Extending the Lifetime of New Generation Memory Technologies
Santiago Bock, Alexandre Ferreira, Dr. Bruce Childers, Dr. Rami Melhem and Dr. Daniel Mossé
COMPUTER SCIENCE Department of Computer Science

1. Introduction

- Main memory is currently built with DRAM, which is a type of volatile memory
- DRAM memories face two challenges: energy consumption (they need power to
maintain stored information) and scalability (it is hard to build small capacitors)
- Phase Change Memory (PCM), a non-volatile memory, addresses this issues, but introduces other problems
- PCM memories have a limit on the number of times that data can be written before the memory wears out
- Most bits in PCM endure 10^{8} writes, but some endure only 10^{6} or 10^{7} writes (weak bits) due to process variation

2. Motivation

- The information stored inside memories is sometimes corrupted due to soft errors, which alter the contents of individual bits of memory
- Error Correcting Codes (ECC) store redundant information along with the actual data to deal with soft errors
Soft errors do not affect PCM, but ECC is still used to improve endurance
- ECC extends the lifetime of PCM memories by correcting errors caused by weak bits
Using the same extra capacity, can we get a higher lifetime than ECC?

3. Sparing

- Internally, memories are collections of bits organized in words, rows and pages (for example, 64 bits form a word, 32 words form a row and 32 rows form a page)
- ECC is typically applied to each word (for example, there could be 8 ECC bits per each 64-bit word)
- Instead of using these extra ECC bits, we can combine the ECC bits of different words to form spare words or rows

$$
\begin{array}{llll}
\text { Word } 1 & \text { Word } 2 & \text { Word } 32 & 2 \text { Spare Words }
\end{array}
$$

Page

Page 2

4. Modeling Memory Lifetime

- We assume that weak bits are uniformly distributed across the memory - We calculate the probability that the lifetime of a word, row, page and of the whole memory is determined by the lifetime of the weak bits
- Some definitions:
- D: number of data bits per word
\circ E: number of ECC bits per word
0
W: number of words per row

W: number of words per row
SW: number of spare words per row
R: number of rows per pag

- SR: number of spare rows per page
- SR: number of spare rows per page
P: number of pages in memory
\circ P: number of pages in men
$\circ \mathrm{p}$ f fractions of weak bits
q : probability of weak word with or without ECC

> ablility of weak word with or witnout ECC $\quad \mathrm{q}_{\mathrm{Ecc}}$: $\quad P($ weak word ecc $)=1-(1-p)^{D+E}-(D+E) p(1-p)^{D+E-1}$
$\cdot \quad \cdot \mathrm{q}_{\text {noeccc }}: \quad P($ weak word no ecc) $)=1-(1-p)^{D}$

- r: probability of weak row
$P($ weak row $)=1-\sum_{i=0}^{S W}\binom{W+S W}{i} a^{i}(1-q)^{n-i}$
- t: probability of weak page
$P($ weak page $)=1-\sum_{i=0}^{S R}\binom{R+S R}{i} r^{i}(1-r)^{n-i}$
- Probability of weak memory
$P($ weak memory $)=1-(1-t)^{P}$

6. Conclusions

- We proposed a sparing scheme to extend the lifetime of PCM memories
- We developed a model to calculate the probability that a memory is
weak, based on the fraction of weak bits in the memory
- Using this model, we showed that sparing yields strong memories for a larger range of fraction of weak bits using the same extra capacity as ECC
- We showed that sparing yields memories with lifetimes 44.2% higher than ECC

5. Results

This graph shows the fraction of the individual bits that are weak (x axis) against the
probabilities of the whole memory being
weak ($(y$-axis) for ECC eak (y-axis) for ECC lue) and sparing (green)

- Strong memories have a probability of being weak close to 0 - Sparing yields strong memories for a larger range of fraction of weak bits than ECC

This graph shows the probability (x-axis) that the memory has a
lifetime of at least lifetime of at least a
certain value (y-axis) for certain value (y-axis) for
ECC (blue) and sparing (green), assuming that the distribution of lifetimes follows a normal
curve centered curve centered at 10 and
with standard deviation equal to 10^{7}

- Sparing yields memories with higher lifetime for a given value of probability
Sparing yields a lifetime of 6.57×10^{7} with probability 99.9%, while ECC yields a lifetime of 4.56×10^{7} with the same probability

