width schedul-
ing. By lowering the prediction threshold, more
operations can be packed together. However,
one of the drawbacks of lowering the threshold is
that the misprediction rate increases. In case the
operand width is more than its static prediction,
the operation may not be computable with its as-
signed portion of the FU in the same cycle. Such
a misprediction can be identi�ed at run-time us-
ing zero detection logic that checks whether the
upper 8 or 16 bits of an ALU result are zero. This
detection logic is proposed by Brooks et al. [2] for
their dynamic packing scheme and already exists
in several modern processors.

One mechanism for recovery from data width
mispredictions is to replay the mispredicted op-
eration on a FU. In this case, when an operand's
width is mispredicted, the operation is replayed
through the same FU using the FU's entire width
during the following cycle. During the replay of

a mispredicted operation, subsequent operations
are stalled in the pipeline. In the case of multi-
ple mispredictions on a single FU, each mispre-
dicted operation is replayed independently and
the pipeline is stalled during the entire replay
sequence. In this paper, we study the impact
of varying prediction threshold on misprediction
rate and its impact on performance.

3 Evaluation

3.1 Methodology

We studied the performance of WSS using the
Trimaran compiler and simulator [1]. The sim-
ulator was extended to instrument programs
and annotate the program IR with pro�le in-
formation. We also implemented our scheduling
technique in the Trimaran compiler. To evalu-
ate WSS, we used several benchmarks from the
SPEC95 and MediaBench suites. Our machine
model is a �ve-wide VLIW with two ALUs, one
oating point unit, one memory unit, and one
branch unit. This machine is similar to the
Transmeta Crusoe TM5400 processor which is
a four-wide VLIW with one ALU. However, the
Crusoe processor can use its memory unit as an
adder when no memory operations are sched-
uled, e�ectively making the processor �ve-wide.
We use a fairer model of a �ve-wide VLIW that
is less constrained by allowing two ALUs. Our
machine model has 64 general-purpose registers
and a 32-bit data width. The Trimaran com-
piler does several aggressive code optimizations
including dead code removal, redundancy elim-
ination and other classical optimizations before
performing WSS. Only ALUs were packed with
more than one operation using WSS. The pro-
�le data included how often an operand width
of an instruction was (1) less than 8 bits and
(2) less than 16 bits. This data was analyzed
by the compiler to identify instructions whose
operands were within 8 or 16 bits. For exam-
ple, if pro�le data indicated an instruction to al-
ways have operands within 16 bits, the ALU as-

sign
ed

to
th
e
in
stru

ctio
n
w
a
s
co
n
sid

ered
as

50%
b
u
sy.

T
h
e
oth

er
h
a
lf
o
f
th
e
A
L
U
w
as

availab
le
to

o
th
er

in
stru

ctio
n
s
w
ith

n
a
rrow

op
eran

d
s
of

8
or

1
6
b
its.

T
h
e
com

p
iler

u
sed

a
p
red

iction
th
resh

-
o
ld

of
1
00%

for
b
o
th

8-b
it
a
n
d
16-b

it
op
eran

d
s.

In
ca
se

an
in
stru

ctio
n
's
op
eran

d
sp
illed

over
its

p
red

icted
w
id
th
,
th
e
p
ro
cesso

r
stalls

a
cy
cle

to
re-ex

ecu
te

th
e
in
stru

ctio
n
.

3
.2

F
e
tch

B
a
n
d
w
id
th

a
n
d

R
e
g
iste

r
P
re
ssu

re

F
o
r
ou
r
in
itial

stu
d
ies,

w
e
w
ere

in
terested

in
an
-

a
ly
zin

g
th
e
p
o
ten

tial
p
erfo

rm
a
n
ce

o
f
p
ack

in
g
op
-

era
tion

s
w
ith

o
u
t
b
an
d
w
id
th

lim
itation

s.
H
en
ce

w
e
assu

m
ed

th
ere

w
as

a
lw
ay
s
en
ou
gh

b
an
d
w
id
th

to
su
p
p
ly

op
era

tion
s
to

fu
lly

p
ack

an
A
L
U
.
A
lso

o
p
eratio

n
s
p
a
ck
ed

o
n
a
n
A
L
U

w
ere

allow
ed

to
b
e
of

d
i�
eren

t
ty
p
es.

L
ater

in
th
is

p
ap
er,

w
e

rem
ov
e
th
ese

assu
m
p
tio

n
s.

F
ig
u
re

6
sh
ow

s
th
e

p
ercen

tag
e
sp
eed

u
p
fo
r
p
ack

in
g
o
p
eration

s.
T
h
e

�
rst

colu
m
n
in
th
e
�
g
u
re
assu

m
es
p
erfect

register
a
llo
cation

w
ith

n
o
reg

ister
sp
ills

an
d
th
e
secon

d
colu

m
n
in
co
rp
orates

register
sp
ills.

T
h
e
sav

in
gs

in
a
b
sen

ce
of

register
sp
ills

a
re

in
th
e
ran

ge
1-

1
3
%

w
ith

an
av
era

ge
o
f
5.7

%
.
A
n
oth

er
ob
serva-

tion
is
th
at

reg
ister

sp
ills

b
eco

m
e
im
p
ortan

t
an
d

a
�
ect

p
erform

a
n
ce

co
n
sid

era
b
ly.

S
in
ce

w
id
th
-

sen
sitiv

e
sch

ed
u
lin
g
in
crea

ses
p
a
rallelism

,
regis-

ter
p
ressu

re
also

in
crea

ses.
T
h
is
red

u
ction

is
es-

p
ecia

lly
n
oticeab

le
in

case
o
f
ijpeg.

S
p
eed

u
p
s
for

o
u
r
b
en
ch
m
ark

s
a
fter

co
n
sid

erin
g
register

sp
ills

a
re

in
th
e
ra
n
ge

1-8%
w
ith

a
n
av
erag

e
of

2.6%
.

T
h
e
im
p
a
ct

of
sp
ills

is
p
a
rticu

la
rly

sign
i�
can

t
in

o
u
r
m
a
ch
in
e
m
o
d
el
b
ecau

se
th
ere

is
on
ly

on
e

lo
a
d
/store

u
n
it.

F
rom

th
e
ab
ov
e
ob
serva

tio
n
s,
w
e
in
fer

th
at

in
ord

er
to

ga
in

p
erfo

rm
a
n
ce

b
en
e�
ts

from
w
id
th
-

sen
sitive

sch
ed
u
lin
g
,
th
e
reg

ister
allo

cator
n
eed

s
to

b
e
sen

sitive
to

op
eran

d
w
id
th
s.

O
n
e
in
tu
ition

is
th
at

16-b
it
valu

es
ca
n
b
e
sp
illed

in
con

secu
tive

lo
cation

s
a
n
d
fetch

ed
in

a
sin

gle
lo
a
d
op
eration

.
In

o
u
r
cu
rren

t
im
p
lem

en
tatio

n
,
w
id
th
-sen

sitive
sch

ed
u
lin
g
on
ly

p
ack

s
A
L
U

op
era

tion
s,
so

sp
ills

a
n
d
reload

s
of

n
arrow

w
id
th

d
ata

a
re

p
erform

ed

% Speedup

0 2 4 6 8

10 12 14 16

epic

rasta

compress

mpeg2dec

G721dec

li

m88ksim

ijpeg

N
o register spills

W
ith register spills

F
igu

re
6:

P
erform

an
ce

w
ith

n
o
lim

itation
on

fetch
b
an
d
w
id
th

w
ith

sep
arate

store
an
d
load

s.
B
y
p
ack

in
g
n
ar-

row
op
eran

d
s
for

sp
ills,

w
e
ex
p
ect

th
e
im
p
act

of
sp
illin

g
to

red
u
ce.

T
h
is

p
ack

in
g
is

sim
ilar

to
S
IM

D
sy
n
th
esis

of
load

/stores
[4].

H
ow

ever,
sin

ce
register

allo
cation

is
a
static

tech
n
iq
u
e,
w
e

can
also

m
o
d
ify

th
e
allo

cation
p
h
ase

to
accom

-
m
o
d
ate

sp
ills

of
16-b

it
valu

es
to

th
e
sam

e
reg-

ister,
w
h
ich

w
ill

sign
i�
can

tly
red

u
ce

th
e
n
u
m
-

b
er

of
sp
ills.

T
h
is

w
id
th
-sen

sitive
register

al-
lo
cation

can
b
e
in
corp

orated
w
ith

in
a
co
m
p
iler

in
d
ep
en
d
en
t
of

th
e
u
n
d
erly

in
g
arch

itectu
re.

W
e

are
cu
rren

tly
in
v
estigatin

g
m
eth

o
d
s
to

red
u
ce

th
e

im
p
act

of
register

sp
ills

u
sin

g
tech

n
iq
u
es

sim
i-

lar
to

th
e
on
es

p
rop

osed
h
ere.

F
or

ou
r
a
n
aly

sis
in

th
is
p
ap
er,

w
e
w
ere

in
terested

in
evalu

atin
g

th
e
scop

e
of

w
id
th
-sen

sitiv
e
sch

ed
u
lin
g
for

p
er-

form
an
ce

im
p
rov

em
en
t.

T
o
avoid

th
e
im
p
act

of
sp
ills

on
th
is
p
erform

an
ce

stu
d
y,
w
e
assu

m
e
p
er-

fect
register

allo
cation

w
ith

n
o
sp
ills

for
th
e
rest

of
ou
r
ex
p
erim

en
ts.

0 2 4 6 8 10 12 14 16

epic

rasta

compress

mpeg2dec

G721dec

li

m88ksim

ijpeg

% Speedup
Ideal C

ase
H

om
ogeneous packing

% Speedup

0 2 4 6 8 10 12 14 16

epic

rasta

compress

mpeg2dec

G721dec

li

m88ksim

ijpeg

Ideal C
ase

H
eterogeneous packing

(a)
H
om

og
en
eou

s
p
ack

in
g

(b
)
H
eterogen

eou
s
p
ack

in
g

F
igu

re
7
:
P
erform

an
ce

for
lim

ited
fetch

b
an
d
w
id
th

3
.3

H
o
m
o
g
e
n
e
o
u
s
v
s.

H
e
te
ro
g
e
n
e
o
u
s

P
a
ck
in
g

In
th
e
n
ex
t
set

of
ex
p
erim

en
ts,

w
e
w
a
n
ted

to
an
-

a
ly
ze

h
ow

con
strain

in
g
b
a
n
d
w
id
th

a
�
ects

p
erfor-

m
a
n
ce.

H
en
ce

th
e
fetch

b
a
n
d
w
id
th

w
as

�
x
ed

to
b
e
th
e
w
id
th

of
th
e
m
ach

in
e.

A
lso

,
w
e
w
an
ted

to
stu

d
y
h
ow

w
ell

p
ack

in
g
h
eterog

en
eou

s
op
eration

s
im
p
rov

es
p
erfo

rm
a
n
ce

over
S
IM

D
-like

sy
n
th
esis.

T
w
o
sets

of
ex
p
erim

en
ts

w
ere

ca
rried

ou
t.
F
irst,

o
n
ly
h
om

og
en
eou

s
o
p
era

tion
s
w
ere

p
acked

on
an

A
L
U
.
T
h
is
tech

n
iq
u
e
is
sim

ila
r
to

th
e
sy
n
th
esis

of
S
IM

D
in
stru

ctio
n
s.

In
th
e
secon

d
set,

w
e
al-

low
ed

h
etero

gen
eo
u
s
o
p
era

tion
s
to

b
e
p
acked

on
a
n
A
L
U
.
F
igu

re
7
sh
ow

s
p
erform

an
ce

for
b
oth

ex
p
erim

en
ts.

E
a
ch

case
is

co
m
p
a
red

w
ith

th
e

p
erform

an
ce

o
f
th
e
case

w
ith

n
o
lim

itation
on

fetch
b
an
d
w
id
th

(la
b
eled

a
s
id
ea
l
case).

F
rom

F
igu

re
7
(a),

w
e
o
b
serve

th
at

sp
eed

u
p
s
in
th
e
case

o
f
p
ack

in
g
h
o
m
o
gen

eo
u
s
op
eratio

n
s
are

con
sid

-
era

b
ly

red
u
ced

fro
m

th
e
id
ea
l
ca
se.

T
h
is
red

u
c-

tion
relates

to
th
e
fact

th
at

fetch
b
an
d
w
id
th

is
lim

ited
an
d
on
ly

sim
ilar

op
eration

s
are

allow
ed

to
sh
are

an
A
L
U
.
F
or

th
e
case

of
h
eterogen

eou
s

p
ack

in
g,
F
igu

re
7(b

)
sh
ow

s
th
at

p
erform

an
ce

im
-

p
rovem

en
ts

are
close

to
th
e
id
eal

case.
T
h
is

ob
servation

im
p
lies

th
at

h
eterogen

eou
s
p
ack

in
g

u
n
covers

sign
i�
can

t
p
arallelism

th
at

is
n
ot

ex
-

p
loitab

le
w
ith

h
om

ogen
eou

s
p
ack

in
g.

A
lso,

in
th
e
latter

case,
th
e
u
n
u
sed

fetch
b
an
d
w
id
th

can
b
e
u
sed

to
ex
p
loit

m
ost

of
th
e
p
ossib

le
b
en
e�
ts

of
th
e
id
eal

case.

3
.4

P
re
d
ic
tio

n
T
h
re
sh
o
ld
a
n
d
M
isp

re
-

d
ic
tio

n

A
s
d
iscu

ssed
p
rev

iou
sly,

p
red

iction
th
resh

old
can

h
av
e
an

im
p
act

on
d
etectin

g
op
p
ortu

n
ities

to
p
ack

op
eration

s.
T
o
d
eterm

in
e
w
h
eth

er
th
is
w
as

th
e
case,

w
e
varied

th
e
th
resh

old
an
d
m
easu

red
th
e
im
p
act

on
p
erform

an
ce.

W
e
fou

n
d
th
at

as
th
e
p
red

iction
th
resh

old
w
as

low
ered

,
th
e
sch

ed
-

ule length improved but the misprediction rate
also increased. It was observed that the improve-
ments in schedule length were minor unless the
prediction threshold was below 60%. However,
for such low thresholds, the cost of recovering
from mispredictions mitigated any improvement
in schedule length. With our current recovery
mechanism, each mispredicted operation is re-
played independently and contributes a cycle to
the misprediction penalty. In case of complex
arithmetic operations with latency of several cy-
cles this penalty can be more than one cycle.
In our experiments we observed that less than
1% of packed operations had latency higher than
one cycle (except in case of G721dec with 3.3%).
Accounting for multi-cycle misprediction penalty
would have a negligible e�ect on performance.

It is possible to achieve higher speedups with
lower prediction thresholds by reducing the mis-
prediction penalty. One way to reduce the
penalty is by recovering multiple predictions in
parallel with execution of the next VLIW in-
struction, if resources are available. Also more
sophisticated prediction techniques may be able
to predict more accurately reducing the in-
stances of misprediction. We are currently inves-
tigating both compiler and hardware techniques
to reduce the misprediction penalty.

3.5 Machine Width

In our next experiment, we varied the ma-
chine width to determine in what context width-
sensitive scheduling is most appropriate. Three
di�erent machine models were considered: (1)
a four-wide VLIW with one load/store, one
ALU, one oating-point and one branch unit,
(2) a �ve-wide VLIW with one load/store,
two ALU, one oating-point and one branch
unit and (3) an eight-wide VLIW with two
load/store, four ALUs, one oating-point and
one branch unit. These machine models were
selected based on a range of embedded proces-
sors from a simpler model (four-wide Transmeta
TM5400) to a relatively complex one (eight-wide

TI TMS320C6201).
Performance analysis for the di�erent machine

models is shown in Figure 8. From this �gure,
the narrow VLIW machine has considerable im-
provement, ranging from 11-25% with an av-
erage of 15.7%. However, as more ALUs are
added to the machine model, these savings re-
duce. Performance improvements for the eight-
wide machine model were insigni�cant, ranging
from 0.1-3%. The reason is that this machine
model has su�cient integer units to exploit most
of the parallelism available by packing narrow
operands. This observation con�rms the state-
ment that width-sensitive scheduling is bene�cial
for resource-constrained VLIWs, similar to mod-
els 1 and 2. In our experiments, a 32-bit data
width is used and a wider data path would allow
more operations to be packed together on a func-
tional unit. From Figure 8, our techniques sub-
stantially improve the performance for narrow
VLIWs, and we expect the performance improve-
ments would be even greater for VLIWs with a
wider data width.

%
 S

pe
ed

up

0

5

10

15

20

25

30

ep
ic

ra
st

a

co
m

pr
es

s

m
pe

g2
de

c

G
72

1d
ec li

m
88

ks
im

ij
pe

g

4 wide VLIW/1 ALU
5 wide VLIW/2 ALUs
8 wide VLIW/4 ALUs

Figure 8: Performance for di�erent machine
models

4 Summary and Future Work

In this paper, we present a scheduling tech-
nique, called width-sensitive scheduling, that al-
lows sharing of a functional unit among oper-
ations that have narrow width operands. The
technique is proposed as a static scheduling tech-
nique and applied to resource-constrained VLIW
processors. The important factors associated
with our scheduling technique are presented and
evaluated on a realistic VLIW machine model.
The performance savings due to width-sensitive
scheduling are very encouraging, with speedups
of 1-13%. Packing operations of di�erent types
on the same functional unit has better perfor-
mance than packing operations in a SIMD-like
fashion. We �nd our technique to be most
suitable for VLIW processors that are resource-
constrained, such as those used in embedded sys-
tems. Our experiments indicate that register al-
location plays an important part in speculation
of operand widths, and our techniques could be
used along with allocation of live ranges to reg-
isters based on width of the live range value. We
are currently analyzing the improvements due to
this combination. We also believe our technique
would have even better performance with an im-
proved misprediction recovery mechanism. In a
future paper, we will describe our work with bit-
sensitive live range analysis and improved mis-
prediction recovery.

5 Acknowledgments

We would like to thank the anonymous reviewers
whose comments and suggestions helped improve
the paper.

References

[1] Trimaran compiler research infrastructure.
In Tutorial Notes, http://www.trimaran.org,
Nov 1997.

[2] David Brooks and Margaret Martonosi. Dy-
namically exploiting narrow width operands
to improve processor power and performance.
In Proceedings of the Fifth International
Symposium on High-Performance Computer
Architecture, pages 13{22, Orlando, FL, Jan-
uary 9{13, 1999.

[3] Keith I. Farkas, Norman P. Jouppi, and Paul
Chow. Register �le design considerations in
dynamically scheduled processors. In WRL
Research Report 95/10, Western Research
Laboratory, Compaq, 1995.

[4] Samuel Larsen and Saman Amarasinghe.
Exploiting superword level parallelism with
multimedia instruction sets. In Proceedings
of the ACM SIGPLAN '00 Conference on
Programming Language Design and Imple-
mentation, pages 145{156, Vancouver, BC,
June 18{21, 2000.

[5] C. G. Lee and D. J. DeVries. Initial re-
sults on the performance and cost of vec-
tor microprocessors. In Proceedings of the
30th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO-97),
pages 171{183, RTP, NC, December171{182
1997.

[6] Kevin Scott and Jack Davidson. Explor-
ing the limits of sub-word parallelism. In
Proceedings of the International Conference
on Parallel Architectures and Compilation
Techniques, Philadelphia, PA, October 15{
19, 2000.

[7] Mark Stephenson, Jonathan Babb, and
Saman Amarasinghe. Bitwidth analysis with
application to silicon compilation. In Pro-
ceedings of the ACM SIGPLAN '00 Confer-
ence on Programming Language Design and
Implementation, pages 108{120, Vancouver,
BC, June 18{21, 2000.

