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Abstract

Development of accurate models of complex clinical time se-

ries data is critical for understanding the disease, its dynam-

ics, and subsequently patient management and clinical deci-

sion making. Clinical time series differ from other time series

applications mainly in that observations are often missing

and made at irregular time intervals. In this work, we pro-

pose and test a new probabilistic approach for modeling clin-

ical time series data that is optimized to handle irregularly

sampled observations. Our model is defined by a sequence

of Gaussian processes (GPs), each restricted to a window

of a finite size, where dependencies among two consecutive

Gaussian processes are represented using a linear dynami-

cal system. We develop algorithms supporting both model

learning and inference. Experiments on real-world clinical

time series data show that our model is better for model-

ing clinical time series and that it outperforms or is close to

alternative time series prediction models.

1 Introduction

Development of accurate models of clinical time series is
extremely important for disease prediction and patient
management. However, modeling of clinical time series
comes with a number of challenges [21, 1]. First, the
time series for an individual patient may vary in length
and may span a number of days depending on the
length of patient’s hospitalization. Second, the time
series observations are obtained at different times which
means the time elapsed between the two consecutive
observations may vary, see Figure 1(a). Our objective
is to build dynamical models and algorithms that are
flexible enough to work under these assumptions.

The key component of our approach is the Gaussian
process (GP) model [20]. The GP model is a non-linear
nonparametric model defining a multivariate Gaussian
over collections of real-valued variables, and effectively
defines distribution over functions f(x) [20]. The GP
model is robust to noise and can be used for predict-
ing a function value f for any value x, given a set of
observation-value pairs {(x1, f1), (x2, f2), · · · , (xk, fk)}.
We use this property of GP to model observations col-
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lected (sampled) at irregular times. Assuming x models
time, we hope to use GPs to represent distributions of
clinical time series values collected at different times.

Application of the GP model to the clinical time
domain is not straightforward. First, one needs to define
a mean function that is flexible enough for the clinical
time series prediction. Second, the mean function in
general depends on the time, which raises the question
of how to align the different clinical time series data
(corresponding to different patients).

To address the above problems, instead of defining
one Gaussian process model over the entire patient time
series, we propose to split the process into a sequence
of dependent Gaussian processes defined over time-
windows of equal size(see Figure 1(b)). Time-points
delimiting the windows then define the time origins of
Gaussian processes active in respective windows which
allows for suitable alignment of different time series
for individual patients. The dependencies between the
Gaussian processes in two consecutive time windows
are modeled using a linear dynamical system (LDS)(see
Figure 1(c)). The LDS is relatively simple, but unlike
its typical application, we do not use it to model the
dynamics of observed values directly, instead we use it
to define and control the dynamics of Gaussian process
sequences by controlling their parameters. We refer
to our model as to the State-Space Gaussian Process
(SSGP) model.

Our time series model is defined as a full probabilis-
tic model. Hence all inference and learning tasks can be
handled using the probabilistic framework. To support
these tasks we propose and derive the algorithms: (1)
for making future-value predictions, and (2) for learn-
ing the model from data. The learning algorithm is an
extension of the well-known Expectation-Maximization
algorithm [6] used to learn parameters of probabilistic
models with hidden variables.

We test the model and the algorithm on the problem
of time series prediction for six common blood tests
from the complete blood count (CBC) panel. Our
results demonstrate that our model leads to a more
accurate predictive performance than alternative time
series models. In addition, we show that our model is
more robust than the alternatives when the number of
patients and observations used to train the models is
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Figure 1: Graphical illustration of our state-space
Gaussian Process(SSGP)

small.
Our paper is structured as follows. First, in Sec-

tion 2, we cover the basics of the linear state-space
model, Gaussian processes and applications of Gaus-
sian processes to time series modeling. In Section 3, we
formulate the problem we want to solve and describe
our new Gaussian process model. Section 4 explains
the inference and learning details of the model. Sec-
tion 5 describes the general procedure for applying the
model to predict future time series values. Section 6
focuses on regression experiments on the real clinical
data, and compares the results to alternative modeling
approaches. Finally, Section 7 summarizes the work and
outlines possible future extensions.

2 Background

In the following we first review the linear dynamical
system (LDS) and two kinds of dynamical models based
on Gaussian process.

2.1 Linear Dynamical System The time-invariant
Linear Dynamical System (LDS), is a classic and widely
used real-valued time series model [3, 25]. An LDS on
variables z1:T ,y1:T is defined in terms of the following
two equations:

zt+1 = Azt + wt(2.1)

yt = Czt + vt,(2.2)

where t ∈ {1, . . . , T} is the discrete time index; z1 is
the initial state distribution with mean π1 and covari-
ance V1, z1 ∼ N (z1|π1, V1), zt are the hidden states
generated by the transition matrix A with indepen-
dent zero mean noise wt,wt ∼ N (wt|0, Q); and yt
are the observations generated by the emission matrix
C with independent variate noise vt,vt ∼ N (vt|0, R).
The LDS is characterized by a state transition prob-
ability p(zt+1|zt) where p(zt+1|zt) = N (zt+1|Azt, Q),
and a state to observation probability p(yt|zt) where
p(yt|zt) = N (yt|Czt, R). The graphical illustration of
LDS is shown in Figure 2.
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Figure 2: Graphical representation of a linear dynamical
system. Shaded nodes yi denote observations and
unshaded nodes zi correspond to hidden states.

The complete set of LDS parameters is ΘLDS =
{A,C,Q,R, π1, V1}. The parameters can be esti-
mated (learned) from data, for example, using the
Expectation-Maximization (EM) algorithm [7].

The advantage of the linear dynamical model is its
simplicity. A disadvantage is its linearity which may
prevent one from modeling more complex time series
data, and the fact that the model is a discrete time
model with observations and predictions restricted to
fixed time intervals. For example, discretization of irreg-
ularly sampled time series may introduce unnecessary
inaccuracy and hence lower the model’s performance.

2.2 Gaussian Processes and Dynamical System
Gaussian process (GP) is a nonparametric nonlinear
Bayesian model popular in statistical machine learning.
The GP is an extension of multivariate Gaussians to
infinite-sized collections of real-valued variables. We can
think of this extension as a distribution over random
functions [20]. A GP is specified by its mean function
m(x) = E[f(x)] and its covariance function K(x,x′) =
E[(f(x) − m(x))(f(x′) − m(x′))], where f(x) is the
real process. Since GP can be viewed as a Gaussian
distribution over functions, it can be used to estimate
the values of function f at an arbitrary position x∗. This
application is referred to as Gaussian Process Regression



[20]. The basic GP regression equations are

f̄∗ = K(x∗,x)
[
K(x,x) + σ2I

]−1
y(2.3)

Cov(f∗) = K(x∗, x∗)−K(x∗,x)(2.4)

·
[
K(x,x) + σ2I

]−1
K(x∗,x),

where I is the identity matrix, x is the input vector and
y is the output or target, f̄∗ is the posterior function
mean and Cov(f∗) is the posterior covariance. With the
right choice of the covariance function, the associated
prediction uncertainty increases in regions away from
past observations, while it shrinks when it is close to
observed data.

The Gaussian process methodology can be applied
to modeling of dynamical systems by either: (1) model-
ing non-linearities in state transitions and observations
for discrete-time systems, or, (2) modeling the time se-
ries of observations as a function of time.
Discrete-time Gaussian process dynamical sys-
tem (DTGPDS). Let zt, and yt respectively define
a hidden state and an observation at time t, similarly
to the LDS system (see Figure 2). Then the Gaussian
process discrete-time dynamical system is defined as:

zt+1 = r(zt) + wt(2.5)

yt = u(zt) + vt,(2.6)

where the equations mirror the LDS equations in 2.2
and 2.2. The transition function r and the observation
function u represent stochastic transitions and obser-
vations, and are represented with the help of Gaussian
processes. wt and vt are the same as in 2.2 and 2.2.
Briefly, the LDS assumes linear dependencies among la-
tent states and observations, while the the Gaussian-
process-based model replaces the linear dependencies
with more general nonlinear functions r and u. Please
note that if zt states are observed then the model col-
lapses to an autoregressive model which is represented
by a single GP.

A number of approaches for inference and opti-
mization of DTGPDS model and its clones have been
proposed in the literature. Briefly, [5] proposed GP-
Assumed Density Filter(GP-ADF), an inference algo-
rithm that approximates the predictive distribution
using the moment matching. The GP Dynamical
Model(GPDM) [26] and GP-Bayes Filter [14] develop
and rely on the the MAP approximation of the dis-
tribution of the latent state. Finally, [23] introduced
the GPIL algorithm for inference and learning in the
nonlinear dynamical system based on the Expectation-
Maximization (EM) framework.

The advantage of the DTGPDS is that it lets us rep-
resent more general transition and observation models

than LDS. However, the model is still the discrete-time
model and the discretization may introduce inaccuracies
especially when it is applied to data that are irregularly
sampled in time.
Continuous-time Gaussian process dynamical
system (CTGPDS). An alternative approach is to
model observation dynamics as a function of time q(t)
and use the Gaussian process to model the distribution
of these functions [2, 19]. In such a case, the Gaussian
process defines a continuous-time process, as opposed
to a discrete time model, which appears to be promis-
ing especially when the problem is hard to discretize
in time. This is particularly useful for our problem in
which observations are spaced irregularly in time. Un-
fortunately, this approach also comes with limitations;
the most serious one is that the mean function of the
GP is a function of time. This makes the time series
modeling approach dependent on the time origin and
the length of the different time series, which is hard to
assure for real world clinical data. More specifically, pa-
tients may be encountered at different times (it is not
clear where the time origin should be) and the lengths
of their hospital stays may vary. Hence the only way
to align them properly is to make the mean function of
the GP time invariant (equal to a constant value), which
would significantly limit our ability to capture various
time series variations.

In this paper, we address the shortcomings of the
CTGPDS approach by splitting the process into a
sequence of local Gaussian processes and by using the
discrete-time LDS model to capture the dependences
between these local GPs. This is unlike [17] where local
GPs are independent to each other. The local GPs’
dependences naturally account for the transitions and
changes of mean functions and the irregular samples are
handled by local GPs.

3 State-Space Gaussian Process model

In this section we develop a new probabilistic model,
the state-space Gaussian process (SSGP) model, for
representing clinical time series. Our model is able to
support time series prediction with irregularly sampled
observations that are characteristic of clinical time
series, and lets one align more flexibly multiple clinical
time series.

3.1 Time series prediction We define the time
series prediction/regression function for clinical time
series as: g : Yobs × t → ŷ, where Yobs is a sequence
of past observation-time pairs Yobs = (yi, ti)

n
i=1, such

that, 0 < ti < ti+1, yi is a p-dimensional observation
vector made at time (ti), and n is the number of past
observations; and t > tn is the time at which we would



like to predict the observation ŷ.
Typically, in a discrete-time dynamical system the

prediction function assumes values (observations) are
regularly sampled, that is, the time difference in be-
tween two consecutive time points is a constant ti+1 −
ti = L, and that predictions are made at some future
times consistent with the sampling constant L. In this
work we assume observations can be spaced irregularly
in time. For example, in the clinical domain, observa-
tions that correspond to lab test values for a patient
during his or her hospital period are often recorded ir-
regularly due to different patients’ health conditions.

3.2 The Model Our model consists of two hierarchi-
cally related dynamical processes: the Gaussian process
and the linear dynamical process. The Gaussian process
is a continuous-time model restricted to a time window
of a finite duration and is used to represent time series
and its changes for shorter time spans. Longer-term
process changes are modeled and controlled by the lin-
ear dynamical system. We start the description of our
model, by first describing its Gaussian process compo-
nent aimed to model observations that are made at ir-
regular times.

We consider the Gaussian process q(t) with the
mean function formed by a combination of a fixed set
of basis functions with coefficients, β:

(3.7) q(t) = f(t) + h(t)
T
β, f(t) ∼ GPf (0,K(t, t′))

In this definition, f(t) is a zero mean GP , h(t)
denotes a set of fixed basis functions, for example,
h(t) = (1, t, t2, . . .), and β is a Gaussian prior, β ∼
N (b, I). Following [18], q(t) is another GP process,
defined by:

(3.8) q(t) ∼ GPq(h(t)Tb,K(t, t′) + h(t)
T
h(t′))

The above Gaussian process (with parameters β)
may not be flexible enough for the entire time series.
In addition, the mean function of the process depends
on time (and the time origin t = 0) which begs the
question of how to align time series obtained for multiple
patients. To achieve more flexibility, we assume the
above Gaussian process represents the time series only
in the time window of a limited span, and that the
dynamics of the entire time series is captured by a
linear state-space model representing the transitions of
β for two consecutive time windows. This allows us
to represent the entire time series variations in a more
flexible manner, with the Gaussian process being reset
to t = 0 at the beginning of each window.

More specifically, we divide entire irregular time
series data into m windows W = {w1, w2, . . . , wm}. For
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Figure 3: Graphical representation of the state-space
Gaussian process model. Shaded nodes yi,j denote
(irregular) observations and shaded nodes Ti,j denote
times associated with each observation. Each rectangle
(plate) corresponds to a window, which is associated
with its own local GP. si is the number of observations
in each window. fi,j is Gaussian field.

each window wi, we define si as the size of wi, which is
the number of observations in window wi. We use yi,: to
represent all the observations that fall into window wi
and yi,j is the j th observation in wi. Then, instead of
using a single GP to capture the variation in the entire
time series, we divide the responsibility into different
windows, and each window wi is associated with a new
GP . We use βi to denote the Gaussian prior coefficients
in GPi’s mean function, βi ∼ N (bi, I), which means
every component in βi follows the multivariate Gaussian
distribution with mean vector bi and covariance matrix
I. Each βi describes the combination weights for the
mean function of GPi. To relate Gaussian processes
associated with pairs of consecutive windows we define
a hidden state linear process z ≡ {zi} that captures
the dependencies among Gaussian processes in terms of
the transition of mean functions’ combination weights
β ≡ {βi}. This leads to the linear process: zt+1 =
Azt + wt and βt = Czt + vt, where wt and vt are
zero-mean normally distributed random variables with
covariance matrices Q and R respectively. This captures
the relations between different βis. Since the entire
time series data is generated from the same stochastic
process, we assume different windows’ GPs share the
same covariance function, which is parametrized by Θ.

The graphical representation of our state-space
Gaussian process model is shown in Figure 3. The
prior of the initial state z1 is a Gaussian distribu-
tion with mean π1 and covariance V1. The mean
function for the GPi is parametrized by βi. The
entire parameter space can be summarized as Ω :=
{Θ, {βi}, A,C,R,Q, π1, V1}. When the horizontal ar-



rows in Figure 3 are removed, breaking the time dynam-
ics, the graphical model reduces to a set of independent
Gaussian process regression models. With time dynam-
ics, the coefficients of the mean function at slice i has
smoothly evolved from those at slice i -1.

3.3 Choice of the Covariance Function

Mean Reverting Property. To define the covariance
function of the Gaussian process we resort to the mean
reverting process. The mean-reverting, or Ornstein-
Uhlenbeck process, is a stationary Gaussian process
that obeys the Markov property [9]. It assumes
that over time, the process tends to drift towards
its long-term mean. Mean reversion is an important
property in clinical time series prediction; it forces
the process to approach the long term mean, but at
the same time permits temporary deviations from the
mean corresponding to episodic events or complications.
To incorporate the mean reverting phenomenon into
the Gaussian process we rely on the ’mean-reverting’
covariance function K1 = σ1 exp(θ1|t− t′|).

Periodicity. The time series often reflect periodic in-
formation. The periodic form can capture the fluctu-
ation within the short period of time. In addition, a
periodic function can keep the variation of different val-
ues within a reasonable range. In context of the Gaus-
sian process the periodicity can be captured by a special
covariance function: K2 = σ2 exp(θ2 sin2

[
ω
2π (t− t′)

]
).

To incorporate the two properties, we choose K =
K1 +K2 as our GP’s covariance function. However, we
would like to note that at this point this choice of a
covariance function is a heuristic, and more advanced
covariance functions may be designed.

4 Model Learning

In the following section, we describe an algorithm de-
veloped for learning the model from the data. The data
consists of time series recorded for multiple patients.
Our algorithm is based on the well-known Expectation-
Maximization (EM) algorithm that iterates two steps:
the expectation step that infers values of all hidden vari-
ables and/or missing values, and the maximization step
that uses the inferred values to calculate the new pa-
rameters of the model.

4.1 Inference (E-step) Since both the Markov
chain defined by the linear dynamical model {zi} and
the mean coefficient {βi} are unobserved, we cannot
learn {GPi} directly; instead, we apply the EM algo-
rithm to learn linear hidden transition of GPs’ mean
coefficients and its covariance hyper parameter together.

The E-step infers a posterior distribution of la-
tent states z,β given the observation sequences Yobs,
p(z,β|Yobs,Ω). In the following, we omit the explicit
conditioning on Ω and use Y to replace Yobs for no-
tational brevity. Due to the conditional independence
encoded in SSGP, the joint distribution of the data is
given by:

p(D) = p(z,β,Y) = p(z1)

m∏
i=2

p(zi|zi−1)

·
m∏
i=1

(βi|zi)
m∏
i=1

si∏
j=1

p(yi,j |βi)(4.9)

This E-step requires computing the expected log
likelihood Q = Eβ,z[log p(β, z,Y|Ω)], which is depends

on E[zi|Y], E[ziz
′

i|Y] and E[ziz
′

i−1|Y]. Let ẑi|T ≡
E[zi|Y], Mi|T ≡ E[ziz

′

i|Y], Mi,i−1|T ≡ E[ziz
′

i−1|Y],

Pi|T = VAR[zi|Y] and Pi,i−1|T = VAR[ziz
′

i−1|Y]. T
is the length of time series. Note that the hidden
state estimate ẑi|T depends on both past and future
observations. To compute ẑi|T and Mi|T , we follow
[22] performing a backward algorithm to compute these
hidden state estimations given on all(previous, current,
and future) observations. See details in Algorithm 1.

Algorithm 1 EM: E-step

Backward algorithm for SSGP:
// Compute ẑi|T , Mi|T and Mi,i−1|T

// By definition, Mi|T = Pi|T + ẑi|T ẑ
′

i|T

// By definition, Mi,i−1|T = Pi,i−1|T + ẑi|T ẑ
′

i−1|T
// Initialization: PT,T−1|T = (I −KTC)APT−1|T−1
Ji−1 = Pi−1|i−1A

′
(Pi|i−1)−1

ẑi−1|T = ẑi−1|i−1 + Ji−1(ẑi|T −Aẑi−1|i−1)

Pi−1|T = Pi−1|i−1 + Ji−1(Pi|T − Pi|i−1)J
′

i−1
Pi−1,i−2|T = Pi−1|i−1J

′

i−2 + Ji−1(Pi,i−1|T −
APi−1|i−1)J

′

i−2
// where Pi−1|i−1, Pi|i−1, ẑi|i−1, ẑi|i and Ki are com-
puted by Kalman Filter. See Appendix A.1.

4.2 Learning(M-step) In the following, we de-
rive the M-step for gradient based optimization of
the parameters Ω. In the M-step, we try to find
Ω that maximizes the likelihood lower bound Q =
Eβ,z[log p(β, z,Y|Ω)]. In the following, we omit the ex-
plicit conditioning on Ω for notational brevity. The fac-
torization properties of SSGP yield the decomposition
Q into



Q =Eβ,z[log p(β, z,Y)] = Eβ,z[log p(z1)]

+Eβ,z

[ m∑
i=2

log p(zi|zi−1)
]

+Eβ,z

[ m∑
i=1

log p(βi|zi)
]

+Eβ,z

[ m∑
i=1

si∑
j=1

log p(yi,j |βi)
]

(4.10)

As we can see from eq.(4.10), the shares pa-
rameters Θ of the covariance function for all {GPi}
only appear in the last term of Q, which is

Eβ,z

[∑m
i=1

∑si
j=1 log p(yi,j |βi)

]
. We can easily get the

derivative(see eq. 4.11 ) and use any gradient based op-
timizer to estimate them.

∂ log p(Y|Θ)

∂Θ
= −1

2
Tr

[
K−1

∂K

∂Θ

]
+

1

2
YTK−1

∂K

∂Θ
K−1Y(4.11)

For each of the rest of parameters
{{βi}, A,C,R,Q, π1, V1}, we re-estimate them by
taking the corresponding partial derivative of the
expected log likelihood, setting to zero, and solving.
These result in Algorithm 2.

4.3 Summary of the Learning Algorithm The
parameter estimation method for the SSGP is sum-
marized by Algorithm 3. Let us define ẑi ≡ {ẑi|T }T1 ,
Mi ≡ {Mi|T }T1 and Mi,i−1 ≡ {Mi,i−1|T }T1 . The func-
tion SSGPsmoother implements the E-step and the
maximize routine implements the M-step.

Algorithm 2 EM: M-step

//Define Hi matrix collects the h(x) vectors for all
the observations yi,: in window wi.
for i = 1 to m do
Ei = (Kyi,:

+H
′

iHi)
−1

βi = (R−1 +HiEiH
′

i )
−1(R−1Cẑi|T +HiEiyi,:)

end for
π1 = ẑ1|T
V1 = M1|T − ẑ1|T ẑ

′

1|T
A = (

∑m
i=2Mi,i−1|T )(

∑m
i=2Mi−1|T )−1

Q = 1
m−1 (

∑m
i=2Mi|T −A

∑m
i=2Mi−1,i|T )

R = 1
m

∑m
i=1(βiβ

′

i − Cẑi|Tβ
′

i)

C = (
∑m
i=2 βiẑ

′

i|T )(
∑m
i=1Mi|T )−1

Algorithm 3 Parameter Estimation in SSGP

Get Θ by any gradient optimizer based on eq.(4.11).
init Ω\Θ
repeat

E-step: Section 4.1, Algorithm 1
ẑi, Mi and Mi,i−1 ← SSGPsmoother (Y,Ω\Θ)
M-step: Section 4.2, Algorithm 2
Ω\Θ← maximize Q(Ω, ẑi, Mi, Mi,i−1) wrt Ω\Θ

until Convergence
return Ω = {Θ, {βi}, A,C,R,Q, π1, V1}

5 Prediction

Once the state-space Gaussian process model is learned
from the training data we would like to use it to support
time series prediction on future time series. Given initial
observations Yobs and an arbitrary time index t, our
objective is to predict the future value ŷ at time t.

To support the prediction inference, we need the
following steps:

Step 1. Split Yobs and t into windows.
Step 2. For windows that do not contain t, extract

the last values in those windows as βs and feed them
into Kalman Filter algorithms(See Kalman Filter in
Appendix A.1) to infer the most recent hidden state zk
where k is the index of the last window that does not
contain t.

Step 3. Get βk+1 = CAzk from zk+1 = Azk and
βk+1 = Czk+1.

Step 4. If t is in window k + 1 use ob-
servations (yk+1, tk+1) in window k + 1 and βk+1

to make the prediction, where ŷ = βk+1 +
K(t, tk+1)K−1(tk+1, tk+1)(yk+1−βk+1); otherwise find
out the window index i where t belongs to. The predic-
tion at t is ŷ = CAi−kzk.

The prediction algorithm can be summarized in
Algorithm 4.

6 Experiments and Results

We have tested our approach on time series data ob-
tained from electronic health records of approximately
4,500 post-surgical cardiac patients stored in PCP
database [12, 10, 24]. To test the performance of
our prediction model, we randomly selected 1000 pa-
tients with the Complete Blood Count(CBC) panel test
1 whose hospitalization is longer than 10 days. We se-
lected six tests from the CBC panel to learn the time
series models, and applied them to time series predic-
tion tasks. The six tests used in the experiment are
listed in Table 1.

1CBC test is used as a broad screening test to check for such
disorders as anemia, infection, and many other diseases.



Algorithm 4 Prediction in SSGP

// Split Yobs and t into windows.
// Find all k windows that do not contain t and the
last observations Ylast in these k windows.
// Compute zk by Kalman Filter algorithm.(See
Appendix A.1)
zk = Kalman Filter(Ylast, A,C,R,Q, π1, V1)
if t is in window k + 1 then

βk+1 = Czk+1 = CAzk
// Observations in window k + 1 are (yk+1, tk+1)
ŷ = βk+1 + K(t, tk+1)K−1(tk+1, tk+1)(yk+1 −
βk+1)

else
ŷ = CAi−kzk

end if
return ŷ

Table 1: Six lab test from the CBC panel.

Name Explanation

WBC White blood cell

MCH Mean corpuscular hemoglobin

MCHC Mean corpuscular Hgb concentration

MCV Mean corpuscular volume

PLT Platelet count

RDW Red cell distribution width

These time series data are noisy, their signals fluc-
tuate in time, and observations are obtained with var-
ied time-interval period. Figure 4 illustrates such time
series for one of the patients. The X-axis is the time
index aligned by hour and the Y-axis are normalized
values/observations for each test.

To evaluate the performance of our SSGP approach
we applied the five-fold cross validation approach to
split the examples into the training and testing sets,
such that 200 examples formed the test data, and
800 training examples were used to vary the size of
the training set from 100 to 800 in increments of 100
examples. We report average results over different folds.
Since the CBC panel is ordered once or just a few times
a day, we used the default Gaussian process window size
of seven days. We compared the SSGP predictions to
four other methods: (1) Linear dynamical model(LDS)
trained on the entire time series with a fixed time
period of three hours. The values at these times
were obtained by interpolating the closest observed
values [8, 16]. (2) Discrete-time Gaussian process
dynamical system (DTGPDS) implemented using GPIL
algorithm [23]. We used the same time period of three
hours and the same interpolation approach to estimate

observations as in method (1). The Gaussian kernel
was used to model the covariance functions for both
the transition and observation models. (3) Continuous-
time Gaussian process dynamical system (CTGPDS).
The covariance function K(t, t′) = σ1 exp(θ1|t − t′|) +
σ2 exp(θ2 sin2

[
ω
2π (t− t′)

]
); (4) Window-based linear

dynamical system (WLDS). This model is different from
the LDS model (model 1). It splits the time series first
into windows the same way as SSGP and, after that, it
trains an LDS using last observations in each window.

We evaluated and compared the performances of
the different methods by calculating the Root Mean
Square Error(RMSE) on the test set predictions. More
specifically, the RMSE is defined as follows:

RMSE =

[
n−1

n∑
i=1

|yi − ŷi|2
]1/2

where yi is the true value, ŷi is the predicted value and
n is the number of data points. The results of RMSE on
the six lab tests from the CBC panel (for the training
sets of increasing size) are summarized in Figure 5.

6.1 Discussion The results of our experiments show
that our state-space Gaussian process(SSGP) model
outperforms all other methods in terms of prediction
errors on all six CBC lab tests. One of the advantages
of our method is that its prediction error is small even
when it is trained on a small number of patients and
observations. Specifically, from Figure 5, we find the
following results:

First, when comparing CTGPDS, SSGP to LDS,
GPIL, we can see that the continuous methods (CTG-
PDS, SSGP) outperform the discretized methods (LDS,
GPIL). We believe this is because 1) the values from
patients’ tests are always around a normal range plus
some variation. The combination of the mean reverting
function and the periodic function captures this phe-
nomenon: the mean reverting function forces the pre-
dicted values within a normal range and the periodic
function allows the fluctuation and variation flexibility.
Clearly, LDS cannot capture these variations by their
linear equations. 2) LDS solve the multi-step predic-
tion problem by constructing a single model from past
observations and by predicting the future values itera-
tively. Since they use predictions from the past, they
are susceptible to the error accumulation: errors gen-
erated in the history are propagated into future predic-
tions [4]. CTGPDS, SSGP make the multi-step predic-
tion directly and hence suffer less from this problem.

Second, comparing SSGP and CTGPDS, we can
see, SSGP performs much better than CTGPDS. It
shows that a single constant mean is not enough for
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Figure 5: Root Mean Square Error(RMSE) on CBC test samples.

complex time series. The evolution of mean variables
in the consecutive windows is modelled by a linear dy-
namical system, which expresses a stronger descriptive
ability. During the prediction phase, its predicted mean
is used by the subsequent GP to make more accurate
predictions.

Third, compared to other methods, SSGP does
not require a large number of training examples and
it can perform well even with small training data.
However, the error rates of other methods decrease by
a large amount due to the decrease in the number of
examples. In the clinical domain, dataset availability
is a big issue. The data is very expensive to obtain.
Stable performance on small-size training data is very
important in practice.

Fourth, comparing GPIL and LDS, we can see,
GPIL’s nonlinear transition function and measurement
function boost its performance a lot. It overcomes

the linearity problem in LDS and has the flexibility
to capture the measure noise and model uncertainty to
some extent.

7 Conclusion

In this paper, we have presented a state-space Gaussian
process system for multi-step prediction. Comparing
with the traditional linear state-space systems and
modern Gaussian process regression, special features
of this novel system are (1) its robustness to irregular
sampling; (2) small training sequence data requirement,
which is very important in clinical monitoring and
alerting systems; (3) its ability to make accurate long-
term multi-step predictions. Experimental results on
real world clinical data from electronic health records
systems demonstrated that the novel prediction model
achieves errors that is statistically significantly lower
than errors of other state of the art approaches used in



time sequence data prediction. In the future, we plan
to study and model dependences among multiple time
series, as well as, extensions to switching-state [25] and
controlled [11, 15] dynamical systems.
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9 Appendix

9.1 A.1 Kalman Filter Inference [13, 27]. Input
for Kalman Filter is A,C,R,Q, π1, V1, {yt}, which is
defined in Section 2.1. {zt} denotes the hidden state.
ẑt|t−1 = E[zt|{yi}t−11 ] is the priori estimation and
Pt|t−1 = E[(zt − ẑt|t−1)(zt − ẑt|t−1)T ] is the priori

estimate error covariance. ẑt−1|t−1 = E[zt−1|{yi}t−11 ]
is the posteriori estimation and Pt−1|t−1 = E[(zt−1 −
ẑt−1|t−1)(zt−1 − ẑt−1|t−1)T ] is the posteriori estimate
error covariance.

Algorithm 5 Kalman Filter

// Time Update:
ẑt|t−1 = Aẑt−1|t−1
Pt|t−1 = APt−1|t−1A

T +Q
// Measure Update:
Kt = Pt|t−1C

T (CPt|t−1C
T +R)−1

ẑt|t = ẑt|t−1 +Kt(yt − Cẑt|t−1)


