CS/COE 0447 Fall 2009
 Homework 3
 Solution

1. Convert the following decimal numbers into 8-bit binary numbers in biased notation with a bias of 127.

121 is represented by the bit pattern of $121+127=248$
$248 / 2=124+0 / 2$
$124 / 2=62+0 / 2$
$62 / 2=31+\mathbf{0} / 2$
$31 / 2=15+\mathbf{1} / 2$
$15 / 2=7+\mathbf{1} / 2$
$7 / 2=3+1 / 2$
$3 / 2=1+\mathbf{1} / 2$
$1 / 2=0+\mathbf{1} / 2$
$248=11111000 b$
-25 is represented by the bit pattern of $-25+127=102$
$102 / 2=51+\mathbf{0} / 2$
$51 / 2=25+1 / 2$
$25 / 2=12+1 / 2$
$12 / 2=6+\mathbf{0} / 2$
$6 / 2=3+\mathbf{0} / 2$
$3 / 2=1+\mathbf{1} / 2$
$1 / 2=0+\mathbf{1} / 2$
$102=01100110 b$
-71 is represented by the bit pattern of $-71+127=56$
$56 / 2=28+\mathbf{0} / 2$
$28 / 2=14+0 / 2$
$14 / 2=7+\mathbf{0} / 2$
$7 / 2=3+1 / 2$
$3 / 2=1+\mathbf{1} / 2$
$1 / 2=0+\mathbf{1} / 2$
$56=00111000 \mathrm{~b}$
2. Convert the following decimal numbers to binary numbers.

Whole part of 5.75 is 5 :
$5 / 2=2+1 / 2$
$2 / 2=1+\mathbf{0} / 2$
$1 / 2=0+1 / 2$
$5=101 \mathrm{~b}$
Decimal fraction of 5.75 is 0.75 :
$0.75 \times 2=1.5$
$0.5 \times 2=1.0$ (done because decimal fraction is 0)
Binary fraction is 0.11 b
$5.75=101.11 \mathrm{~b}$

Whole part of 45.375 is 45 :
$45 / 2=22+1 / 2$
$22 / 2=11+\mathbf{0} / 2$
$11 / 2=5+1 / 2$
$5 / 2=2+\mathbf{1} / 2$
$2 / 2=1+\mathbf{0} / 2$
$1 / 2=0+1 / 2$
$45=101101 \mathrm{~b}$
Decimal fraction of 45.375 is 0.375 :
$0.375 \times 2=\mathbf{0 . 7 5}$
$0.75 \times 2=1.5$
$0.5 \times 2=\mathbf{1} .0$ (done because decimal fraction is 0)
Binary fraction is 0.011 b
$45.375=101101.011 \mathrm{~b}$

Whole part of 13.40625 is 13 :
$13 / 2=6+1 / 2$
$6 / 2=3+\mathbf{0} / 2$
$3 / 2=1+\mathbf{1} / 2$
$1 / 2=0+\mathbf{1} / 2$
$13=1101 \mathrm{~b}$
Decimal fraction of 13.40625 is 0.40625 :
$0.40625 \times 2=0.8125$
$0.8125 \times 2=1.625$
$0.625 \times 2=1.25$
$0.25 \times 2=\mathbf{0 . 5}$
$0.5 \times 2=1.0$ (done because decimal fraction is 0)
Binary fraction is 0.01101 b
$13.40625=1101.01101 \mathrm{~b}$

3. Convert the following binary numbers to decimal numbers:

$$
\begin{aligned}
& 110010110.11001 \mathrm{~b}: \\
& \wedge^{\wedge}-5+2^{\wedge}-2+2^{\wedge-1}+2^{\wedge} 1+2^{\wedge} 2+2^{\wedge} 4+2 \wedge 7+2 \wedge 8=0.03125+0.25+0.5+2+4+16+128+256 \\
& =406.78125 \\
& 1001110.0000101 \mathrm{~b}: \\
& 2^{\wedge-7}+2^{\wedge}-5+2^{\wedge 1}+2^{\wedge} 2+2^{\wedge} 3+2^{\wedge} 6=0.0078125+0.03125+2+4+8+64=78.0390625
\end{aligned}
$$

100111011.11001101b:
$2^{\wedge}-8+2^{\wedge}-6+2^{\wedge}-5+2^{\wedge}-2+2^{\wedge}-1+2^{\wedge} 0+2^{\wedge} 1+2^{\wedge} 3+2^{\wedge} 4+2^{\wedge} 5+2^{\wedge} 8=0.00390625+0.015625+$ $0.03125+0.25+0.5+1+2+8+16+32+256=315.80078125$
4. Write down the binary representation of the following decimal numbers, assuming the IEEE 754 single precision format:
-1609.5:
Whole part of 1609.5 is 1609:
1609/2 $2=804+1 / 2$
$804 / 2=402+\mathbf{0} / 2$
$402 / 2=201+\mathbf{0} / 2$
$201 / 2=100+1 / 2$
$100 / 2=50+\mathbf{0} / 2$
$50 / 2=25+\mathbf{0} / 2$
$25 / 2=12+1 / 2$
$12 / 2=6+\mathbf{0} / 2$
$6 / 2=3+\mathbf{0} / 2$
$3 / 2=1+1 / 2$
$1 / 2=0+\mathbf{1} / 2$
$1609=11001001001 b$
Decimal fraction of 1609.5 is 0.5 :
$0.5 \times 2=\mathbf{1} .0$ (done because decimal fraction is 0)
Binary fraction is 0.1 b
$-1609.5=-11001001001.1 \mathrm{~b}$
In scientific notation: $-11001001001.1 \times 2 \wedge 0$
Normalizing: -1.10010010011 x 2^10
10 is bias notation is $10+127=137=10001001 \mathrm{~b}$
-1609.5 in IEEE 754 single precision format is: 11000100110010010011000000000000 b
-938.8125
Whole part of 938.8125 is 938 :
938/2 $=469+\mathbf{0} / 2$
$469 / 2=234+1 / 2$
$234 / 2=117+\mathbf{0} / 2$
$117 / 2=58+\mathbf{1} / 2$
$58 / 2=29+\mathbf{0} / 2$
$29 / 2=14+\mathbf{1} / 2$
$14 / 2=6+0 / 2$
$7 / 2=3+1 / 2$
$3 / 2=1+\mathbf{1} / 2$
$1 / 2=0+\mathbf{1} / 2$
$938=1110101010 b$
Decimal fraction of 938.8125 is 0.8125 :
$0.8125 \times 2=1.625$
$0.625 \times 2=1.25$
$0.25 \times 2=\mathbf{0 . 5}$
$0.5 \times 2=1.0$ (done because decimal fraction is 0)

Binary fraction is 0.1101 b
$-938.8125=-1110101010.1101 b$
In scientific notation: -1110101010.1101 x 2^0
Normalizing: - $1.1101010101101 \times 2 \wedge 9$
9 is bias notation is $9+127=136=10001000$ b
-938.8125 in IEEE 754 single precision format is: 1100010001101010101101000000 0000b
130.59375

Whole part of 130.59375 is 130 :
130/2 $=65+\mathbf{0} / 2$
$65 / 2=32+1 / 2$
$32 / 2=16+\mathbf{0} / 2$
$16 / 2=8+\mathbf{0} / 2$
$8 / 2=4+\mathbf{0} / 2$
$4 / 2=2+0 / 2$
$2 / 2=1+\mathbf{0} / 2$
$1 / 2=0+1 / 2$
$130=10000010 b$
Decimal fraction of 130.59375 is 0.59375 :
$0.59375 \times 2=1.1875$
0.1875 x $2=0.375$
$0.375 \times 2=\mathbf{0 . 7 5}$
$0.75 \times 2=1.5$
$0.5 \times 2=1.0$ (done because decimal fraction is 0)
Binary fraction is 0.10011 b
$130.59375=10000010.10011 \mathrm{~b}$
In scientific notation: $10000010.10011 \times 2 \wedge 0$
Normalizing: $1.000001010011 \times 2 \wedge 7$
7 is bias notation is $7+127=134=10000110$ b
130.59375 in IEEE 754 single precision format is: 0100001100000010100110000000 0000b
5. Show the steps for the division of 1101 b and 0011 b (unsigned) using Hardware Design 3 (available here: http://www.cs.pitt.edu/~childers/CS0447/lectures/division-floats.pdf). Draw a table similar to the following one and fill up the columns:

Iteration	Divisor	Step	Remainder (8 bits)
0	0011	Initial Values	00001101
		Shift remainder left by 1	00011010
1	0011	remainder = remainder - divisor	11101010
		(remainder <0) => remainder +=divisor; shift left; r0 = 0	00110100
2	0011	remainder $=$ remainder - divisor	00000100
		(remainder $>=0$) => shift left; r0 $=1$	00001001

3	0011	remainder = remainder - divisor	11011001
		(remainder < 0) => remainder +=divisor; shift left; r0 = 0	00010010
4	0011	remainder = remainder - divisor	11100010
done	0011	(remainder < 0) => remainder +=divisor; shift left; r0 = 0	00100100
		shift left half of remainder right by 1	00010100

6. Show the steps for the division of 1101b and 0011b (unsigned) using Hardware Design 3 and nonrestoring division (available here: http://www.cs.pitt.edu/~childers/CS0447/lectures/division-floats.pdf). Draw a table similar to the following one and fill up the columns:

Iteration	Divisor	Step	Remainder (8 bits)
0	0011	Initial Values	00001101
		Shift remainder left by 1	00011010
1	0011	remainder $=$ remainder - divisor	11101010
		(remainder < 0) => shift left; r0 = 0	11010100
2	0011	remainder $=$ remainder + divisor	00000100
		(remainder >= 0) => shift left; r0 = 1	00001001
3	0011	remainder $=$ remainder - divisor	11011001
		(remainder < 0) => shift left; r0 = 0	10110010
4	0011	remainder $=$ remainder + divisor	11100010
		(remainder < 0) => shift left; r0 = 0	11000100
done	0011	shift left half of remainder right by 1	11100100
		(remainder <0) => remainder = remainder + divisor	00010100

7. Write down the function represented by the following Karnaugh map as a sum of products. Make sure you minimize the number of products.

	$\mathbf{A B}=\mathbf{0 0}$	$\mathbf{A B}=\mathbf{0 1}$	$\mathbf{A B}=\mathbf{1 1}$	$\mathbf{A B}=\mathbf{1 0}$
$\mathbf{C D}=\mathbf{0 0}$	1	0	0	1
$\mathbf{C D}=\mathbf{0 1}$	0	0	1	1
$\mathbf{C D}=\mathbf{1 1}$	1	1	1	1
$\mathbf{C D}=\mathbf{1 0}$	1	0	0	1

$\mathrm{F}=\mathrm{CD}+\mathrm{B}^{\prime} \mathrm{D}^{\prime}+\mathrm{AD}$
8. Write down the function represented by the following Karnaugh map as a sum of products. Make sure
you minimize the number of products.

	$\mathbf{A B}=\mathbf{0 0}$	$\mathbf{A B}=\mathbf{0 1}$	$\mathbf{A B}=\mathbf{1 1}$	$\mathbf{A B}=\mathbf{1 0}$
$\mathbf{C D}=\mathbf{0 0}$	0	1	1	0
$\mathbf{C D}=\mathbf{0 1}$	1	1	0	1
$\mathbf{C D}=\mathbf{1 1}$	0	0	0	0
$\mathbf{C D}=\mathbf{1 0}$	0	1	1	0

$\mathrm{F}=\mathrm{BD}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}$
or
$\mathrm{F}=\mathrm{BD}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}$
9. Consider two 2-bit inputs X and Y, each consisting of individual bits $x 1$ and $x 0$, and $y 1$ and $y 0$, respectively. Write down the truth table for each of the following relations:
$X<Y$, where X and Y are unsigned binary numbers
$\mathbf{X}=\mathbf{Y}$

Write down each function as a sum of products and draw the circuit using AND/OR/NOT gates. Use Karnaugh maps to minimize the number of products.

$\mathbf{x 1}$	$\mathbf{x 0}$	$\mathbf{y 1}$	$\mathbf{y 0}$	\mathbf{X}	\mathbf{Y}	$\mathbf{X}<\mathbf{Y}$	$\mathbf{X}=\mathbf{Y}$
0	0	0	0	0	0	0	1
0	0	0	1	0	1	1	0
0	0	1	0	0	2	1	0
0	0	1	1	0	3	1	0
0	1	0	0	1	0	0	0
0	1	0	1	1	1	0	1
0	1	1	0	1	2	1	0
0	1	1	1	1	3	1	0
1	0	0	0	2	0	0	0
1	0	0	1	2	1	0	0
1	0	1	0	2	2	0	1
1	0	1	1	2	3	1	0
1	1	0	0	3	0	0	0
1	1	0	1	3	1	0	0
1	1	1	0	3	2	0	0
1	1	1	1	3	3	0	1

$\mathrm{X}<\mathrm{Y}$	$\mathbf{x 1 x 0}=\mathbf{0 0}$	$\mathbf{x 1 x 0}=\mathbf{0 1}$	$\mathbf{x 1 x 0}=\mathbf{1 1}$	$\mathbf{x 1} \mathbf{x 0}=\mathbf{1 0}$
$\mathbf{y 1} \mathbf{0}=\mathbf{0 0}$	0	0	0	0
$\mathbf{y 1} \mathbf{0} \mathbf{=} \mathbf{0 1}$	1	0	0	0
$\mathbf{y 1 y 0}=\mathbf{1 1}$	1	1	0	1
$\mathbf{y 1 y 0}=\mathbf{1 0}$	1	1	0	0

$\mathrm{F}=\mathrm{x} 1$ ' $\mathrm{y} 1+\mathrm{x} 1$ 'x0'y0 + x0'y1y0

$\mathrm{X}=\mathrm{Y}$	$\mathbf{x 1 x 0}=\mathbf{0 0}$	$\mathbf{x 1 x 0}=\mathbf{0 1}$	$\mathbf{x 1 x 0}=\mathbf{1 1}$	$\mathbf{x 1 x 0}=\mathbf{1 0}$
$\mathbf{y 1 y 0}=\mathbf{0 0}$	1	0	0	0
$\mathbf{y 1 y 0}=\mathbf{0 1}$	0	1	0	0
$\mathbf{y 1 y 0}=\mathbf{1 1}$	0	0	1	0
$\mathbf{y 1 y 0}=\mathbf{1 0}$	0	0	0	1

$\mathrm{F}=\mathrm{x} 1$ 'x0'y1'y0' + x1'x0y1'y0 + x1x0y1y0 + x1x0'y1y0'

10. There are several solution to this problem. Some combine several operations into just one state, while others split those operation into several states. A possible solution is the following:

The outputs are the following:

	mux	write	clear	done
Waiting for money	0	0	0	0
Niquel inserted	0	1	0	0
Dime inserted	1	1	0	0
Quarter inserted	2	1	0	0
Release product	0	0	1	1

