
CS/COE 0447 Fall 2009
Lab 4: Functions

Due Date: October 9, 2009

To get started on this lab, attend recitation on 9/25. Each of you should submit your own solution,
according to these instructions: http://www.cs.pitt.edu/~sab104/teaching/cs447/submission.html. You
may collaborate with your partner, but each person must turn in their own copy of the lab, with the
name of their partner. The lab is due on 10/9 at 11:59pm.

In this lab, we will write four functions that manipulate the memory locations of the LED display to
turn on and off some LEDs.

1) Write a function void setLED(int *address, int bitPattern) that stores the word bitPattern in the
memory location pointed to by address. In the previous definition, an int is the size of a word and int *
is a pointer to a word (address of a word). Use the code below to call your function:

.text
li $a0, 0xFFFF0000 #LED memory starts at this address
li $a1, 0x55555555 #LEDs to turn on
jal setLED #Jump and link to setLED
li $v0, 10 #Exit
syscall

2) Write a function int getLED(int *address) that returns the bit pattern currently stored in the memory
location pointed to by address. Use the code below to call your function:

.data
ok: .asciiz "The values match!"
not_ok: .asciiz "The values don't match!"

.text
li $a0, 0xFFFF0000 #LED memory starts at this address
li $a1, 0x55555555 #LEDs to turn on
jal setLED #Jump and link to setLED
jal getLED #Jump and link to getLED
bne $a1, $v0, else #Return values should be in $v0
la $a0, ok #Load ok string if equal
j end

else: la $a0, not_ok #Load not_ok string if not equal

http://www.cs.pitt.edu/~sab104/teaching/cs447/submission.html

end: li $v0, 4 #Print the string
syscall
li $v0, 10 #Exit
syscall

3) Write a function void notLED(int *address) that reads the bit pattern stored in the memory location
pointed to by address, takes its complement and stores it back to the same location in memory. Your
function must use the functions defined in the previous two points. Use the code below to call your
function:

.text
li $a0, 0xFFFF0000 #LED memory starts at this address
li $a1, 0x55555555 #LEDs to turn on
jal setLED #Jump and link to setLED
jal notLED #Jump and link to notLED
li $v0, 10 #Exit
syscall

4) Write a function void setLEDRange(int *address, int bitPattern, int num) that stores the word
bitPattern in num consecutive memory locations starting at the address pointed to by address. Your
function must use the functions defined in points 1 and 2. Use the code below to call your function:

.text
li $a0, 0xFFFF0000 #LED memory starts at this address
li $a1, 0x55555555 #LEDs to turn on
li $a2, 5 #Number of words to store
jal setLEDRange #Jump and link to setLEDRange
li $v0, 10 #Exit
syscall

