CS/COE 0447 Fall 2009 Homework 3 Solution

1. Convert the following decimal numbers into 8-bit binary numbers in biased notation with a bias of 127.

121 is represented by the bit pattern of 121 + 127 = 248248 / 2 = 124 + **0** / 2 124/2 = 62 + 0/262 / 2 = 31 + **0** / 2 31 / 2 = 15 + **1** / 2 15 / 2 = 7 + **1** / 2 7/2 = 3 + 1/23/2 = 1 + 1/21/2 = 0 + 1/2248 = 11111000b -25 is represented by the bit pattern of -25 + 127 = 102102 / 2 = 51 + 0 / 251/2 = 25 + 1/225 / 2 = 12 + **1** / 2 12/2 = 6 + 0/26 / 2 = 3 + **0** / 2 3/2 = 1 + 1/21/2 = 0 + 1/2102 = 01100110b-71 is represented by the bit pattern of -71 + 127 = 5656 / 2 = 28 + **0** / 2 28/2 = 14 + 0/214 / 2 = 7 + **0** / 2 7 / 2 = 3 + **1** / 2 3/2 = 1 + 1/21/2 = 0 + 1/2

56 = 00111000b

2. Convert the following decimal numbers to binary numbers.

Whole part of 5.75 is 5: 5 / 2 = 2 + **1** / 2 2 / 2 = 1 + **0** / 2 1 / 2 = 0 + **1** / 2 5 = 101b Decimal fraction of 5.75 is 0.75: $0.75 \ge 2 = 1.5$ $0.5 \ge 2 = 1.0$ (done because decimal fraction is 0) Binary fraction is 0.11b 5.75 = 101.11bWhole part of 45.375 is 45: 45 / 2 = 22 + 1 / 222 / 2 = 11 + 0 / 2

11/2 = 5 + 1/2 5/2 = 2 + 1/2 2/2 = 1 + 0/2 1/2 = 0 + 1/2 45 = 101101bDecimal fraction of 45.375 is 0.375: $0.375 \ge 2 = 0.75$ $0.75 \ge 2 = 1.5$ $0.5 \ge 2 = 1.0$ (done because decimal fraction is 0) Binary fraction is 0.011b 45.375 = 101101.011b

Whole part of 13.40625 is 13: 13/2 = 6 + 1/2 6/2 = 3 + 0/2 3/2 = 1 + 1/2 1/2 = 0 + 1/2 13 = 1101bDecimal fraction of 13.40625 is 0.40625: $0.40625 \ge 2 = 0.8125$ $0.8125 \ge 2 = 1.625$ $0.625 \ge 2 = 1.625$ $0.625 \ge 2 = 1.25$ $0.25 \ge 2 = 0.5$ $0.5 \ge 2 = 1.0$ (done because decimal fraction is 0) Binary fraction is 0.01101b 13.40625 = 1101.01101b

3. Convert the following binary numbers to decimal numbers:

110010110.11001b: 2^-5 + 2^-2 + 2^-1 + 2^1 + 2^2 + 2^4 + 2^7 + 2^8 = 0.03125 + 0.25 + 0.5 + 2 + 4 + 16 + 128 + 256 = 406.78125

1001110.0000101b: 2^-7 + 2^-5 + 2^1 + 2^2 + 2^3 + 2^6 = 0.0078125 + 0.03125 + 2 + 4 + 8 + 64 = 78.0390625 100111011.11001101b: $2^{-8} + 2^{-6} + 2^{-5} + 2^{-2} + 2^{-1} + 2^{0} + 2^{1} + 2^{3} + 2^{4} + 2^{5} + 2^{8} = 0.00390625 + 0.015625 + 0.03125 + 0.25 + 0.5 + 1 + 2 + 8 + 16 + 32 + 256 = 315.80078125$

4. Write down the binary representation of the following decimal numbers, assuming the IEEE 754 single precision format:

-1609.5: Whole part of 1609.5 is 1609: 1609/2 = 804 + 1/2804 / 2 = 402 + 0 / 2402 / 2 = 201 + 0 / 2201/2 = 100 + 1/2100 / 2 = 50 + 0 / 250/2 = 25 + 0/225 / 2 = 12 + **1** / 2 12/2 = 6 + 0/26 / 2 = 3 + **0** / 2 3/2 = 1 + 1/21/2 = 0 + 1/21609 = 11001001001bDecimal fraction of 1609.5 is 0.5: $0.5 \ge 2 = 1.0$ (done because decimal fraction is 0) Binary fraction is 0.1b -1609.5 = -11001001001.1bIn scientific notation: -11001001001.1 x 2⁰ Normalizing: -1.10010010011 x 2^10 10 is bias notation is 10 + 127 = 137 = 10001001b -938.8125 Whole part of 938.8125 is 938: 938/2 = 469 + 0/2469 / 2 = 234 + 1 / 2234/2 = 117 + 0/2117/2 = 58 + 1/258 / 2 = 29 + **0** / 2 29 / 2 = 14 + **1** / 2 14/2 = 6 + 0/27/2 = 3 + 1/23 / 2 = 1 + **1** / 2 1/2 = 0 + 1/2938 = 1110101010b Decimal fraction of 938.8125 is 0.8125: $0.8125 \ge 2 = 1.625$ 0.625 x 2 = 1.25 $0.25 \ge 2 = 0.5$ $0.5 \ge 2 = 1.0$ (done because decimal fraction is 0)

130.59375 Whole part of 130.59375 is 130: 130/2 = 65 + **0**/2 65/2 = 32 + 1/232/2 = 16 + 0/216 / 2 = 8 + **0** / 2 8 / 2 = 4 + **0** / 2 4/2 = 2 + 0/22 / 2 = 1 + **0** / 2 1/2 = 0 + 1/2130 = 10000010bDecimal fraction of 130.59375 is 0.59375 : $0.59375 \ge 2 = 1.1875$ $0.1875 \ge 2 = 0.375$ 0.375 x 2 = **0**.75 0.75 x 2 = **1**.5 $0.5 \ge 2 = 1.0$ (done because decimal fraction is 0) Binary fraction is 0.10011b 130.59375 = 10000010.10011b In scientific notation: 10000010.10011 x 2⁰

5. Show the steps for the division of 1101b and 0011b (unsigned) using Hardware Design 3 (available here: <u>http://www.cs.pitt.edu/~childers/CS0447/lectures/division-floats.pdf</u>). Draw a table similar to the following one and fill up the columns:

Iteration	Divisor	Step	Remainder (8 bits)
0	0011	Initial Values	0000 1101
		Shift remainder left by 1	0001 1010
1	0011	remainder = remainder - divisor	1110 1010
		(remainder < 0) => remainder +=divisor; shift left; r0 = 0	0011 0100
2	0011	remainder = remainder - divisor	0000 0100
		(remainder $\geq = 0$) => shift left; r0 = 1	0000 1001

	3	0011	remainder = remainder - divisor	1101 1001
			(remainder < 0) => remainder +=divisor; shift left; r0 = 0	0001 0010
	4	0011	remainder = remainder - divisor	1110 0010
			(remainder < 0) => remainder +=divisor; shift left; r0 = 0	0010 0100
	done	0011	shift left half of remainder right by 1	0001 0100

6. Show the steps for the division of 1101b and 0011b (unsigned) using Hardware Design 3 and non-restoring division (available here: <u>http://www.cs.pitt.edu/~childers/CS0447/lectures/division-floats.pdf</u>). Draw a table similar to the following one and fill up the columns:

Iteration	Divisor	Step	Remainder (8 bits)
0	0011	Initial Values	0000 1101
0	0011	Shift remainder left by 1	0001 1010
1	0011	remainder = remainder - divisor	1110 1010
	0011	(remainder < 0) => shift left; r0 = 0	1101 0100
	0011	remainder = remainder + divisor	0000 0100
2		(remainder $\geq = 0$) => shift left; r0 = 1	0000 1001
2	0011	remainder = remainder - divisor	1101 1001
5		(remainder < 0) => shift left; r0 = 0	1011 0010
4	0011	remainder = remainder + divisor	1110 0010
4		0011	(remainder < 0) => shift left; r0 = 0
dono	0011	shift left half of remainder right by 1	1110 0100
done	0011	(remainder < 0) => remainder = remainder + divisor	0001 0100

7. Write down the function represented by the following Karnaugh map as a sum of products. Make sure you minimize the number of products.

	AB = 00	AB = 01	AB = 11	AB = 10
CD = 00	1	0	0	1
CD = 01	0	0	1	1
CD = 11	1	1	1	1
CD = 10	1	0	0	1

F = CD + B'D' + AD

8. Write down the function represented by the following Karnaugh map as a sum of products. Make sure

	•		•	. 1	1	ſ	1.
V011	min	Im	1 7.e 1	the	numbe	r of	products.
,					mannoe		Productor

	AB = 00	AB = 01	AB = 11	AB = 10
CD = 00	0	1	1	0
CD = 01	1	1	0	1
CD = 11	0	0	0	0
CD = 10	0	1	1	0

F = BD' + A'C'D + B'C'Dor F = BD' + A'BC' + B'C'D

9. Consider two 2-bit inputs X and Y, each consisting of individual bits x1 and x0, and y1 and y0, respectively. Write down the truth table for each of the following relations:

 $\mathbf{X} < \mathbf{Y}$, where \mathbf{X} and \mathbf{Y} are unsigned binary numbers $\mathbf{X} = \mathbf{Y}$

Write down each function as a sum of products and draw the circuit using AND/OR/NOT gates. Use Karnaugh maps to minimize the number of products.

x1	x0	y1	y0	X	Y	X < Y	X = Y
0	0	0	0	0	0	0	1
0	0	0	1	0	1	1	0
0	0	1	0	0	2	1	0
0	0	1	1	0	3	1	0
0	1	0	0	1	0	0	0
0	1	0	1	1	1	0	1
0	1	1	0	1	2	1	0
0	1	1	1	1	3	1	0
1	0	0	0	2	0	0	0
1	0	0	1	2	1	0	0
1	0	1	0	2	2	0	1
1	0	1	1	2	3	1	0
1	1	0	0	3	0	0	0
1	1	0	1	3	1	0	0
1	1	1	0	3	2	0	0
1	1	1	1	3	3	0	1

X < Y	$\mathbf{x1x0} = 00$	$\mathbf{x1x0} = 01$	x1x0 = 11	$\mathbf{x1x0} = 10$
y1y0 = 00	0	0	0	0
y1y0 = 01	1	0	0	0
y1y0 = 11	1	1	0	1
y1y0 = 10	1	1	0	0

F = x1'y1 + x1'x0'y0 + x0'y1y0

X = Y	$\mathbf{x1x0} = 00$	x1x0 = 01	x1x0 = 11	$\mathbf{x1x0} = 10$
y1y0 = 00	1	0	0	0
y1y0 = 01	0	1	0	0
y1y0 = 11	0	0	1	0
y1y0 = 10	0	0	0	1

F = x1'x0'y1'y0' + x1'x0y1'y0 + x1x0y1y0 + x1x0'y1y0'

10. There are several solution to this problem. Some combine several operations into just one state, while others split those operation into several states. A possible solution is the following:

The outputs are the following:

	mux	write	clear	done
Waiting for money	0	0	0	0
Niquel inserted	0	1	0	0
Dime inserted	1	1	0	0
Quarter inserted	2	1	0	0
Release product	0	0	1	1