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Abstract—Phase Change Memory (PCM) is an emerging tech-
nology that has been recently considered as a cost-effective and
energy-efficient alternative to traditional DRAM main memory.
Due to the high energy consumption of writes and limited number
of write cycles, reducing the number of writes to PCM can result
in considerable energy savings and endurance improvement. In
this paper, we introduce the concept of useless write-backs, which
occur when a dirty cache line that belongs to a dead memory
region is evicted from the cache (a dead region is a memory
location that is not used again by a program). Since the evicted
data is not used again, the write-back can be safely avoided to
improve endurance and energy consumption.

This paper presents a limit study on the improvement that
passing information to the memory system about useless write-
backs has on the endurance and energy consumption of systems
based on PCM main memory. We developed algorithms to
measure the number of useless write-backs to PCM for three
different types of memory regions and we present an energy
model to determine the maximum energy savings that could
potentially be achieved through such a scheme. Our results show
that avoiding useless write-backs can save up to 19.8% of energy
and improve endurance by up to 26.2%.

I. INTRODUCTION

The emergence of cloud computing, together with the

rapidly increasing use of mobile devices that access web-based

information, has caused a noticeable growth in the number and

size of data centers that house the server infrastructure required

by the cloud. With an estimated annual cost of 7.4 billion

dollars for 2011, energy consumption has become a primary

factor in the design of computer systems targeted at data

centers [1]. The memory subsystem accounts for 20% to 40%

of the energy consumed by a typical server, making memory

an important target for improving the energy efficiency of data

centers [2], [3], [4], [5], [6].

In these computer systems, the best choice for main memory

in the past three decades has been DRAM due to its low

cost per bit and low energy consumption. Previously, static

power consumption in DRAM was low enough that it did

not influence the total energy consumed. However, with the

advent of the multi-core era, where dozens of applications

share the same memory, the memory capacity of servers has

been extended to the point that DRAM static power accounts

for a significant portion of energy. In addition, today’s small

transistor sizes leak comparatively more current, which leads

to even larger static power consumption.

To address these issues, Phase Change Memory (PCM) has

been proposed as a replacement for large main memory sys-

tems due to several characteristics. Since PCM is non-volatile,

power to memory banks can be cut off without fear of losing

stored data. This can reduce the static power consumption to

negligible levels. The energy required to read data from PCM

is also lower than DRAM, while read performance is expected

soon to be comparable to DRAM. In addition to the energy

advantages, PCM will be more scalable than DRAM [7].

PCM, however, does have disadvantages. PCM cells endure

only a limited number of writes, typically between 107 and

108, before failing. Although PCM is more durable than other

wearable memories, it still does not have enough endurance

to be used in main memory without a wear-leveling or write-

filtering mechanism [8], [9], [10], [11], [12]. The power and

energy consumption of PCM writes is another major issue that

provides several opportunities for improvement.

In this paper, we introduce the concept of useless write-

backs to analyze the potential that avoiding unnecessary writes

can have on energy and endurance. We define a write-back to

a lower level of a cache hierarchy to be useless when the data

that is written back is not used again by the program (i.e., it

is dead). Since the data is not needed again, the write-back

can be safely elided.

Avoiding useless write-backs is possible so long as the

information about dead memory regions is available. The

technique to obtain and use such information depends on the

type of memory region where the data is located. For example,

when a call to free() is made, a dead region can be identified

in the heap. Dead regions in global data can be determined

through control flow analysis performed by the compiler, the

run-time environment or programmer annotations/hints. Before

developing these techniques, it is important to understand the

potential that useless write-backs have on energy and en-

durance. Consequently, the focus of this paper is to determine

the maximum amount of useless write-backs for three types

of memory regions and their benefit to reducing write energy

and improving endurance for PCM.

This paper makes the following contributions:



• We introduce the concept of useless write-backs to drive

the development of techniques that can help save energy

and improve endurance in PCM main memory.

• We describe an analysis framework to determine the

potential impact that techniques based on useless write-

backs can have on energy consumption and endurance.

• We use the analysis framework on a set of programs and

show that useless write-backs have the potential to save

up to 19.8% of energy and improve endurance by up to

26.2%.

The rest of this paper is organized as follows. Section II

gives background information on PCM and motivates this

work. Section IV explains the analysis framework used to

study useless write-backs in programs. Section V presents the

results we obtained with the framework. Section VI discusses

how the findings of this paper can be applied to a real system.

Section VII discusses related work and Section VIII concludes.

II. BACKGROUND AND MOTIVATION

A. Hybrid Main Memory Architecture

Previous proposals that use PCM in main memory have

mostly assumed a hybrid memory architecture, where a small

DRAM cache is backed by a larger capacity PCM memory

[13], [10], [11]. Figure 1 shows such an architecture, which

we assume throughout this paper. The memory operations

issued by the CPU are serviced by the L1 and L2 caches.

Misses to the L2 cache, as well as write-backs from the L2

cache, are sent off-chip to the memory subsystem. A hybrid

memory works as a traditional write-allocate cache (DRAM)

with write-back (to PCM) and LRU replacement. Note that

when a dirty block is evicted from the DRAM cache, it must

be written back to the PCM.

The use of a small DRAM cache to filter accesses to the

PCM has two main benefits. First, by coalescing a sequence

of writes for the same block into writes to the DRAM cache,

this scheme can mitigate part of the negative impact that

PCM writes have on energy consumption and endurance.

Second, a small DRAM cache will not harm the overall energy

consumption.

PCM has also been proposed as a full replacement for

DRAM in main memory, i.e., without a DRAM cache between

the processor and PCM [8]. Although this architecture cannot

benefit from the filtering effect of a DRAM cache, it consumes

less overall energy (no DRAM energy consumed) and could

be used in systems that are willing to trade off performance

in favor of reduced energy consumption. For this type of

architecture, reducing the number of writes is even more

important, not only because it targets low-power systems but

also because a way is needed to offset the negative effects

brought by the lack of a cache.

B. PCM Writes

PCM writes modify the physical state of a phase-change

material between amorphous and crystalline. A logical value of

zero (one) is stored by changing the phase of the material to the

Fig. 1. Hybrid Main Memory Architecture

crystalline (amorphous) state. PCM reads are straightforward

as they involve only identifying the state of the phase-change

material, which can be done at DRAM speed. The energy

for a PCM read is even smaller than for a DRAM read. On

the other hand, PCM writes are much more energy intensive

than DRAM writes and take more time, due to the need to

change the state. Furthermore, changing the physical state of

the phase-change material repeatedly has the unfortunate effect

of wearing the storage cell until it eventually renders the cell

inoperable.

Given the unfortunate effects of PCM writes, avoiding

a fraction of them saves energy and improves endurance.

Although researchers have suggested several ideas for dealing

with PCM’s endurance limitations, the question of whether

they work as expected in commercial memories is still open.

Using simulations, several studies have presented techniques

that guarantee memory will not wear out before 7 years, which

is more than the expected lifetime of DRAM [9], [10], [11],

[12]. However, real devices could still be limited to shorter

lifetimes, perhaps due to unforeseen effects in the fabrication

of large scale memories or memory access patterns not covered

by the simulations. Until this question is answered, it is

worthwhile to continue looking for alternatives that extend the

lifetime of PCM.

III. USELESS WRITE-BACKS

A useless write-back is a write-back of a dirty cache block

that belongs to a dead memory region. If a cache block that is

part of a dead region is dirty in the cache, it will eventually be

evicted and written back to memory. However, since we know

that the data is not used again (because it belongs to a dead

memory region), we can safely avoid doing this write-back.

Figure 2 shows a series of accesses to memory and how

they affect the state of a direct-mapped cache (with write-back)

that can store 8 words of memory. First, memory location A

is written, which causes the block to be allocated in the cache

and marked dirty. Then, the last value written to A is read.

Third, memory location B, which maps to the same cache



Fig. 2. Example of a useless write-back

block as A, is read. This causes A’s data to be evicted and

written back to the next lower level of the hierarchy. Fourth,

memory location A is written again, which as seen by the

program, means that the original value stored at location A

is overwritten. At this point, we know that the previous value

stored at memory location A was not needed since it was last

read in the second step. That is, memory location A is dead

between steps 2 and 4. The write-back of A’s value caused by

reading location B is useless because location A gets a new

value in step 4.

The concept of useless write-backs is independent of the

type of memory region to which a particular cache block

belongs. The block could belong to the heap, the stack, the

global store or any other kind of memory region. In order

for the concept to be useful, however, information about the

dead regions of memory must be obtained. In this case, the

type of memory region is significant because the techniques to

determine whether a region is dead are different for each type

of region. For example, one way to mark a memory region

belonging to the heap is to follow calls to free(). After free()

is called (and before the freed block or part of it is reused

again by a call to malloc() ), the memory region that was

returned to the allocator is dead. Clearly, this scheme cannot

be used to determine dead regions belonging to the stack or

the global store.

This paper focuses on three types of memory regions,

namely: heap, global and stack. For each type of region, we

assume that a realistic class of techniques will be used to

determine dead memory regions. However, this paper does

not actually describe these techniques, but instead measures

the potential impact that they could have to point the way

for further research. Below, we describe how the concept of

useless write-backs can be used in the context of each of the

three memory region types.

A. Heap

For the heap, we assume that data becomes dead when a call

to free() returns a block to the memory allocator. Even though

other techniques (e.g., control flow analysis) could be used to

mark dead regions in the heap, the extensive use of pointers

inherent in the manipulation of heap data often makes this

analysis inaccurate or overly conservative [14], [15]. Instead,

we used a simpler way to identify dead regions in the heap.

This technique should indeed be easy to implement, as finding

the correct places in the code to mark the beginning of dead

memory regions is already done by the programmer through

calls to free().

B. Global

We assume that the identification of dead global memory

regions is done through control flow analysis performed by the

compiler or the run-time environment. This type of analysis

can determine the position in the code where a variable

becomes dead. Since the memory location of a global variable

does not change during the execution of the program, infor-

mation about dead variables can be translated into information

about dead memory regions.

C. Stack

Function activation records held in the run-time program

stack can be used to identify dead regions of memory. When

a function returns control to its caller, the activation record

that was allocated on the stack (to hold return address, frame

pointer and local variables) is deallocated and becomes dead.

In addition, during the execution of a function, other temporary

objects can be placed on the stack, whose memory can be

declared dead when they are no longer used by the function,

or when the function returns.

To capture these two kinds of dead regions, we chose to

use a simple scheme in which all data that is below the stack

pointer (assuming the stack pointer grows downwards) is dead.

In this case, there is only one dead region of memory, which

is delimited by the current stack pointer and the minimum

value that the stack pointer has had during the execution of

the program.

IV. ANALYSIS FRAMEWORK

To study the behavior of programs, we developed a frame-

work that determines the potential energy savings and en-

durance improvement of avoiding useless write-backs. We

expect that avoiding useless write-backs does not have a

significant influence on performance because writes can be

buffered and are, therefore, not on the critical path of ex-

ecution. Although a large number of buffered writes could

potentially cause some reads to be stalled, we expect this

situation to be relatively rare. For this reason, the framework

does not measure the impact of avoiding useless write-backs

on program performance.

Figure 3 gives an overview of our framework and the

process involved in analyzing programs. The instrumentation

phase gathers a trace (address and type of each memory refer-

ence), as well as other information required by the particular

type of memory region being analyzed. Then, the trace is fed

to the analyzer, which consists of a cache simulator, analysis

routines and data structures that maintain information about

dead regions of memory. The analyzer outputs the number of

useless write-backs and other data that are used to compute

the energy savings and endurance gains.



Fig. 3. Framework for measuring gains of avoiding useless write-backs

A. Heap

For the heap, aside from the trace, the instrumentation

phase collects the parameters and return values of each call to

malloc(), calloc(), realloc() and free(). Calls to malloc() and

calloc() are treated the same way, whereas calls to realloc()

are treated as a call to free() followed by a call to malloc().

We keep information about all allocated regions of memory,

as well as all regions that have been marked as dead. The cache

simulator is used to determine the addresses of evicted blocks

that need to be written back. Algorithm 1 counts the number of

useless write-backs by performing one of the following actions

for each trace entry collected by the instrumentation phase:

• If a malloc(), add the start address of the allocated block,

together with its end address, to the list of allocated

blocks. In addition, if the newly allocated block is part

of a previously deallocated block that is now considered

a dead region, remove the corresponding part from the

list of dead regions.

• If a free(), remove the entry from the list of allocated

blocks and insert it into the list of dead regions.

• If a memory reference, simulate the access in the cache

simulator to get its write-back address, if any. Check

whether the write-back address is contained in the list

of dead regions. If it is, increment the count of useless

write-backs.

B. Global

Our approach for counting useless write-backs for the global

region treats each memory word in the global store as an

object, and performs an analysis for each object based on the

trace, as follows.

Given a trace, a range during which an object is dead starts

at the last read before any write and ends at the corresponding

write. This is because the object is not read again before it is

overwritten. If there is no read between two writes, then the

object is dead between both writes. In this case, the first write

(and not just the write-back) was unnecessary. Note that many

different dead ranges for an object can occur in one trace.

The complication with this scheme arises from the fact that

the memory reference trace is read sequentially. Therefore, we

cannot know that an object has become dead until we process

the last write. By that time, it is possible that the object was

evicted from the cache and we could not have incremented

the count of useless write-backs because we did not know yet

that it was dead. To solve this problem, we use a timestamp

to keep track of the last time that a word was evicted from the

cache. Once we know the dead range for an object, we can

Algorithm 1 Counting the number of useless write-backs for

the heap

/*Global data structures*/

/*cache: cache simulator*/

/*allocated: list of allocated memory blocks*/

/*dead: list of dead memory blocks*/

/*useless: number of useless write-backs*/

while hasNextEntry(file) do

entry ← readNextEntry(file)
if entry.type = MALLOC then

allocated.add(entry.start, entry.end)
if dead.contains(entry.start, entry.end) then

dead.remove(entry.start, entry.end)
end if

else if entry.type = FREE then

t← allocated.remove(entry.start)
dead.add(t.start, t.end)

else if entry.type = ACCESS then

writeBack ← cache.access(entry.address)
if dead.contains(writeBack, writeBack +
BLOCK SIZE) then

useless← useless + 1
end if

end if

end while

check whether the eviction and write-back was indeed useless

or not.

Algorithm 2 counts global useless write-backs. As in the

heap case, the instrumentation phase records the address and

type of every memory reference. The addresses of global

objects can be determined by looking at the .data and .bss

sections of the binary image. Lists holding the addresses,

timestamps of last access and timestamp of last eviction from

the cache are kept for all global objects. For each access to

global memory, if the last access to that object was performed

before the object was last evicted from the cache, we increment

the count of useless write-backs. Regardless of whether it was

a useless write-back or not, we update the timestamp of last

access to that object with the current timestamp. Then, we

simulate the cache for the current memory access and, if the

write-back address belongs to a global object, we update its

last time of eviction with the current timestamp.

C. Stack

For the stack, in addition to the memory trace, we record

the value of the stack pointer before each memory reference.

As with the heap and global cases, a cache simulator is used to

determine the write-back address of evictions from the cache.

In addition, we also keep the minimum value of the stack

pointer.

Algorithm 3 counts useless write-backs from the stack

region. For every entry in the trace generated by the instru-

mentation phase, we check whether the current stack pointer

is less than the minimum recorded value of the stack pointer



Algorithm 2 Counting the number of useless write-backs for

global data

/*Global data structures*/

/*cache: cache simulator*/

/*globalWords: list of global words*/

/*lastAccess: list of last access to each global word*/

/*lastEviction: list of last eviction of each global word*/

/*icount: current timestamp*/

/*useless: number of useless write-backs*/

while hasNextEntry(file) do

entry ← readNextEntry(file)
if globalWords.contains(entry.address) then

if entry.isWrite then

if lastAccess(entry.address) <

lastEviction(entry.address) then

useless← useless + 1
end if

lastAccess(entry.address)← icount

end if

end if

writeBack ← cache.access(entry.address)
if globalWords.contains(writeBack) then

lastEviction(entry.address)← icount

end if

end while

Algorithm 3 Counting the number of useless write-backs for

the stack
/*Global data structures*/

/*cache: cache simulator*/

/*minStackPtr: minimum value held by the stack pointer*/

/*useless: number of useless write-backs*/

while hasNextEntry(file) do

entry ← readNextEntry(file)
if entry.stackP tr < minStackP tr then

minStackP tr← entry.stackP tr

end if

writeBack ← cache.access(entry.address)
if minStackP tr ≤ writeBack and writeBack +
lineSize < entry.stackP tr then

useless← useless + 1
end if

end while

seen so far. If it is, we use this value as the new minimum.

Then, we simulate the cache access and record the address of

the write-back, if any. Finally, we check whether the write-

back address is between the current and the minimum stack

pointer. If it is, we increment the count of useless write-backs.

D. Energy and Endurance Models

To evaluate the impact of avoiding useless write-backs, we

developed models to derive the energy savings and endurance

from data collected by the analyzer. These models are simple,

fast to evaluate and accurate enough to measure the potential

improvements of avoiding useless write-backs.

Since static power consumption does not directly benefit

from useless write-backs, we chose to model only the dynamic

component of the energy used by the memory system. We

assume that each memory operation consumes a constant

amount of energy and the total energy spent is the sum of

the energies of all memory operations:

E = Costread ×Reads + Costwrite ×Writes

Since we are interested only on the savings relative to a

baseline, we can treat the actual cost of a memory operation

abstractly. However, we do need the relative costs of reads

and writes. Assuming that the cost of writes relative to reads is

Costw and denoting orig and opt as subscripts for the original

and optimized number of reads (Read) or writes (Write), the

energy savings are as follows:

Esavings =
Readsopt + Costw ×Writesopt

Readsorig + Costw ×Writesorig

We use the endurance model of [9], [10] to compute the

lifetime of PCM, assuming that a program is run back-to-back

for as long as the memory lasts. Given the number of writes

that a program makes during one execution, we can calculate

how many times the program can be run before the memory

expires. Assuming that writes are uniformly distributed across

the whole memory (due to a wear-leveling scheme), the

lifetime of the memory can be calculated as follows:

L =
Wmax × Texec

W

where Wmax is the total number of times the memory can be

written, Texec is the period of one execution of the program

and W is the number of writes during one execution of

the program. Since Wopt = Worig − Worig × Fuseless , the

endurance improvement for a given fraction of useless write-

backs (Fuseless) is

Lgain =
Lopt

Lorig

=
Worig

Wopt

=
1

1− Fuseless

V. EXPERIMENTAL RESULTS

A. Methodology

We used our analysis framework on a subset of the SPEC

CPU2006 benchmark suite1 to determine the potential that a

technique based on useless write-backs could have on energy

and endurance. Our implementation of the instrumentation

phase uses Pin [16] to generate the trace of memory references.

In addition, Pin includes other information as part of the trace,

such as the parameter and return values of calls to memory

allocation routines and the value of the stack pointer register

1We could not run xalancbmk, dealII and wrf due to limitations in the
program instrumenter and simulator.



Fig. 4. Number of blocks allocated in the heap and size of the global region in bytes

before the execution of an instruction. Pin was configured to

trace data as well as instruction references.

In the analyzer of the framework (see Figure 3), we used

a cache simulator to simulate the L2 and DRAM caches.

The L2 is a 1MB, 8-way set associative cache with an

LRU replacement policy. The DRAM cache is 16-way set

associative, also with LRU replacement. We simulated 5 differ-

ent configurations, one with no DRAM cache (the processor

accesses PCM directly) and 4 others with different DRAM

cache sizes (8MB, 16MB, 32MB and 64MB). To explore the

effect of the cache line size, we simulated 4 different cache

line sizes: 8B (the same size as the processor word), 32B,

64B and 128B. We used a 8B cache line as a baseline for

the maximum potential that avoiding useless write-backs can

achieve.

The benchmarks were run for 100 billion instructions for

the heap and global regions. The results for the stack memory

region were obtained by running the benchmarks for 10 billion

instructions.

The parameters of the energy model were obtained with an

accurate simulator for hybrid memories [11]. The simulator

was configured with realistic parameters for future DRAM and

PCM memories based on [17], [18] and [19]. We obtained

the energy consumption for each type of memory access,

which yielded the following results: DRAM reads and writes

consume 13.63 and 14.12 times more energy than PCM reads,

respectively, while PCM writes consume 36.46 times more

energy than PCM reads. Although we do not report the results

due to page length limitations, we also tried less aggressive,

older energy parameters in our experiments. We found that the

results were within 2% of the future parameters and that our

conclusions hold for this case as well.

B. Results

Programs exhibit very different characteristics in the way

they used each type of memory region. For example, some

programs make extensive use of heap data structures, while

others prefer to keep all data as global variables. For this

reason, the number of useless write-backs for each type of

memory region differs from program to program. Since each

benchmark benefits more from one particular type of memory

region (or none), we categorized benchmarks into three distinct

groups: (i) those that benefit knowing about useless write-

backs from the heap region, (ii) from the global region, and

(iii) those that do not benefit from any region. The reason

for not having a category for the stack region will become

apparent at the end of this section.

We used the number of allocated objects as a measure

of the likelihood that a program will benefit from avoiding

useless write-backs from the heap region. For the global

region, we used the total amount of space allocated to global

variables. Figure 4 shows these two metrics for all 52 test

cases, collected from a complete run of each benchmark.

Benchmarks with different inputs are treated as different test

cases. We classify as heap-intensive benchmarks the cases

that have more that one million object allocations and the

cases with more than 50GB of total space requested to the

heap (the latter is not shown in the graph). We classify as

global-intensive benchmarks those cases with more than 4MB

of global object space.

While presenting results for each type of memory region, we

give only the results for those benchmarks that are intensive in

that particular memory region. In all cases, the improvements

for non-intensive programs were negligible and uninteresting.

When reporting the average of some value over a subset of the

benchmarks, we use the weighted average. For example, the

average fraction of useless write-backs is calculated by sum-

ming the useless write-backs of all benchmarks and dividing

by the sum of write-backs over all benchmarks.

1) Heap: There are a total of 21 (out of 52) test cases

from 10 (out of 26) different benchmarks that are classified

as heap-intensive. Figure 5 shows the fraction of write-backs

from the L2 to the DRAM cache and from the DRAM cache

(64 MB) to PCM that are useless. Some benchmarks have

a greater fraction of useless write-backs from the L2 cache

and others from the DRAM cache. This difference is likely

due to allocation sizes and patterns in which data is allocated,

written and freed. On average, the fraction of write-backs that

is useless is 20.8% for the L2 cache and 8.4% for the DRAM

cache.

Figure 6 shows the DRAM and PCM energy savings for the

heap-intensive benchmarks. Due to the different data access

patterns, the savings vary from case to case, even among



Fig. 5. Fraction of useless write-backs for the heap region (8B cache line
size)

Fig. 6. Energy savings due to useless write-backs for the heap region (64
MB DRAM cache and 8B cache line size)

different inputs to the same benchmark. On average, the energy

savings are 7.8% for the DRAM and 6.6% for the PCM.

An interesting observation about these results is that there

appears not to be a good correlation between the fraction of

useless write-backs and the energy savings for some of the

benchmarks. For example, astar-2 has a very high fraction

of useless write-backs (62.5%) but very low energy savings

(less than 0.1%). The reason for this is that the proportion

of writes to PCM relative to DRAM for these benchmarks is

very small. Therefore, even if we save a large fraction of PCM

writes, these are still too few compared to DRAM. Energy

consumption in these benchmarks is dominated by DRAM,

which means that avoiding PCM writes has a small impact on

energy consumption.

The results of the previous two figures do not fully reflect

the constraints that realistic hardware can place on the gran-

ularity of the dead memory regions because it assumes that

each word of memory is the same size as the cache line size.

Figures 7 and 8 show the average endurance improvement

and energy savings for 5 DRAM cache sizes (including no

DRAM cache) and for 4 cache line sizes (for both L2 and

DRAM caches). The first column of Figure 8 refers to the

energy savings of the DRAM cache, columns 2 through 6 to

the PCM energy savings for several sizes of DRAM cache and

the last 4 columns refer to the total energy savings for several

sizes of DRAM cache.

Fig. 7. Average endurance gains from the heap region for different cache
line sizes and DRAM cache sizes

Fig. 8. Average energy savings from the heap region for different cache line
sizes and DRAM cache sizes

There are three observations that can be made from these

graphs. First, as we increase the size of the DRAM cache, the

endurance gains and the amount of energy that can potentially

be saved also increases. This occurs because a larger cache

can keep dirty data for longer periods of time, increasing

the likelihood that they become dead. The biggest gain for

both endurance and energy, however, is when there is no

DRAM cache at all. The reason is that, for the heap-intensive

benchmarks, the fraction of useless write-backs from the L2

cache is bigger than from any of the DRAM cache cases. In

addition, the difference between the energy consumed by reads

and writes is much bigger for PCM than for DRAM.

Second, energy and endurance gains decrease as the cache

line size increases. This is the expected behavior since the

opportunities for useless write-backs to arise are reduced when

dead regions of memory are forced to share cache blocks with

live regions (effectively, as cache line size is increased, dead

and live data will share the same cache blocks).

Third, total (DRAM and PCM) and DRAM-only energy

savings are almost equal. This is caused by a much higher

number of write-backs (and therefore useless write-backs)

from the L2 to the DRAM cache than from the DRAM cache

to the PCM.

2) Global: Even though there is only a small number (9)

of global-intensive benchmarks, there is still potential for

improvement. Figures 9 and 10 show the fraction of useless

write-backs from the L2 and DRAM cache (8MB), and the



Fig. 9. Fraction of useless write-backs for the global region

Fig. 10. Energy savings due to useless write-backs for the global region

energy saved in the DRAM and PCM for these 9 global-

intensive benchmarks. On average, 7.5% (8.1%) of write-backs

to DRAM (PCM) are useless, which translates into energy

savings of 2.3% (7.7%). Note that DRAM energy savings are

smaller than PCM, although we save almost the same fraction

of write-backs.

Figures 11 and 12 show the average endurance improvement

and the average energy savings for global data, similar to

Figures 7 and 8. As the cache block size increases, the

opportunities of having a dead region that covers a whole

cache block decrease, leading to lower energy and endurance

gains. However, this effect is not as marked as in the heap

region, especially for the 32, 64 and 128 block sizes. This

difference is due to the way programs use the heap and global

regions. Global-intensive programs tend to allocate big objects

(arrays) in the global region, while heap-intensive programs

use the heap to store small (scalar and small struct) objects.

This makes the heap more sensitive to the size of the cache

block.

The total energy consumption is not dominated by the

DRAM, as it was for the heap region. The reason for this is

that the DRAM cache hit rate is much smaller for the global-

intensive benchmarks, which causes an increase in the number

of accesses to PCM. In addition, the energy savings for the

no-DRAM cache case are smaller than in the heap region. This

is due to a smaller fraction of useless write-backs from the L2

compared to the heap region.

Fig. 11. Average endurance gains from the global region for different cache
line sizes and DRAM cache sizes

Fig. 12. Average energy savings from the global region for different cache
line sizes and DRAM cache sizes

3) Stack: The results for the stack region are not as encour-

aging as those of the other two regions. The maximum fraction

of useless write-backs for any of the 52 benchmark-input

combinations was only 2.3% for the L2 cache and 0.8% for

the DRAM cache. In terms of energy savings, the maximum

savings achieved were only 0.9% for the DRAM and 0.3% for

the PCM. On average, the endurance gains and energy savings

we less than 0.1%.

The reason behind such poor results is that programs gener-

ally use only a small part of the stack, with most stack memory

references going to the same 10KB or 20KB of memory. Since

the stack is so small and can therefore be kept in the cache,

there will be very few opportunities for dead data to be evicted

from the cache. In addition, dead data in the stack is reused

quickly because new functions are called shortly after old ones

return. This means newly declared dead regions do not stay

dead long enough to be evicted from the cache.

VI. DISCUSSION

Having shown the potential impact of avoiding useless

write-backs on energy and endurance, we now discuss how

these techniques can be implemented in a real system and

what changes to the hardware are needed. We assume that the

compiler or run-time environment has the necessary informa-

tion to determine at what points in the program data becomes

dead and that it can insert instructions at these points to convey

the address and size of these dead regions to the hardware.



For the case of the heap memory region, this information

is available at the memory allocator, which can determine the

size of the region being freed. To pass this information to the

hardware, the free() function would be modified to execute

a special instruction with the address and size of the freed

block as parameters. Similarly, for the case of the global

region, the compiler or run-time environment can insert calls to

this special instruction after it has performed the control flow

analysis and has determined the program locations where data

becomes dead, as well as their addresses and sizes.

To pass the information about dead memory regions to

the hardware, the instruction set could be augmented with

a new instruction that enables programs to declare a range

of addresses dead. This new instruction would take two

arguments: the start address of the dead region and its size.

The semantics of this instruction is that the current contents of

the memory region referred to by the instruction parameters

will not be used again and, consequently, the hardware may

discard them. What the hardware actually does with this

instruction is implementation defined. In fact, the hardware

can choose to ignore the hint and do nothing, in which case

the implementation will not benefit from useless write-backs.

If the hardware is to benefit from useless write-backs, it

must be able to modify the meta-data stored in the caches.

On-chip caches could be modified to provide this functionality,

whose implementation could be based on the flush or invali-

date operations already implemented on some processors [20],

[21]. For off-chip caches, a new memory command could be

used to transmit the dead range to the memory manager.

When the new instruction is executed, the hardware should

mark clean all cache blocks that are part of the new dead

memory region and that are currently in the cache, i.e., it

should clear dirty bits but keep valid bits set. If any of these

cache blocks is later evicted from the cache, it will not be

written back because it is now clean. This simple task is

enough to avoid useless write-backs to the next lowest level

of the cache.

Note that using other common cache operations, such as

flush or invalidate, will not have the desired effect. Flushing

the cache will actually write back the data, and invalidating

it, while still avoiding the write-back, could have a negative

impact on performance, because the benefits of temporal

locality are lost. This is particularly true the for heap region

where memory allocators are actually designed to improve

cache locality by reusing recently freed blocks [22], [23], [24],

[25], [26].

If the new instruction is to be used in a hybrid main memory,

the is an additional consideration that needs to be made.

Although it might be tempting to use the scheme only in

the DRAM cache without marking blocks clean, it must be

noted that this will likely fail to produce any energy savings

or endurance gains. The reason is that the dirty block at the

highest level can be evicted soon after the hint has been issued,

causing the block at the lowest level to become dirty again.

For example, consider a dirty block in both the L2 and DRAM

caches. If the application declares that block dead but the

hardware only marks it clean in the DRAM cache, it will

eventually be evicted from the L2 and written back, assuming

that the application does not use it for some time. This write-

back will cause the block at the DRAM cache to be marked

dirty again, canceling out the effect that the declaration of the

dead block could have on the PCM memory.

VII. RELATED WORK

Several recent studies have proposed techniques to reduce

energy consumption and improve endurance in PCM main

memory. These techniques have largely focused on hardware

mechanisms. Yang et al. [27] and Zhou et al. [8] use data-

comparison write to reduce bit programming. By comparing

each bit in the read buffer with the new data bit, the cor-

responding memory bit is only programmed if the new data

bit differs from the old bit. Cho and Lee extend this idea by

introducing a bit that indicates whether the associated data

is stored negated or not, thereby reducing the number of bit

updates [28]. Dhiman et al. [29] and Zhang and Li [13] use

wear-aware OS-level page allocation to reduce writes to PCM.

Lee et al. proposed multiple dirty bits per cache block to mask

off unnecessary memory updates [19]. Qureshi et al. examined

a hybrid architecture that uses a DRAM cache to filter accesses

to PCM and propose wear-leveling techniques to reduce writes

[9], [10]. Ferreira et al. propose page partitioning to reduce

the size of the data that needs to be written back [11]. They

also propose a clean-preferred page replacement algorithm that

gives priority to clean pages when choosing an eviction victim,

which reduces write-backs to PCM by coalescing updates in

the DRAM cache. In [12], Ferreira et al. propose a swap

algorithm for wear-leveling. In contrast to our approach, these

techniques do not use application information to improve

energy consumption and endurance. These techniques are in

fact orthogonal to ours and could be applied to the same

system.

Hu et al. propose migrating data to the scratch-pad memory

of a different core to avoid write-backs of shared data [30].

This technique uses program analysis to determine when and

where to migrate data. Our technique also requires program

analysis, although we avoid write-backs by using information

about dead memory regions instead of information about how

tasks communicate.

Isen and John propose using malloc() and free() calls to

determine intervals where data is dead or uninitialized [31].

They use this information to save energy by avoiding refresh

operations and write-backs to DRAM. Our study also uses

calls to the memory allocator to avoid write-backs. However,

our work focuses mainly on PCM and considers the impact

of avoiding write-backs on endurance. In addition, we study

other memory regions as possible candidates for improving

energy consumption and endurance.

VIII. CONCLUSION

In this paper, we introduced the concept of useless write-

backs and explain how it can be used to improve energy con-



sumption and endurance of PCM main memory systems. We

developed an analysis framework to determine the number of

useless write-backs for the heap, global and stack memory re-

gions. We also developed a simple energy model to determine

the potential energy savings that can be achieved by avoiding

useless write-backs. This paper also gives a discussion of how

a scheme based on useless write-backs could be implemented

in a real system, with particular attention on the instruction set

support and hardware modifications to the memory subsystem.

Using the analysis framework on a subset of the SPEC

CPU2006 benchmarks, we determined that a technique based

on useless write-backs is a promising candidate for reducing

energy consumption and improving endurance of PCM main

memory. In particular, the heap and global memory regions

seem to offer the most opportunity for improvement. We

showed that, on average, useless write-backs have the potential

to reduce energy consumption by up to 19.8% and improve

endurance by up to 26.2%.
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