CS/COE 0447 Fall 2009
 Homework 1 Solution

1. (5 pts) How many different values can be represented in $\mathbf{1 1}$ binary digits (bits)?

$$
2^{11}=2048
$$

2. (5 pts) How many different values can be represented in 13 hex digits?

$$
16^{13}=4503599627370496
$$

3. (5 pts) Convert the following binary numbers to hexadecimal numbers: 1011100001011010, 11100101011000, 1000111111001110, 1100110101010, 100011001000011.

$$
\begin{aligned}
& 1011100001011010=0 \times x 855 \mathrm{~A} \\
& 11100101011000=0011100101011000=0 \times 3958 \\
& 1000111111001110=0 \times x 8 F C E \\
& 1100110101010=0001100110101010=19 \mathrm{AA} \\
& 100011001000011=0 \times 4643
\end{aligned}
$$

4. (5 pts) Convert the following hexadecimal numbers to binary numbers:

23FF, 7C13, F277, 5F64, F573.
$0 \times 23 F F=0010001111111111$
$0 x 7 C 13=0111110000010011$
$0 \times 5277=1111001001110111$
0x5F64 = 0101111101100100
0xF573 = 1111010101110011
5. (10 pts) Translate the following MIPS instructions to machine code (binary). What is the format of each instruction?
add \$t0, \$t0, \$zero: 00000001000000000100000000100000 (R-format)
addi \$t1, \$t2, 15: 00100001010010010000000000001111 (I-format)
6. (10 pts) Translate the following machine code instructions to MIPS assembly. What is the format of each instruction?

$$
\begin{aligned}
& 1010111000001011000000000000 \text { 0100: } \\
& 1000110100001000000000000100 \text { 0000: }
\end{aligned}
$$

$$
\begin{array}{llll}
\text { sw } \$ 11,4(\$ 16) & \text { or } & \text { sw } \$ t 3,0(\$ \mathrm{~s} 0) & \text { (I-format) } \\
\text { lw } \$ 8,64(\$ 8) & \text { or } & \text { lw } \$ t 0,0(\$ t 0) & \text { (I-format) }
\end{array}
$$

7. (10 pts) Write MIPS code that subtracts the constant 27 from register $\$ \mathbf{t 1}$ and puts the result in register \$t2.
addi \$t2, \$t1, -27
8. (10 pts) Write MIPS code for the following computation. Assume that variable \mathbf{A} is in register $\$ \mathbf{t 0}, \mathrm{~B}$ is in register $\$ \mathbf{t 1}, \mathrm{C}$ is in register $\$ \mathbf{t 2}, \mathrm{D}$ is in register $\$ \mathbf{t} 3, \mathrm{E}$ is in register $\$ \mathbf{t 4}$ and F is in register $\$ \mathbf{t 5}$. $\mathbf{F}=\mathbf{E}-(\mathbf{A}+(\mathbf{B}-\mathbf{C})+\mathbf{D}))$
sub \$t5, \$t1, \$t2
add \$t5, \$t5, \$t3
add \$t5, \$t5, \$t0
sub $\$ \mathrm{tt}, \$ \mathrm{t} 4, \$ \mathrm{t} 5$
9. (10 pts) Write down the names of at least 10 devices you see every day that have processors inside.

Laptop, cellphone, mp3 player, car, alarm clock, camera, TV, modem, router, dishwasher ...
10. (10 pts) Give a brief explanation of what an assembler does.

The assembler translates program written in assembly language (a human readable form to write instructions) to machine language (a machine readable form of instructions).
11. (10 pts) Explain briefly what an immediate operand is. Why are immediate operands in MIPS always the same size (16 bits)?

An immediate operand is an operand that is encoded as part of the instruction. To simplfy the decoding of instructions in hardware, MIPS has only three different formats for encoding instructions. All instructions that have an immediate operands use the I-format, which has space to hold a 16 bit immediate operand (the other formats do not have enough space to hold an operand of a useful size). Therefore, all immediate instructions in MIPS use 16 bit immediate values.
12. (10 pts) Why is there no need of a "subtract immediate" instruction?

The addi instruction treats its immediate operand as a signed number. To subtract an immediate value, we can always us the addi instruction with a negative number.

