
Planning and Control in Stochastic Domains with

Imperfect Information

by

Milos Hauskrecht

MIT�LCS�TR����

This report is a modi�ed version of the thesis submitted to the

Department of Electrical Engineering and Computer Science in August� ����

in partial ful�llment of the requirements for the degree of Doctor of Philosophy

c� Massachusetts Institute of Technology ����� All rights reserved�





Planning and Control in Stochastic Domains with Imperfect
Information

by

Milos Hauskrecht

Abstract

Partially observable Markov decision processes �POMDPs� can be used to model complex con�
trol problems that include both action outcome uncertainty and imperfect observability� A
control problem within the POMDP framework is expressed as a dynamic optimization prob�
lem with a value function that combines costs or rewards from multiple steps� Although the
POMDP framework is more expressive than other simpler frameworks� like Markov decision
processes �MDP�� its associated optimization methods are more demanding computationally
and only very small problems can be solved exactly in practice� Our work focuses on two
possible approaches that can be used to solve larger problems� approximation methods and
exploitation of additional problem structure�
First� a number of new e�cient approximation methods and improvements of existing algo�

rithms are proposed� These include �	� the fast informed bound method based on approximate
dynamic programming updates that lead to piecewise linear and convex value functions with a
constant number of linear vectors� �
� a grid�based point interpolation method that supports
variable grids� ��� an incremental version of the linear vector method that updates value func�
tion derivatives� as well as ��� various heuristics for selecting grid�points� The new and existing
methods are experimentally tested and compared on a set of three innite discounted horizon
problems of di�erent complexity� The experimental results show that methods that preserve
the shape of the value function over updates� such as the newly designed incremental linear
vector and fast informed bound methods� tend to outperform other methods on the control
performance test�
Second� we present a number of techniques for exploiting additional structure in the model

of complex control problems� These are studied as applied to a medical therapy planning
problem�the management of patients with chronic ischemic heart disease� The new extensions
proposed include factored and hierarchically structured models that combine the advantages of
the POMDP and MDP frameworks and cut down the size and complexity of the information
state space�

Keywords� Articial Intelligence� partially observable Markov decision processes� planning
and control under uncertainty� decision�theoretic planning� medical therapy planning� dynamic
decision making� Bayesian belief networks�
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Chapter �

Introduction

The construction of intelligent control agents that function in the real world has become a focus
of interest for many researchers in the AI community in recent years� This line of research was
triggered by an attempt to benet from advances and results in the elds of data interpretation�
diagnosis� planning� control� and learning� and combine them into more sophisticated systems�
capable of solving more complex problems�
What do we expect from a control agent�

The agent is expected to live in the world� It accomplishes goals and fullls its intentions by
observing and actively changing the world� In order to do so it must exploit a combination of
perceptual� acting� and reasoning capabilities� Examples of control agents include�

� robot arm controller�

� autopilot�

� medical life support device that monitors patient status and executes appropriate actions
when needed�

Figure 	�	 shows the basic high level view of a control agent and its relation to the external
environment� The agent interacts with the environment through actions and observations�
Actions allow the agent to change the environment� On the other hand observations allow it
to receive and collect the information about the environment� The control agent is designed to
achieve a goal� In order to achieve the goal it coordinates its perceptual and acting capabilities�
actions to change the environment in the required direction and observations to check the results
of action interventions�

��� Two basic control agent designs

In the ideal case the control agent would perform the best possible sequence of actions leading
to the goal� In order to achieve the optimal or close to optimal control sequence the agent can
be designed to either�

� follow hard coded and preprogrammed control sequences�

� use the agent�s model of the world�s behavior and the agent�s goals and try to gure out
�compute� the appropriate control autonomously�

The two basic design alternatives are illustrated in gure 	�
�
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����� Associative approach

The rst design alternative is based on the simple idea of knowing directly what to do or how
to respond in every situation� The idea� although simple and �unintelligent�� can be the basis
of a high quality control agent� The examples of this kind of control system design include
table�based� rule�based and protocol�based �guideline�based� architectures�
The major advantage of this approach is that it can provide rapid control responses and

thus may be suitable for time critical applications� Its disadvantage stems from the fact that
it relies on the external control plan source� and responsibility for the quality of the control is
entirely on the shoulders of the control plan provider� This means that the external provider
�usually human� must do the hardest part and �solve� the problem of how to achieve the
goal by considering every situation and encoding it into the control plan� The other major
disadvantage of the approach is that both the goals the controller tries to pursue and the
behavior the controlled system exhibits are implicit� This causes the following�

� a control agent has no or very limited explanation capability� It has no means to justify
selected control responses with regard to goals� This feature may be very important in
some application areas like medicine�

� a specic control agent can be hard to update and modify� when the objectives of the
controller or the description of the behavior changes�

����� Model�based approach

The second alternative assumes that control is inferred by a control agent autonomously from
the description of the environment behavior and the goals to be pursued� In this case the
responsibility for the quality of control is more on the side of the control agent itself and is
mostly dependent on the design of its inference procedures� although providing wrong models
can cause suboptimal control with regard to goals as well� The advantage of this approach is that
the task of nding and selecting optimal control is performed by the controller autonomously and
the external provider is required to supply only the appropriate models of goals and behavior�
a task that is usually simpler than providing complete control plans� Other advantages to work
with models of goals and behavior are�

� the model can be used for other tasks as well� for example prediction� diagnosis or expla�
nation�

� the controller is easier to modify and update� that is� changes in goals or behavioral
description are relatively easy to incorporate�

An obvious disadvantage of the model�based approach is that the optimal control response
to be used must be found� which usually leads to longer reaction times� due to the complexity
of the underlying optimization problem�

Compilation of control

The computation of optimal response� when done during the control� can cause signicant
delays in response times� This may be unacceptable in some time critical applications that
do not tolerate large time delays� The problem with response delays due to computation can
be partially or completely eliminated by performing some or all computation beforehand and
storing computed results to speed up the on�line control� In the extreme case this reduces to
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the compilation process that takes the model description and outputs corresponding control
plans that in turn drive the operation of the control agent� The compilation module uses the
model description to provide control plans that are much like control plans designed by a human
expert�

����� Combination of approaches

The design of the real control agent does not have to fall strictly into one of the above categories
and one can exploit advantages of both approaches� This can lead to the hybrid design where
a control agent uses both control plans as well as models of the environment and goals or
subgoals to perform the control� The two approaches can be combined easily by decomposing
the original control problem into smaller subproblems and building a hierarchy of control agents
�or modules� along this decomposition� where each agent is reponsible for some control task
and each can be designed di�erently� The control sequences performed by agents on the lower
level are then considered to be actions of the higher level control agent�

����� Approach pursued in this research

Although both approaches are equally important for solving complex control problems� in our
research we focus on the model�based alternative and explore the problems related to modeling
dynamic stochastic systems and control goals as well as to problems of computing optimal
control responses for such models�

��� Partially observable Markov decision processes

Models of environments and goals can be of di�erent type and complexity� The model of the
environment can be deterministic or stochastic� described using discrete or continuous states�
discrete or continuous time� described by simple transition relations or by di�erential equations�
The goal can be a simple state or it can be dened over some time horizon�
The task of inferring the optimal control from models is largely dependent on the selected

modeling framework and its complexity� The relation between the two is proportional� the
more expressive the modeling framework� the more complex the associated computation of
optimal control� Therefore one must often trade o� the benets and costs of applying di�erent
models� For example� selecting a simpler model usually leads not only to simpler computation
procedures for nding optimal control but also to a cruder approximation to reality� and loss of
precision� On the other hand� a more complex model and framework can approximate reality
better� but nding optimal control solutions can be computationaly very expensive or even
impossible� Therefore while selecting the framework one must carefully decide which features
are less important and can be abstracted away and which need to be considered�

����� Partially observable Markov decision processes

There are many reasonable modeling frameworks one can explore with regard to various control
problems� In our work we study the framework of partially observable Markov decision processes
�POMDP� �Astrom ��� �Smallwood� Sondik ��� �Lovejoy �	a�� A POMDP describes controlled
stochastic process with partially observable process states� It can be used to model dynamic
environments �systems� and their partial observability by the control agent� The framework
has been studied by researchers from di�erent areas� mostly in control theory and operations
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research and recently also by researchers in Articial Intelligence �AI� �Cassandra et al� ����
�Cassandra ���� �Littman et al� ��a�� �Parr� Russell ����
The POMDP framework is closely related to the more common formalism of Markov deci�

sion processes �MDP� �Bellman ��� �Howard ��� �Puterman ���� The main distinction is that
POMDPs are more expressive and model partial observability of the controlled process� while
MDPs assume that process states are always perfectly observable� Thus POMDPs allow us to
represent two sources of uncertainty� uncertainty related to the behavior of the process under
di�erent interventions and uncertainty related to imperfect observability of process states� Also�
POMDPs can represent investigative �perceptual� actions� that is actions that induce or trigger
observations�
The main characteristics of the POMDP framework are�

� the world �environment� is described using a �nite set of states� and the control agent can
actively change them using a �nite set of actions�

� the dynamics of the world is described using stochastic transitions between states that
occur in discrete time steps�

� information about the actual world state is not available to the control agent directly but
through a �nite set of observations�

� the quality of control is modeled by means of numerical quantities representing rewards
�or costs� associated with states or state transitions�

� the control goal is represented by an objective function that combines costs or rewards
obtained over multiple steps�

Application areas

The main advantage of the POMDP framework is its ability to represent control and planning
problems in stochastic and partially observable domains� Robot navigation �Littman et al� ��a�
�Cassandra et�al ���� medical therapy planning �Hauskrecht ��a� �Hauskrecht ��a�� and machine
maintainance and replacement �Smallwood� Sondik ��� �Lovejoy �	b� are typical application
areas�
In all these domains one faces two sources of uncertainty� action outcome uncertainty and

imperfect observability� For example� with some probability a robot can move in the wrong
�unintended� direction� and the information it receives from its sensors is often unreliable and
subject to error� In the medical domain� a specic therapy can lead to di�erent outcomes for
a given disease� and symptoms for two or more diseases can overlap� In both examples the
underlying state �a location of the robot or the disease the patient su�ers from� is not known
with certainty and all possible states need to be considered during planning�
The problem to solve in such domains is to determine the best sequence of actions �control

plan� policy� with regard to the modeled control objectives� The control objectives to be
optimized are related to multiple steps� and may correspond to the reduction of the number of
steps needed to achieve the target location for the robot navigation task� or the increase in the
quality and length of life of a patient su�ering from a disease�

����� Solving POMDP problems

The POMDP o�ers a powerful theoretical framework for modeling partially observable dynamic
controlled processes� However� the price paid for the increased expressivity of the framework is
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that nding optimal or near�optimal control solutions for POMDP problems is computationally
intractable� This is unlike control problems dened within the fully observable nite�state
MDPs� because they can be solved e�ciently �Puterman ��� �Bertsekas ��� �Littman et al� ��b��
In principle POMDP problems can be solved by converting POMDPs to information�state

MDPs �see �Bertsekas ����� and by using standard solution strategies developed for MDPs� like
dynamic programming or value iteration� An information state summarizes all relevant infor�
mation learned about the process and it is represented by a complete history of all observations
and actions or by a quantity corresponding to a su�cient statistic that preserves the Markov
property of the information process� The problem with using information states is that a space
of all possible information states can be innite or of expanding dimension� This makes it hard
to compute complete dynamic programming and�or value iteration updates� Luckily� it can
be shown that complete updates are computable for a class of POMDPs that can be reduced
to belief state MDPs �a belief state assigns probability to all underlying process states�� This
is mostly because the objective value function for a belief space MDP is piecewise linear and
convex �Smallwood� Sondik ����
Although dynamic programming updates are computable for belief state POMDPs� the

complexity of the piecewise linear value function �number of linear vectors dening it� can grow
exponentialy in every update� This allows us to compute optimal solutions only for POMDPs
with small state� observation and action spaces in practice� For example� no success with
exact methods has been reported for POMDPs with more than 	� process states and innite
discounted horizon criteria�
Despite the modeling expressiveness� the problem of computational e�ciency of exact meth�

ods leaves open the question of practical applicability of the POMDP framework� especially in
solving larger and more complex control problems� The main theme of our research work was to
explore various ways and propose solutions that would help us to make the framework applicable
to larger size domains�

��� Solving control problems for larger POMDPs

The problem of computational complexity of exact optimizationmethods prevents us from using
them for solving more complex POMDPs� In our work we focused on two solutions that allow
us to attack larger problems�

� approximation methods�

� exploitation of the additional problem structure�

����� Approximations

The main idea behind approximations is to trade o� the precision of the solution for speed�
Thus� instead of computing the optimal solution one attempts to compute a good solution fast��
There are di�erent approximation methods that can be applied in the context of POMDPs�
These focus on�

� approximations of value functions �policies��

� approximations �reductions� of information�state MDPs�

�The term approximation as used in the MDP and POMDP literature and also here does not refer to the
approximation that is guaranteed to be within some factor from the optimal solution�
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In the rst case the approximation targets the value function and uses a simpler value
function form and simpler dynamic programming �value iteration� updates �see �Lovejoy �	b�
�Littman et al� ��a��� In the second case the information�state MDP is reduced to simpler
model� for example through feature extraction mappings �Bertsekas ��� �Tsitsiklis� Van Roy ���
or by using truncated histories �White� Scherer ����

Value function approximations

There are several value function approximation methods researchers have developed to substi�
tute hard to compute exact methods� These include methods that use MDP�based solutions �see
�Lovejoy ���� �Littman et al� ��a��� grid�based updates and nonparametric value function ap�
proximations �see �Lovejoy �	b��� grid�based updates of derivatives �see �Lovejoy �	b�� and para�
metric value functions and least�squares techniques �see �Littman et al� ��a� �Parr� Russell �����
However the list of methods is far from being complete and there is still a lot of room for im�
provements�
In our work we proposed and developed new methods and some extensions of the existing

methods� These are based on di�erent ideas and include the fast informed bound method �sec�
tion ���� based on approximate dynamic programming updates that lead to piecewise linear and
convex value functions with constant number of linear vectors �equals the number of actions��
a new grid�based point interpolation method that supports variable grids �section ������� an
incremental version of the linear vector method that updates value function derivatives �section
����
�� as well as various heuristics for selecting grid�points �see sections ����� and ����
��

The lack of experimental studies

Although there is a relatively large number of approximationmethods developed� there has been
a lack of studies that would compare empirically their performance and that would help us to
understand better the advantages and disadvantages of di�erent approximation approaches�
To address this problem� we selected three POMDP problems of di�erent complexities and

used them to test several methods and their modications �Chapter ��� The main purpose
of testing was to get an idea about how methods compare to each other� what things matter
more and which one are less important� and identify methods or modications that are inferior
or superior to others� The methods were tested from two perspectives� the quality of value
function bounds for methods that are guaranteed to provide them �section ��
� and the quality
of control where methods were judged solely based on their control performance �section �����

����� Exploiting additional problem structure

A complementary approach that helps us to attack larger size problems is based on the exploita�
tion of additional problem structure� i�e� structure that cannot be expressed in the classical
POMDP framework� Structural extensions and renements can be used to reduce the complex�
ity of the information�state space and value functions one needs to work with and thus speed�up
the problem�solving routines�
To study structural extensions �Chapter �� of the basic framework we used a medical

theraphy planning problem � the management of patients with ischemic heart disease �see
�Wong et al� ����� The problem relies on both sources of uncertainty �stochastic action out�
comes and partial observability� and thus ts well the POMDP framework�
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Combining MDP and POMDP frameworks

The basic POMDP framework assumes that process states are always hidden and information
about the state can be acquired only through observations� However this is not always true�
and one often works with process states that consist of both observable and hidden components�
To address this issue we proposed new structural extensions that combine advantages of

MDP and POMDP frameworks �Chapter ��� This was achieved by using factored process state
models with both observable and hidden components �state variables�� as well as a hierarchy
of state variables that directly restricts certain combinations of state variable values �section
��
�	�� Both of the extensions reduce signicantly the complexity of the information�state space
and value function denitions for the ischemic heart disease problem� compared to the standard
POMDP approach �section ����	��

Other model extensions

To construct the model for the ischemic heart disease problem we had to deal also with issues
that are not directly relevant to the control optimization problem but are very important
from the viewpoint of model building� The main issue here is the size and complexity of the
model� namely the number of parameters one needs to estimate� To reduce the complexity
of the model denition we use factored transition and observation models represented using
hierarchical version of the Bayesian belief network �section ��
���� and a factored cost model
�section ��
���� Such models explicitly represent independencies and regularities that hold
among the model components and reduce its complexity �section ����� Once dened the model
can be compiled and optimized for the purpose of planning �section ����
��

��� Structure of the text

The main objective of our work is to explore� study and propose various ideas that help to make
the POMDP framework applicable to larger size domains� To do this� we focused mostly on�

� value function approximation methods�

� extensions of the basic POMDP framework that exploit additional problem structure�

� improvements of exact methods�

Closely related to approximations is an issue of experimental comparison of di�erent approxima�
tion methods� These topics are central to the thesis and account for most of our contributions�
They are presented in separate chapters�

� Chapter �� POMDP framework and exact methods for solving control problems within
it�

� Chapter �� Approximation methods�

� Chapter �� Experimental test� comparison and analysis of new and existing value function
approximation algorithms�

� Chapter �� Extensions of the basic framework� exploitation of the additional problem
structure�
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��� Brief summary of chapters

The text covers most of the eld of Partially observable Markov decision processes� It is
organized in chapters that address di�erent topics related to the framework� An e�ort to
present new ideas and methods in relation to the previous work has been made� This is also the
reason why contributions are not presented on one place but are rather scattered throughout
the thesis� However� they are pointed out and summarized at the end of each chapter� and are
reviewed again in the conclusion�
The following is a brief overview of every chapter that also includes pointers to our contri�

butions�

Chapter � describes the basics of the framework of the Markov decision process �MDP�
that models controlled stochastic processes under the assumption of perfect observability and
control problems one can solve within such a framework� The MDP framework is introduced
mostly to simplify the explanation of more complex POMDP framework that is central to our
work� The reason for this is that many of the solution methods developed for the MDP are
directly applicable or very similar to methods used for POMDPs� The understanding of the
MDP and POMDP frameworks� their di�erences and respective advantages will be helpful for
chapter � in which the framework that exploits the combination of MDPs and POMDPs will
be introduced�

Chapter � introduces the framework of Partially observable Markov decision processes and
describes exact methods for computing control solutions within it� The POMDP extends the
MDP framework by incorporating features of partial observability and control over observations�
Our work in this chapter is centered mostly around the exploration and the developement of a
number speed�up techniques for exact optimization methods� These include� new Gauss�Seidel
version of the value iteration algorithm that is based on the idea of incremental lower bounds
improvements �section ������� improvements of the basic Monahan�s algorithm �Monahan �
�
�Cassandra et al� ��� that interleave generate and pruning phases of the value function construc�
tion and prune partially constructed value functions across di�erent actions �section ����
�� the
design of various forward decision methods that select the best control action for a single initial
state �section ����� Also studied are alternatives to the standard POMDP models that use
di�erent or more complex observation�state dependencies including for example a model with
delayed observations �section �����

The problem of nding the optimal control within the POMDP is computationally hard and
exact methods are highly ine�cient �Papadimitriou� Tsitsiklis ���� This naturally leads to the
exploration of methods that can acquire good solution faster� trading o� the accuracy of the
solution for speed� The exploration of such methods is the subject of Chapter �� The chapter
includes the description of a number of new and known approximation methods� and analyzes
and compares their theoretical properties� The new methods and novel improvements of existing
methods are� fast informed bound �section ����� simple variable grid point�interpolation method
�section ������� incremental linear vector method �section ����
�� and heuristic strategies for
selecting grid points �sections ����� and ����
��

New and known value function approximationmethods were experimentally tested and their
results compared and analyzed in Chapter �� The experiments were used to test two features of
approximation methods and their solutions� the quality of bounds �section ��
� and the quality
of control performance �section ����� Tests were conducted on the set of three POMDP control
problems of di�erent complexity that include two robot navigation problems and the Shuttle
docking problem due to �Chrisman �
��
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In Chapter 	 we propose and describe various extension of the basic POMDP framework that
can represent additional problem structure� The extensions of the framework were explored in
context of the application of the POMDP framework to medical therapy planning� more specif�
ically on the problem of management of patients with ischemic heart disease �Wong et al� ����
The new structural features include� a combination of MDP and POMDP frameworks using
factored process states with perfectly observable and hidden components� and hierarchical state
variable space that restricts possible state variable value combinations �section ��
�	�� The ad�
ditional structure makes it possible to cut down the complexity of the information state �section
����	� used to solve planning and control problem and thus speed�up the problem solving rou�
tines� Other new features that allowed us to construct the prototype POMDP model for the
ischemic heart disease problem are� factored transition and observation model represented using
hierarchical version of the Bayesian belief network �section ��
���� factored cost model �section
��
���� actions with di�erent discounts �section ��
����

Chapter 
 summarizes the preceeding text� points out main issues related to POMDP frame�
work� describes the contributions of our work� and discusses open problems� and future research
objectives�
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Chapter �

Markov decision processes

The Markov decision process �MDP� �Bellman ��� �Howard ��� �Puterman ��� is a basic mod�
elling framework often used in the area of planning in stochastic domains� A Markov decision
process�

� is a controlled stochastic process�

� assumes that every process state depends only on the previous process state and not a
history of previous states �Markov assumption��

� assigns rewards �or costs� to state transitions�

��� MDP model and MDP problem

Formally the Markov decision process is a ��tuple �S�A� T�R� where�

� S is a nite set of world states�

� A is a nite set of action�

� T � S � A � S � ��� 	� denes the transition probability distribution P �sjs�� a� that
describes the e�ect of actions on the world state�

� R � S �A� S �R denes a reward model that describes payo�s associated with a state
transition under some action�

A Markov decision process �MDP� is a useful abstraction that represents the dynamic be�
havior of a process under di�erent actions� There are di�erent variants of the basic MDP
presented above� For example very often the model uses costs instead of rewards� In general
costs can be viewed as negative rewards� They measure negative aspects of transitions�
A Markov decision process can be represented graphically using the in�uence diagram in

gure 
�	� In the in�uence diagrams ��Howard� Matheson ��� �Schachter �����

� circles represent chance nodes and correspond to states of the controlled process in two
consecutive time steps�

� rectangles stand for decision nodes that represent action choices�
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Figure 
�	� The in�uence diagram representing Markov decision process�

� diamonds stand for value nodes representing reward associated with transitions�

� directed links represent dependencies between individual components�

An in�uence diagram that represents temporal dependencies is also often called a dynamic
in�uence diagram� It can be expanded over time by replicating its structure and creating a
sequence �chain� of states� actions and value nodes� This is shown in gure 
�
�

����� MDP problem

A decision �control� problem within the MDP framework requires one to nd an action or a
sequence of actions for one or more states that optimizes some objective reward �cost� function�
The objective function represents control objectives by combining the rewards incurred over
time into a single quantity using various kinds of models �represented by a global value node
in gure 
�
�� Typically the objective function is additive and is based on expectations� The
objective of control is then to nd the rational choice of control actions� that is actions that
lead to the maximum expected cumulative reward�
The most common kinds of models used in practice to combine rewards are�

� nite horizon models� maximize the expected reward for the next n steps�

maxE�
n��X
t��

�trt�

where rt represents a reward acquired at time t and �geq� corresponds to the multiplica�
tive factor �discount factor� that scales rewards obtained in future�

� innite horizon models�

	� maximize expected discounted reward �

maxE�
�X
t��

�trt��







time

overall reward

value 

Figure 
�
� Expanded in�uence diagram representing MDP� The global value node represents
a reward model that combines multiple one�step rewards�

where � is a discount factor that satises� � � � � 	 ��


� maximize average expected reward per transition�

max lim
n��

	

n

nX
t��

rt�

� target state model� maximize expected reward �minimize expected cost� to some target
state G�

Naturally one can imagine a whole spectrum of other models� For example one might want
the control to reduce the risk of the transition to some state primarily and secondarily to
decrease its expected discounted cost� This may correspond to the medical problem in which
the state to be avoided is the death of the patient and where actions must be taken such that the
risk of death is minimized in the rst place and the well�being of the patient �represented by a
lower cost� or economical cost are secondary� However our work will consider only two additive
models� the n steps�to�go nite horizon model and the innite discounted horizon model�

�A model very similar to the maximization of the expected discounted reward requires one to maximize
expected discounted total reward� i�e� max limn�� E�

P
n

t��
�trt�� where � � � � � is a discount factor� Note

that under some assumptions the limit and expectations can be exchanged and the result will be same for both
models� In the following we will assume this holds� However in general the total reward model does not have to
be solvable and also does not need to be equal to the expected reward�
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Figure 
��� The relationship between the two schemes used to index control policies� The t
index follows the time �ow� while the i index goes in the opposite direction and represents steps
to go�

����� Control functions and policies

Let � denotes a control function that maps states to actions �i�e� � � S � A� and let � �
f��� ��� � � �g be a policy that corresponds to a sequence of control functions� A sequence of
control functions is also often referred to in the literature as a strategy or a control plan�
Control functions and policies in the MDP framework describe a specic reactive behavior of
the agent in various circumstances� The policies can be stored in tables that enumerate all
possible situations the agent can wind up in�

Stationary and non�stationary policies

A policy � � f�� �� � � �g that has a xed control function over time is called stationary� If
control functions within the policy � � f��� ��� ��� � � � � �t� � � �g are allowed to vary over time
steps� the policy is non�stationary� The optimal control policy is �see �Puterman �����

� non�stationary for the nite horizon model with n steps�to�go�

� stationary for the innite discounted horizon model�

A control strategy for the nite horizon problem can be fully described by a nite n�step
policy � � f�n� �n��� � � � � �i� � � � � ��g� where �i represents the control action to use when i
control steps remain to be done� Note that there are two indexing schemes one can use to
describe nite horizon problem policies� one that follows the time �ow and indexes control
functions starting from time � and one that indexes control functions by counting steps to go
and starts from n �steps to go�� These two schemes are opposite of each other and the choice is
simply a matter of convenience� The relation between the time and cost�to�go indexes is shown
in gure 
��� The basic relationship between the two is that if�

�i � �t then �i�� � �t���

In order to avoid confusion and di�erentiate between the two schemes we will always use t when
referring to time indexing and use other indexes for the steps�to�go indexing�
The optimal policy for the ininite horizon problem is stationary because in any state at

any point in time the control agent faces an innite number of steps to go and thus the optimal
control function must be the same for any state�
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Deterministic and stochastic policies

We have assumed so far that control functions are of the form� � � S � A� that is that they
assign actions to states deterministically� When the policy consists of such control functions
it is called deterministic� However� in general a control function can assign actions to states
nondeterministically according to some probability distribution� In such a case the policy is
called stochastic and can be realized by a coin �ipping machine� Note that a deterministic
policy is a special case of a stochastic one�
In the following we will work only with deterministic policies� In fact it is possible to show

that for discrete state MDPs with perfectly observable process states the optimal policy is
always deterministic �see �Puterman ����� This may not be the case in situations when process
states are only partially observable and policy is constructed using observations or features that
are di�erent from process states �see �Singh et al� �����

����� Types of MDP problems

The basic MDP control problem requires one to determine the optimal policy� However� in
many cases we are not always interested in nding the complete description of all optimal
responses for all possible contingencies� Then� based on the scope and detail of the required
solution� the MDP problem can consist of�

� nding the optimal control policy for all possible states�

� nding the sequence of optimal control functions for a specic initial state�

� nding the best control action �decision� for a specic initial state�

The problem formulation that requires one to nd the optimal complete policy can be
valuable in situations in which a control agent can be asked to solve the same problem with the
same objective function repeatedly but from di�erent initial situations�
On the other hand the problem that requires one to nd the optimal control sequence only

for a specic initial state is important in cases in which the agent always starts from the same
initial state� The di�erence in this case is that control functions in the optimal solution do not
need to be dened completely for every step� For example for the initial state sinit� ��n only
needs to contain the mapping from the initial state sinit to the optimal action a� ��n�� only
needs mappings from states that can be reached from the initial state by performing optimal
action a in sinit � and ��i only needs mappings from states reachable from sinit through a
sequence of n � i optimal actions� This can in some cases signicantly reduce the amount of
computation needed to nd the optimal control�
Both of the above more general problems subsume the problem in which one is interested

in nding the best control response �decision� for a single initial state� Although nding the
optimal action may require the complete plan to be found� it is often the case that the decision
about the best action can be made without evaluating all possible future situations and thus
carried out in a more e�cient way�
There are other variants of control problems that can be solved within the MDP framework�

for example nding a partial k�step policy for some initial state� However the three types of
MDP problem listed above are used most often� so they will be also the focus of our attention�
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����� Real�time control

The objective of a control agent that acts in the world described by some MDP model is to
repeatedly choose the action that is expected to result in the best overall performance� that
is the action that maximizes the expected overall reward� Such an agent can be implemented
using the decision problem solving procedure �nds the optimal action for a single state� over
and over again� This approach has both its advantages and disadvantages� The main advantage
of the approach is that it can be combined with various routines for adapting the underlying
MDP model� Its disadvantage is that the time spent on computing the optimal action can lead
to unacceptable delays� for example when the agent acts in some time critical environments�
The natural solution for the time critical application is to avoid the expensive on�line compu�

tation of the optimal response and try to precompute possible control responses o��line before
they are used by a control agent� The o��line computation nds policies for one or more states�
Once computed these can be stored in various forms� as lookup tables� as protocol like struc�
tures with conditional action sequences� or using various auxiliary structures� for example one
that stores precomputed values of objective functions �so called value functions�� In general the
idea is that the precomputed result and the structure used to represent the policy should allow
the agent to extract the control response su�ciently quickly�
In the following text we will focus our attention on issues related to the problem of nding

optimal control solutions and we will not consider technical issues related to the choice of data
structures used to store policies and the e�ciency of such representations� However� when
building a real�time agent one must also consider also the delays and the e�ciency due to the
policy representation�

��� Solving the MDP problem

There are numerous methods one can apply to solve control problems formulated within the
MDP framework� The focus of the following is to describe the basic methods for solving
complete policy problem for both nite and innite discounted horizon criteria� and to explore
some of their extensions and modications� A good in�depth analysis of such methods can be
found in �Puterman ��� or �Bertsekas ���� Later in the chapter� methods that compute simpler
or more restricted MDP problems more e�ciently will be discussed�

����� Finite horizon problem

The objective of the n step horizon control problem is to nd a policy that optimizes the
additive reward model� maxE�

Pn��
t�� �

trt�� A nice property of the additive model is that the
overall expected reward for some control plan can be decomposed into the expected reward
associated with the rst control step and the expected reward for the remaining plan steps�
Let V denote a value function V � S � R representing the expected reward of some complete
policy� Then because of the decomposability of the value function for an n steps�to�go policy
�n � f�n� �n��� � � � � ��g we can write�

V �n
n �s� � ��s� �n�s��  �

X
s��S

P �s�js� �n�s��V
�n��

n�� �s
�� �
�	�

where ��s� �n�s�� corresponds to the expected reward incurred by performing rst action �n�s�
of the plan �n in state s and V

�n��

n�� �s
�� corresponds to the expected reward associated with the
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remaining �n� 	� steps of the plan �n� ��s� a� for a state s and an action a is computed as�

��s� a� �
X
s��S

P �s�js� a��R�s� a� s���

Our objective is to nd a policy that optimizes the overall expected reward� This can be
done using Bellman�s principle of optimality �Bellman ����� Using Bellman�s principle� the
optimal value function V � for an n steps�to�go plan starting at state s is�

V �
n �s� � max

a�A
��s� a�  �

X
s��S

P �s�js� a�V �n���s
�� �
�
�

where V �
n���s

�� is the optimal value function for the n� 	 step optimal plan� This implies that
the optimal control function ��n must be�

��n�s� � argmaxa�A��s� a�  �
X
s��S

P �s�js� a�V �
n���s

��� �
���

Q functions

The optimality equations can also be written using action�value functions or so called Q�
functions� The action value function Q� � S�A �R represents the expected reward associated
with taking a xed action from a specic state rst and proceeding optimally afterwards� The
relation between value and action value functions is�

V �
n �s� � max

a�A
Q�
n�s� a�

Q�
n�s� a� � ��s� a�  �

X
s��S

P �s�js� a�V �
n���s

��

where the last formula can be rewritten in pure Q form as�

Q�
n�s� a� � ��s� a�  �

X
s��S

P �s�js� a�max
a��A

Q�
n���s

�� a���

The introduction of an action value function has no special meaning on this place� However
it will be used in the upcoming sections in some of the algorithms and therefore it was introduced
here�

H mappings

In many cases it is easier to rewrite recursive equations 
�	 and 
�
 into a value function mapping
form� Let B be a set of bounded real�valued functions V on S� V � S � R and let h be a
mapping h � S � A� B �R such that�

h�s� a� V � � ��s� a�  �
X
s��S

P �s�js� a�V �s��

�Bellman�s principle of optimality says that any tail subplan of the optimal plan must be also optimal� The
proof of this is straightforward and is based on the fact that a plan with a suboptimal tail subplan cannot be
optimal�
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Let � be an arbitrary control function� Then we can dene a mapping H� � B � B such that�

H�V �s� � h�s� ��s�� V ��

and a mapping H � B � B such that�

HV �s� � max
a�A

h�s� a� V ��

Then using the value function mappings one can represent equation 
�	 as�

V �n
n � H�nV

�n��

n�� �

and equation 
�
 as�
V �
n � HV �

n���

Finding the optimal n step policy

The n step control plan can be computed easily in a backward fashion using the dynamic pro�
gramming approach� The dynamic program computes the optimal value and control functions
for i steps�to�go from the optimal value function for i � 	 steps�to�go�

V �
i �s� � max

a�A
��s� a�  �

X
s��S

P �s�js� a�V �
i���s

��

��i �s� � argmaxa�A��s� a�  �
X
s��S

P �s�js� a�V �
i���s

���

Using the above formulas repeatedly one can construct the complete solution policy back�
wards� That is� starting with a value function for � steps to go� one can compute the optimal
value and control functions for 	 step to go� and then the optimal functions for 
 steps to go�
and so on� up to n steps to go� The simple version of the dynamic programming computes a
complete n steps�to�go policy in O�njAjjSj�� time�

����� In�nite discounted horizon problem

The objective of the innite discounted horizon problem is to nd a stationary policy that
optimizes maxE�

P�
t�� �

trt� with � being restricted to � � � � 	�
The optimal value and control function for an innite discounted horizon must satisfy the

xed point equation�

V ��s� � max
a�A

Q��s� a� � max
a�A

��s� a�  �
X
s��S

P �s�js� a�V ��s��� �
���

The equation can also be written using H mapping as V � � HV �� Once the optimal value
function is known the optimal control �policy� can then be acquired�

���s� � argmaxa�AQ
��s� a� � argmaxa�A��s� a�  �

X
s��S

P �s�js� a�V ��s��� �
���

There are three basic approaches to nd the optimal function for the innite discounted
horizon problems�
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� value iteration

� policy iteration

� linear programming

The rst two methods are iterative� They allow one to approximate the control policy� They
also guarantee convergence to the optimal solution after a su�cient number of iterations� On
the other hand� the linear programming approach converts the planning problem directly to a
linear programming optimization problem�

Value iteration

The value iteration method �Bellman ��� nds the optimal or ��optimal value function� The
method builds on the fact that there is a unique xed point value function V � satisfying Bell�
man�s equation�

V ��s� � max
a�A

��s� a�  �
X
s��S

P �s�js� a�V ��s��

and that a simple value iteration method allows us to nd it� Both of these results follow
directly from properties of H mappings�
Let B is a set of real valued bounded functions on S� i�e� for V � B� V � S � R� Let

k V k� maxs�S jV �s�j be a max norm� Then B together with the max �supremum� norm is
a complete� normed linear space or Banach space �see �Puterman ����� Assuming the discount
factor � � � � 	� value function mappings H and H� correspond to isotone contraction
mappings on B with a contraction factor ��

Denition � �contraction mapping� The mapping H � B � B is a contraction when for any
two functions U� V � B the following holds

k HV �HU k� 	 k V � U k

with � � 	 � 	 being the contraction factor�

Denition � �isotone mapping� The mapping H is isotone when for any two functions U� V �
B that satisfy V �s� � U �s� for all s � S� denoted V � U � holds HV � HU �

The proof that H and H� are isotone contractions is straightforward and can be found in
�Puterman ���� Knowing that H and H� are contraction mappings� one can directly apply the
results of the Banach theorem�

Theorem � �Banach theorem�� Let B be a Banach space� F � B � B be a contraction mapping
and let �xk�k be a sequence with arbitrary initial point x� � B� such that xk � Fxk��� Then
�� F has a unique �xed point solution x� such that Fx� � x�

�� the sequence �xk�k converges to x�

�� for all k the following estimates hold

k xk � x� k�
�k

	� �
k x� � x� k

k xk � x� k�
�

	� �
k xk � xk�� k

k xk � x� k�k xk��� x� k
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The immediate consequences of the Banach theorem for H are�

� H has a unique xed point value function solution� denoted V �� i�e� HV � � V ��

� One can construct a sequence of value functions using a simple iteration method Vk �
HVk�� that starts from an arbitrary value function V� and converges to the xed point
solution V ��

� The precision of the value function approximation using the kth member of the sequence
is given by simple error bounds provided by the theorem�

The same holds for H� and V ��

Therefore one can always guarantee the existence of the unique optimal value function
solution V � � HV � as well as the existence of a simple value iteration method that can be used
to nd it� Based on the provided error bounds one can also compute the minimum number
of iteration steps to make in order to guarantee the required precision of the value function
solution�

Theorem � Let M be the maximum per step cost� let � � � � 	 be the discount factor and let
� be the required precision� Then the simple value iteration method� starting from V��s� � � is
guaranteed to achieve required precision � after k steps� where

k �
ln ��	� �� � lnM

ln �
�

Proof� The proof exploits the fact that under the max norm� two consecutive value functions
acquired by the iteration method are guaranteed to be lower than M � that is�

k xk � x� k�
�k

	� �
k x� � x� k�

�k

	� �
M

Then by setting�
�k

	� �
M � �

we can derive the minimum number of iterations needed to achieve the required precision� �

The minimumnumber of iterations computed using the above formula is usually very rough
and not tight� In general case � optimality can be reached sooner by examining the di�erence
between the value functions computed for two consecutive steps� This is expressed in the
following Bellman residual theorem �Puterman ����

Theorem � �Bellman residual� Suppose Vk�s� and Vk���s� di�er by at most 
 for every s � S�
Then both Vk�s� and Vk���s� never di�er from V � by more than ���

��� �

The Bellman residual theorem provides a nice stopping criterion that iterative algorithms
can use to compute � optimal value function solutions� Such an algorithm is shown below� It
outputs the value function V � such that�

j V �s� � V ��s� j� �

��



holds for every state s� An ��optimal value function can be then used to compute control
function as�

��s� � argmaxa�A��s� a�  �
X
s��S

P �s�js� a�V �s���

Value iteration �MDP � �� ��
initialize V �s� for all s � S�
repeat

set V ��s�	 V �s� for all s � S�
set V �s� 	 maxa�A���s� a�  �

P
s��S P �s

�js� a�V ��s����

until j V �s� � V ��s� j� ������
��

for all s � S

return V�

The value iteration algorithm can come in di�erent �avors� One obvious modication to the
described basic version is to update the value function used in the iteration immediately with a
new result and not to wait until the value function for all states is available� This modication
is often referred to as the Gauss�Seidel version of value iteration and usually leads to faster
convergence of the algorithm�

Policy iteration

An alternate approach to the computation of the optimal policy for the innite discounted
horizon problem is policy iteration� This method was suggested by Howard �Howard ��� and is
based on the two computation steps performed iteratively�

� value determination� computes expected return for current �initially random� xed policy�

� policy improvement� improves the current policy�

The method relies on the fact that for a xed stationary policy it is easy to�

� compute the value function corresponding to such a policy �simply by solving a set of
linear equations��

� improve the policy if it is suboptimal�

� decide if the policy is optimal�

This is based on two theorems� which are presented without proof �proofs can be found in
�Bellman� Dreyfus �
���

Theorem � �Improvement theorem� Let � and � be two control functions de�ning two station�
ary policies and let � be chosen such that

V��s� � Q��s� ��s�� for all s � S�

Then it follows that � is uniformly better than �� i�e�

V��s� � V��s� for all s � S�

�	



Theorem � �Optimality theorem� Let � be a control function �policy�� with associated value
function V��s� and action�value function Q��s� a�� If policy � cannot be further improved using
the policy improvement theorem� that is if

V��s� � max
a�A

Q��s� a� for all s � S�

then V��s� and Q��s� a� are unique optimal value and action value functions and � is an optimal
control function de�ning the optimal stationary policy�

An immediate consequence of the improvement theorem is that a policy constructed from
the current policy by replacing all actions in the current policy with actions with better Q��s� a�
guarantees better results� This denes the improvement step� The consequence of the optimality
theorem is that if the policy cannot be improved using the improvement step then it is optimal�
This represents an optimality test� The following algorithm incorporates these steps� and
represents the policy iteration method�

Policy iteration�MDP � ��
set � to be an arbitrary control function dening policy ��
repeat

compute value function V��s��
compute action values Q��s� a� for all s � S� a � A�
set ��s�	 argmaxa�AQ��s� a� for all s � S�

until no change in � is observed
return control function ��

The value determination phase of the algorithm computes the value function for a xed
stationary policy� The value function can be obtained by solving the set of linear equations of
the form�

V��s� � ��s� ��s��  �
X
s��S

P �s�js� ��s��V��s
���

which can be solved by any of the available methods� The system of linear equations can become
computationally expensive for larger state spaces� However� in order to improve the policy it
is not necessary to compute the exact value function� and the improvement can be made based
on a value function approximation� This idea is used in the version of the policy iteration
procedure called modi�ed policy iteration �Puterman ���� Modied policy iteration uses value
iteration techniques to approximate the value function in the policy evaluation step� This can
be done because H� for any � �that denes a policy� is a contraction mapping as shown above�
There are other possible modications of the basic policy iteration procedure� for example

policy iteration that eliminates suboptimal actions considered during the policy improvement
using bounding techniques �see the discussion later in the chapter�� A nice survey of policy
iteration algorithms can be found in �Puterman ����

Linear programming

The problem of nding the optimal control value function can be also reformulated as a linear
programming task� The linear program can be solved in time polynomial in the number of
variables and constraints �and precision�� using either ellipsoid or Karmarkar�s algorithms �see
�Strang ����� The basic linear program used in the innite discounted horizon and the reward
maximization is �see �Puterman ��� �Bertsekas �����
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minimize�
X
s�S

vs

under the constraint�

vs � ��s� a�  �
X
s��S

P �s�js� a�vs�

for all s � S and a � A� Similarly one can construct the linear program for the problem with
the minimization of costs �see �Puterman ��� �Bertsekas �����
Variable�s� vs represent value function values associated with process states and the linear

program attempts to nd their optimal values V ��s�� This is because� a value function for every
state is no smaller than the immediate one step expected reward plus the expected reward for
any possible process state continuation� minimizing the sum of value functions for all process
states guarantees that values for the xed point solution are found� Once the optimal value
functions are found the optimal policy can be easily computed by selecting the action that
minimizes the value function�
The above linear program consists of jSj variables and jSjjAj constraints� It is also possible

to construct a dual linear program that allows one to nd the control function and that consists
of jSjjAj variables and jSj constraints �see �Puterman ��� �Littman et al� ��b���

��� Forward methods for solving MDP problems

Methods we have discussed so far are suitable for computing value functions or control policies
for all states� However� when one only needs to nd the optimal control plan for a single initial
state or to select the best control action for a single state� more e�cient forward methods can
often be used�
The main idea of forward methods is to identify states reachable from the initial state

by unwinding the optimality formula in the forward fashion rst �identication phase� and
perform the computation backwards using only states reached in the identication phase� The
e�ectiveness of forward methods depends mostly on the sparseness of the transition matrices�
Thus� the more sparse the transitions� the better the chance forward methods improve the
e�ciency�

����� Computing optimal control plans for the �nite horizon model

Forward methods can be applied to compute the n steps�to�go policy for a single initial state�
In this context one can use an extension of the backward dynamic programming method� that�

� identies all process states that need to be considered at every stage �forward phase��

� computes value and control functions backward only for those states that were reached
in the forward phase�

States that need to be considered can be found in the forward fashion by simply tracking and
marking all states reachable from the initial state� Then the computation of the optimal value
and control functions is performed only for these states� leaving all others undened�
The main advantage of the method is that it eliminates the computation of value functions

at states that cannot be reached� The savings from it might be signicant when one deals with
a large model with a large number of states and sparse transition matrix�
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����� Finding the optimal action for a single initial state

The decision problem� that seeks the optimal control action for a single initial state is the
other problem for which forward methods are suitable� The problem is simpler than the above
problem that requires us to nd optimal choices for all reacheable states� This often allows us
to construct simpler and faster problem�solving methods that focus on nding the single state
control� The algorithms are best described using stochastic decision trees �see e�g� �Pearl �����

Decision tree

The decision tree depicts in the chronological order actions a control agent can make and
subsequent outcomes of these actions that are governed by chance� An example of a decision
tree is in gure 
��� It consists of two types of nodes�

� decision nodes �rectangles��

� chance nodes �circles��

In the decision tree� decision nodes stand for process states� branches starting in decision
nodes represent actions the agent might select� chance nodes represent states after the selection
and branches emanating from the chance nodes represents possible stochastic outcomes follow�
ing the action in the state� A complete decision tree represents� states that are reacheable from
the initial state and action choices that lead to them� For MDPs� the decision tree structure
can be used to compute optimal value function for some state as described in the basic value
function formula�

V ��st� � max
a�A

Q��st� a� � ��st� a�  �
X

st���S

P �st��jst� a�V
��st��� �
���

where V ��st� and Q
��st� a� are values that can be associated with decison node st and chance

node �st� a� respectively� Thus the tree is best viewed as being constructed by a repeated
unfolding of the value function formula�
Note the di�erence between the two graphical representations� dynamic in�uence diagrams

and decision trees� The former serves to represent the model and its components� while the
latter one represents how the solution for some specic state is computed�
The goal of the decision task is to select the optimal control action for the initial state that

corresponds to the root of the tree� The best action choice is computed simply as�

argmaxa�AQ�s�� a��

The problem with a decision tree method that blindly unfolds the recursive formula is that
the size of the tree can grow exponentially� This can lead to a signicant ine�ciency due to
repeated or redundant computation� Therefore one needs a mechanism to restrict the size of
the tree� In the following we will present two mechanisms that keep the size of the tree from
growing large�

Using bounds for pruning suboptimal branches

The idea of pruning is simple and is based on the ability to compute bounds for the expected
reward of any encountered state of the partially constructed decision tree� Then assuming that
bounds are known for the leaves of the partially constructed decision tree� one can compute
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Figure 
��� An example of a decision tree� Decision nodes �rectangles� correspond to process
states and chance nodes �circles� represent process states with xed action choices and possible
stochastic outcomes� States are associated with value functions �V� and state�action choices
with action�value functions �Q��

bounds for inner nodes of the decision tree simply by computing the expected reward for the
best and worst case scenarios� The bounds at leaves of the decision tree can be computed easily�
Assuming that�

Mu � max
a�A

max
s�S

��s� a�

Ml � min
a�A

min
s�S

��s� a�

stand for the maximum and minimum expected one step cost rewards respectively� bounds for
the innite discounted horizon problem and for any state s are�

ubound�s� �
Mu

	� �
�
���

lbound�s� �
Ml

	� �
� �
���

The computation at every decision node assumes that the action leading to the maximum
expected reward is selected� But this means that when computed bounds for any two decision
nodes do not overlap� one of them is guaranteed to be suboptimal and can be pruned from the
decision tree� That is� whenever�

lbound�st� a�� � ubound�st� a��

holds� we know that a� leads to a suboptimal solution and can be pruned from the decision
tree�
The above criterion allows one to prune tree branches that are clearly suboptimal� However
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one can also develop soft criteria that allow one to prune the decision tree branches based on
the precision with which the decision at certain points needs to be made� The pruning rule in
this case is �
Let � be a precision with which the action at state st needs to be selected� Then whenever�

lbound�st� a��  � � ubound�st� a��

holds the decision tree branch corresponding to action a� can be pruned� The major problem
in applying the soft pruning method is in allocating a precision factor to di�erent branches of
the tree and allowing soft pruning throughout the decision tree� This is because one is usually
given only the precision error that is related to the decision at the root of the tree�

Basic method for the dynamic construction of the decision tree

It has been shown how one can use bounds to prune suboptimal branches of a decision tree
that is only partially expanded� To exploit this feature� a strategy that incrementally expands
a decision tree can be constructed� The strategy starts with a small initial decision tree�
which is gradually expanded whenever the required decision cannot be made� Such a strategy
allows one to avoid the unecessary exploration of large parts of the decision tree� and to prune
suboptimal branches as soon as possible� We will refer to this strategy and its modications as
the incremental expansion strategy or incremental decision tree strategy� The simple breadth
rst version of this strategy is shown in the following algorithm�

Incremental expansion�MDP� �� sI � �� VL� VU �
initialize tree T with sI and ubound�sI�� lbound�sI� using VL� VU �
repeat until �single action remains for sI or ubound�sI�� lbound�sI� � ��

call Improve�tree�T�MDP� �� VL� VU��
return action with greatest lower bound as a result�

Improve tree�T�MDP� �� VL� VU �
if root�T � is a leaf

then expand root�T�
set bounds lbound� ubound of new leaves using VL� VU �

else for all decision subtrees T � of T
do call Improve�tree�T ��MDP� �� VL� VU ��

recompute bounds lbound�root�T ��� ubound�root�T �� for root�T ��
when root�T � is a decision node

prune suboptimal action branches from T �
return�

The algorithm takes an MDP model� a discount factor �� an initial state sI � a precision
parameter � and value function bounds VL and VU used to initialize leaf nodes of the partially
built decision tree� It returns an action that is guaranteed to be ��optimal� The algorithm
builds a decision tree T and improves bounds ubound� lbound associated with nodes of the
tree incrementally by calling subroutine Improve tree� It stops when ��optimal action can be
selected� This is when the bound di�erence for the root of the tree is less than � or when only
single action remains possible �all others were pruned�� Bounds at leaves of the tree are always
initialized using VL and VU that are computed e�g� using equations 
�� and 
�� for the innite
discounted horizon problem�
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Figure 
��� The elimination of recomputation by a result sharing�

Computing decisions using bound iteration

Although pruning can help eliminate some parts of the decision tree� this usually does not
prevent one from the exploration of a large part of a decision tree� The major source of
ine�ciency is that the same tree substructure can occur repeatedly in two or more decision
tree branches� The solution to this is to compute the result once� The idea of result sharing
for the innite discounted problem is shown on gure 
��� Here decision nodes associated with
common process states �e�g� s	� share substructures�
In the following we will describe one method that eliminates redundant recomputations�

This method can be used to compute decisions for innite discounted horizon problems� It is
based on the same idea as value iteration� and uses the incremental expansion strategy with
pruning� One di�erence between ordinary value iteration and this method is that the new
method tries to iteratively improve value function bounds� and not the value function itself
�hence bound iteration�� Another di�erence is that value iteration works purely in a backward
fashion for all possible states� while the decision tree method tries to iterate only over the states
that are needed for the decision� that is� states reacheable by forward expansion�
The simplest version of bound iteration that uses a breadth�rst expansion of the decision

tree with pruning and repeated substructure elimination is described below�

Bound iteration�MDP� �� sI � �� VL� VU �
initialize tree T with sI and ubound�sI�� lbound�sI� using VL� VU �
repeat until �single action remains for sI or ubound�sI�� lbound�sI� � ��

set visited�set V S � f�sI� lbound� ubound�g�
call Improve�tree�T� V S�MDP� �� VL� VU ��

return action with greatest lower bound as a result�

Improve tree�T� V S�MDP� �� VL� VU�
case

root�T � � V S� set new bounds for root�T � from values in V S�
root�T � is a leaf� expand root�T ��

set bounds lbound� ubound of new leaves to values from V S
or �if not there� from VL and VU �
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otherwise� set V S 	 V S 
 f�root�T �� lbound� ubound�g�
for all decision subtrees T � of T

do call Improve�tree�T �� V S�MDP� �� VL� VU��
recompute bounds lbound�root�T ��� ubound�root�T �� for root�T ��
update record for root�T � in V S�
prune suboptimal action branches from T �
return�

The bound iteration algorithm implements a gradual breadth�rst expansion of the decision
tree� and reuses bound results for shared substructures using the data structure visited�set V S�
The way results are reused in this algorithm is illustrated in gure 
��� assuming that the
branch corresponding to an action a	 is expanded rst� The algorithm stops when the solution
is guaranteed to be ��optimal or when the root of the decision tree has only one remaining
action �all others were pruned��

��� Solving large MDP problems

We have pointed out that one is able to solve the planning problems in time polynomial in the
size of the state space jSj and action space jAj� This means that one can solve the planning
problems e�ciently with regard to the component space sizes� However� for many real world
problems the state space size can become very large� and is itself subject to exponential growth�
The notion of state in many real world problems is dened usually through a set of state

variables� each with a specic number of values it can take� Using such factored state repre�
sentation� the total state space consists of all possible combinations of assignments of values to
state variables and is exponential in the number of variables used� For example� for a simple
case with n boolean state variables� the complete state space has 
n states� Similarly� when
an action space is dened through a set of m possible elementary actions that may or may not
be performed simultaneously by an agent� the total number of di�erent actions the agent can
perform is 
m�

Reducing the complexity of MDP denitions

Having large state and action spaces increases computational time and forces the designer of
the model to provide huge transition matrices and reward models �an entry is needed for every
possible combination of two states and an action�� This problem is reminiscent of the problem
in the ��s� where methods for handling uncertainty based on probabilities were considered
inadequate because one was expected to dene huge probability tables�
The complexity of an MDP denition can be reduced by exploiting additional structure�

such as independence and conditional independence� or various regularities and restrictions
that hold among the components of a factored MDP model� One might be able to dene larger
models using signicantly fewer parameters by using factored model instead of a complete one�
Graphical models� like belief networks �Pearl ��� or dynamic in�uence diagrams

�Schachter� Peot �
�� let us represent dependencies between components of an MDP model in
more detail� A simple example is shown in gure 
��� Here a process state is represented using
state variables A�B� and C and both transition and cost models are described in the factored
form�
The dynamic in�uence diagram example does not cover all possible ways one might express

structural properties and regularities of an MDP model� For example� parameters corresponding
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Figure 
��� The in�uence diagram representing a factored MDP� A�B and C correspond to
state variables� Dependencies between two consecutive states �statet�� and statet� are now
described using state variable dependencies�

to transition probabilities in the factored representaton can be expressed using decision trees
or rules that map propositions constructed from state variable values to state variable values
�with associated probabilities and possibly also costs�� The advantage of such representations
is that they reduce the size of the model description by representing relevant dependencies and
excluding irrelevant ones� They can be viewed like compression techniques for sparse or high
regularity parameter matrices�

Solving problems with large MDPs

There are two approaches one can use to simplify the computation of complex MDP models�

� exploitation of the additional model structure that makes independences or regularities
among model components explicit�

� approximation of the model� where irrelevant features of the model are abstracted away�

Solving problems by exploiting MDP structure

The rst approach is based on the exploitation of additional model structure� for example a
graphical model explicitly represents dependencies and independences that hold among state
variables that describe the process state� This approach does not change the content of the
model� so the solution obtained is the same as one would achieve using the classical MDP
model with a �at state space� Moreover� the solution plan for a structured model can often be
described in a more compact way compared to the complete description that enumerates all
possible state variable value combinations�
The solution policy for a factored MDP can be represented more compactly using a set of

control rules� Every rule consists of a proposition part that lists a set of state variable values
and an action part that species a control choice to be performed whenever the proposition is
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satised�
�i � f� ki � aki �g

where ki stands for the rule proposition and a
k
i is the action associated with it� The complexity

of the rule set denition can usually be reduced by representing them through classication
�decision� trees or decision lists with actions associated with their leaves�
Factored MDPs with additional structure can be solved using specialized procedures that

take advantage of the structure and output structured policies and�or value functions �see
�Puterman ����� A method for computing innite horizon problems that uses structured con�
trol and value functions is called structured policy iteration� This method was applied by
�Boutillier et al� ��� for example� The main features of the approach are�

� MDP model is represented in a factored form and with additional structure �indepen�
dences� regularities��

� value and control functions are expressed compactly using decision trees�

� value determination and policy improvement stages work directly with structured policies
and structured value functions�

Approximations using model simplications

One can compute control policies while avoiding the need to work with complete state space by
exploiting regularities in the MDP denitions� Unfortunately� many problems do not exhibit
perfect regularities that allow the problem to be solved and represented e�ciently� However� in
a large number of control problems� there are usually features that are less relevant� and that
do not in�uence the quality of the nal solution dramatically� Then� one would expect to get a
good solution when such features are ignored and only relevant features are accounted for in the
computation and in the resulting solution� This idea is the basis of approximation algorithms�
In general there are two methods researchers suggest for the purpose of approximation�

� model reduction �e�g� �Bertsekas ���� �Boutillier� Dearden �����

� decomposition �Dean� Lin ����

The rst approach is based on creating a new simpler MDP model that simplies the original
model by reducing the size of the state and�or action spaces� The reduction in the complexity
of the model then allows for faster approximate solutions by trading o� accuracy for speed�
Alternatively� one can try to combine computation steps performed with complete and reduced
models as suggested by �Bertsekas ����
The reduced MDP model can be supplied completely or partially by the designer of the

system or can be computed automatically by dropping the least relevant parts of the model�
The MDP can be dened by the designer using feature or aggregate states and probability dis�
tributions mapping the new aggregate states to original model states P �sjsAgg� �Bertsekas ����
Using the conditional probability one can compute components of the new transition probability
matrix as�

P �sAgg� jsAgg� � a� �
X
s�S

P �sjsAgg� �
X

s��sAgg
�

P �s�js� a��

Alternatively one might construct a simpler MDP model with aggregate states that uses upper
and lower bounds on transition probabilities and that does not require priors on states P �sjsAgg�
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to be dened� Such an approach was pursued by �Dean� Givan ��� �Dean et al� ��� who also
devised techniques to extract simpler models for factored MDPs�
Note that the computation of the new simpler model from the old one may require a signi�

cant amount of time� If the model reduction is performed during problem�solving� the overhead
time spent on the reduction itself needs to be added to the overall running time� Then� if the
complexity of the computation associated with the transformation of the model is comparable
to the computation of the complete MDP the use of model reduction to solve the problem is
completely unjustied�
The approximation through decompositionmethod �Dean� Lin ��� divides the complete state

space into a collection of smaller state space regions with stronger links between intraregion
states and weaker or limited links between interregion states� Regions are expected to consist
of a small number of state variables that are assumed to be relevant only within the region
and can dene local policies� Di�erent regions are then treated as a states of the higher level
process� with actions corresponding to the lower level local policies� The approximate solution
is then acquired by applying the divide and conquer strategy that breaks down the large MDP
problem to smaller problems on both higher and lower levels� These are subsequently solved�
combined and iteratively improved�

��� Summary

The Markov decision process �MDP� framework is a framework commonly used for represent�
ing and modelling control problems in stochastic dynamic domains� The basic MDP model
assumes a process with a nite state space� Various problem�solving methods can be used to
obtain optimal control solutions for such a model� The problem solving methods are� dynamic
programming for the nite horizon case� value iteration� policy iteration� and linear program�
ming for the innite dicounted horizon case� Whenever the optimal decision for a single initial
state is sought and transitions in the MDP are sparse the problem�solving can often be sped
up using forward decision tree methods�
The main challenge for future reasearch in MDPs is to model and solve MDPs with large

or continuous state spaces� The advances and new results in the neuro�dynamic programming
�see �Bertsekas� Tsitsiklis ����� and graphical modelling and associated probabilistic reasoning
methods �see �Lauritzen ���� that take advantage of independences and regularities between
model components are of high importance in this respect�
The objective of this chapter was to summarize the MDP framework� basic methods for

solving control and decision problems within it� The MDP framework is introduced mostly to
simplify the explanation of more complex POMDPs that are the central topic� as many of the
solution methods developed for the MDP are directly applicable or very similar to methods
used to solve POMDP problems�
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Chapter �

Partially observable Markov

decision process

The Markov decision process framework models a controlled stochastic process with perfectly
observable states� This represents the situation in which a control agent can be uncertain about
possible outcomes of its actions� but still able to verify the resulting state once the action is
completed� That is� there is no uncertainty with regard to what state the agent currently is�
though there is an uncertainty with regard to where it can be after the next action is taken�
One can easily imagine the situation in which the agent cannot observe the process state

directly� but only indirectly through a set of noisy or imperfect observations� The feature of
partial observability can be important in many real world problems� For example� a robot
planning its route or deciding about what action to take usually works with noisy sensory
information� in the medical area� the physician often needs to decide about the treatment
based on available ndings and symptoms while being uncertain about an underlying disease�
In all such cases the perceptual information need not align with and imply the actual world
state with certainty� Then the agent that acts in environments with imperfect state information
may face uncertainty from the two sources�

� uncertainty about the action outcome�

� uncertainty about the world state due to imperfect �or partial� information�

Observations may not be costless� Often they can require a special action to be taken before
they are enabled and this action might have both cost or transitional e�ect� The actions that
enable observations are called investigative actions� The main purpose of performing inves�
tigative actions is to narrow the uncertainty about the world state� for example by performing
a special test revealing more information about the ongoing patient�s disease process� or us�
ing camera surveillance in order to detect the current position of the robot� Therefore when
making the decision about an investigative action one needs to carefully consider both benets
and costs associated with performing it� For example� some investigative actions in medicine
although very helpful in diagnosing underlying problems can be very risky and costly due to
their invasivenes�
The presence of partial observability in the environment� as well as the capability of an

agent to perform investigative actions have a major impact on how planning procedure must
work� The reason for this is that�
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� in order to nd an optimal control one should account for imperfect observability now
and in future steps�

� during planning� one must consider the cost and benets of both control and investigative
actions�

In the following we will focus on the modelling framework that represents action outcome
nondeterminism� imperfect observability as well as investigative actions� The modelling frame�
work is called Partially observable Markov decison process �POMDP� �Astrom ��� and it is best
viewed as a further extension of the MDP framework�

��� Partially observable Markov decision process

More formally� partially observable Markov decision process is dened as �S�A�!� T�O�R�
where�

� S corresponds to a nite set of world states�

� A is a nite set of actions�

� ! is a nite set of observations�

� T � S � A � S � ��� 	� denes the transition probability distribution P �sjs�� a� that
describes the e�ect of actions on the state of the world�

� O � ! � S � A � ��� 	� denes the observation probability distribution P �ojs� a� that
models the e�ect of actions and states on observations�

� R corresponds to the reward model S�A�S �R that models payo�s incurred by state
transitions under specic actions �alternate formulationmay include costs that correspond
to negative rewards��

The in�uence diagram describing the partially observable Markov decision process is shown
in gure ��	� The main distinction between fully observable MDPs and POMDPs is in the
information one uses to select an action� In the MDP case actions are selected using process
states that are always known with certainty� while for the POMDP� actions are based only
on the available information that consists of previous observations and actions� Note that the
observation model as dened makes it possible to condition observations on both actions and
process states� This allows one to model investigative actions in the same way as other control
actions�
The standard observation model �gure ��	� assumes that observations depend on a previous

action and a current process state� that is� O always denes P �otjst� at��� relative to t� However�
while modeling some decision and control problems one often needs to use di�erent observation
models that t better the real world� for example one may need to model observation delays�
These models can be very important in medical decisions in which test results are often not
available immediately and are delayed �thus they refer to past patient states�� One of the topics
of our work is to explore some of these more complex observation models�
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Figure ��	� In�uence diagram describing the POMDP model�

��� Control in partially observable domains

The major di�erence between MDP and POMDP is that in the POMDP the underlying process
state is not known with certainty and can be only guessed based on past observations� actions
and any prior information available� Therefore we need to di�erentiate between the true process
state and the information �or perceived� state that captures all things important and known
about the process�

����� Information state

An information state represents all information available to the agent at the decision time that
is relevant for the selection of the optimal action� The information state consists of either a
complete history of actions and observations or corresponding su�cient statistic� A sequence
of information states denes a Markov controlled process in which every new information state
is computed as a function of the previous information state� the previous step action and new
observations seen�

It � � �It��� ot� at���

where It and It�� denote new and previous information states� The process dened over
information states is also called the information�state Markov decision process or information�
state MDP� In priciple one can always reduce the original POMDP into the information�state
MDP� The relation between the components of the POMDP model and its information state
as well as a reduction of the model to information�state MDP is shown in gure ��
�

Complete information state

The easiest way to represent an information state is to use all information available to the
agent since the beginning �time t � �� as shown in gure ��	� Then information consists of
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Figure ��
� In�uence diagram for the POMDP model with information states and corresponding
information�state MDP�

a complete history of actions and observations made� in other words it corresponds to the
complete information state �vector��

Denition � �Complete information state �vector�� The information state It for time t is
called complete �denoted ICt � when it consists of all information available to the agent before
the action at time t is made� The complete information state consists of

� prior belief on states at time ��

� all observations available up to time t�

� all actions performed before time t�

Note that the complete information state process satises trivially a Markov property� That
is� any new information state can be expressed as a function of the previous information state�
the previous action and the new observation� The update function is then simply implemented
by adding the action and the new observation to the previous step information state�

Representing information states with su�cient statistics

The main problem with the complete information state is that it is expanding its size with
elapsed time� This may be a major drawback� especially in the case where we are interested in
computing and representing solutions to innite horizon planning problems� A slightly di�erent
problem of control solution representability using the complete information vector with regard
to planning can be due to the existence of the innite size subspace corresponding to the prior
belief at time ��
The expanding dimension of complete information vectors is one of the major hindrances to

both the computation of the value function as well as representation of control plans �policies��
This problem can be resolved by replacing complete information states with quantities that
represent su�cient statistics with regard to control �see for example �Bertsekas ����� These
quantities satisfy the Markov property and preserve the information content of the complete
state that is relevant for nding the optimal control�

��



Denition � �Su�cient information state process� Let P � fI�� I�� � � � � It� � � �g be a sequence
of information vectors describing the information process� Then P is a su�cient information
process with regard to the optimal control when for every component It in P holds

It � � �It��� ot� at����

P �stjI
C
t � � P �stjIt��

P �otjI
C
t��� at��� � P �otjIt��� at���

where It�� and It are su�cient information states� ICt and ICt�� are complete information states�
ot is an observation that became available at time t� and at�� is an action made at time t� 	�

The main reason to use su�cient information states is that they can be signicantly smaller
and of non�expanding dimension and still allow one to compute optimal value and control func�
tions� On the other hand the update of information states is usually more complex compared
to the updating of complete histories� The su�cient information state can be used not only
for optimization but also to encode a control plan �policy�� Such a plan then requires the plan
executor to update su�cient statistics at every step� which may cause a slight delay in the
overall response time compared to the case when one works with complete histories� encoded�
for example� as control trees �Cassandra ��� �� However� in many applications the delay due to
information state update should not play a major role�

Belief states as su�cient information states

The quantity often used as a su�cient statistic for planning and control in POMDPs is the
belief state �or belief vector�� The belief state assigns probability to every process state and
re�ects the extent to which states are believed to be present� The belief vector bt at time t
corresponds to�

bt�s� � P �sjICt �

where ICt is a complete information vector at time t�
Although one cannot guarantee that a belief state corresponds to the su�cient information

vector for an arbitrary POMDP model� a large number of POMDP models used in practice
�including standard POMDPs� falls into the class of belief space POMDPs� The major advan�
tages of a belief information state are that it is dened over a nite number of process states
and that it is relatively easy to work with� This is mostly due to nice properties satised by
value functions dened for belief state MDPs� We will be discuss them later in this chapter�

����� Value functions in POMDP

Value function formulaswe derived for the fully observable Markov model can be applied directly
to the information�state MDP� For example n steps�to�go value function for some xed plan
�n � f�n� �n��� � � � � �i� � � � � ��g corresponds to�

V �n
n �In� � ��In� �n�In��  �

X
In��

P �In��jIn� �n�In��V
�n��

n�� �In��� ���	�

�The control �policy� tree 	Cassandra 
�� is best viewed as a collapsed decision tree with xed action choices
that the agent follows under di�erent observations�

��



where �n is a control function dened over the complete information vector space� In and In��
are information states for n and n� 	 steps�to�go� ��In� �n�In�� is an expected one step reward
from performing action �n�In� in In and V

�n��

n�� �In��� is an expected reward associated with
the remaining steps of the plan� Expected one step cost for an information state In and an
action a is equal to�

��In� a� �
X
s�S

��s� a�P �sjIn��

A next step information state In�� is acquired from the current state using the Markov
update function � �

In�� � � �In� o� a��

This means that there are at most j!j following information states for every action and initial
information state� The restricted number of observations allows us to rewrite the value function
equation ��	 more compactly by summing over all possible observations�

V �n
n �In� �

X
s�S

��s� �n�In��P �sjIn�  �
X

o��next

P �ojIn� �n�In��V
�n��

n�� �� �In� o� �n�� ���
�

where !next stands for all possible observations following �n�In� in In� Note that for a general
POMDP �which can include observation delays�� !next represents a set of observations available
at n � 	 steps to go and does not need to correspond to !� !next is thus best viewed as a
function of In and a� Next�In� a��
Based on the xed policy result� we can construct the optimal value function for the nite

n steps�to�go problem as�

V �
n �In� � max

a�A

X
s�S

��s� a�P �sjIn�  �
X

o��next

P �ojIn� a�V
�
n���� �In� o� a��� �����

That is� the maximum expected reward for the information state In is computed recursively by
summing an expected one step reward and an expected reward associated with the rest of the
plan� The optimal control function �n is then�

��n�In� � argmaxa�A
X
s�S

��s� a�P �sjIn�  �
X

o��next

P �ojIn� a�V
�
n���� �In� o� a���

Similarly� the xed point formula for the innite discounted horizon problem is�

V ��I� � max
a�A

X
s�S

��s� a�P �sjI�  �
X

o��next

P �ojI� a�V ��� �I� o� a�� �����

and the optimal control function is�

���I� � argmaxa�A
X
s�S

��s� a�P �sjI�  �
X

o��next

P �ojI� a�V ��� �I� o� a���

����� Value function mappings

Basic value function equations can be written also in the value function mapping form� Let B
be a set of real valued bounded functions V � I � R dened on the information vector space

��



I� and let h � I � A�B �R be dened as�

h�I� a� V � �
X
s�S

��s� a�p�sjI�  �
X

o��next

P �ojI� a�V �� �I� o� a���

Then we can dene the value function mapping H�i � B � B such that�

H�iV �I� � h�I� �i�I�� V ��

and the value function mapping H such that�

HV �I� � max
a�A

h�I� a� V ��

Equation ��	 can be expressed using the value function mapping as�

V �n
n � H�nV

�n��

n��

and equations ��� and ��� as�

V �
n � HV �

n�� and V � � HV ��

The important property of H and H� mappings is that they are isotone� That is� for any
two functions U� V satisfying V � U holds� HV � HU � For the innite discounted horizon
�discount factor � � � � 	� mappings H� and H are contraction mappings under the max �or
supremum� norm k V k� maxI jV �I�j� More specically it holds that�

k HV �HU k� � k V � U k �

The proofs are shown below and are based on �Heyman� Sobel ��� and �Puterman ����

Theorem 
 �Isotonicity of H mapping� H mapping for � � � is isotone� That is for any two
functions U� V satisfying U � V holds HU � HV �

Proof� Let I be an arbitrary information state� Then we can write�

HU �I� � max
a�A

��I� a�  �
X

o��next

P �ojI� a�U �� �I� o� a��

� ��I� a��  �
X

o��next

P �ojI� a��U �� �I� o� a���

� ��I� a��  �
X

o��next

P �ojI� a��V �� �I� o� a���

� max
a�A

��I� a�  �
X

o��next

P �ojI� a�V �� �I� o� a��

� HV �I��

As the above inequality holds for any state I� HU � HV follows� �

Theorem � �Contraction property� H with a discount factor � � � � 	 is a contraction under
the max norm�

��



Proof� Assume two value functions U� V � Let I be an arbitrary information state� and assume
that HU �I� � HV �I� holds� Also assume that a� is an action that optimizes HV �I�� i�e��

a� � argmaxa�A��I� a�  �
X

o��next

P �ojI� a�V �� �I� o� a���

Then we can write�

� � HV �I� �HU �I�

� ��I� a��  �
X

o��next

P �ojI� a��V �� �I� o� a��� � ��I� a��� �
X

o��next

P �ojI� a��U �� �I� o� a���

� �
X

o��next

P �ojI� a���V �� �I� o� a��� � U �� �I� o� a����

� �
X

o��next

P �ojI� a�� k V � U k

� � k V � U k �

As max norm is symmetrical� the same result can be derived for the case when HU �I� � HV �I��
But then taking the maximum over all information states I we can write�

k HV �HU k� � k V � U k�

that is H is a contraction mapping under the max norm� �

Isotonicity and contraction will be extremely important for the design of exact and approxi�
mation methods� For example� the contraction property guarantees the unique optimal solution
�xed point� for innite discounted horizon problem and convergence of exact value iteration
algorithm to it�

��� Constructing information state MDPs for di�erent
POMDP models

A POMDP model can be converted into an information state MDP� Information states can be
represented trivially by complete histories or appropriate su�cient statistics� The focus of this
section is to explore how one can construct appropriate su�cient information states for di�erent
observations models�

����� POMDP with standard 	forward triggered
 observations

Amodel used frequently in the POMDP literature �hence standard� assumes that an observation
depends solely on the current process state and the previous action� This situation is illustrated
in gure ���� The observation model O then in fact describes P �otjst� at��� for time t� Since
an observation is related to the state that results from the action that also triggered �induced�
the observation� we will refer to this model as to the model with forward triggered observations�
The important feature of POMDPs with standard observation models is that information

state MDP is su�ciently represented using belief states� The su�cient information state process
by denition should satisfy the following�

	� Belief states satisfy the Markov property� that is� the next belief state can be computed
from the previous belief� previous action and new observation as bt � � �bt��� ot� at����
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Figure ���� POMDP with standard �forward triggered� observation model�


� An information state at time t should be su�cient to compute the belief state at time t�
P �stjIt� � P �stjICt � � bt�st��

�� P �otjICt��� at��� � P �otjbt��� at����

The Markov property of the belief state process holds because a belief state bt can be
computed from the belief state bt��� action at�� and observation ot� The belief update that
implements the transition function � is�

bt�s� � � �bt��� ot� at����s�

� P �sjot� at��� bt���

� 	P �otjs� at���P �sjat��� bt���

� 	P �otjs� at���
X
s��S

P �sjat��� s
��bt���s

�� �����

where 	 is a normalizing constant and is equal to�

	 � 	�P �otjat��� bt��� � 	�
X
s�S

P �otjs� at���
X
s��S

P �sjat��� s
��bt���s

���

The next conditions hold as well� P �stjI
C
t � � bt�st� trivially� and P �otjI

C
t��� at��� �

P �otjbt��� at��� follows because observations made at time t depend solely on the process state
at time t and the action at���
This shows that belief states are su�cient to represent information states for the standard

POMDP models� Thus standard POMDP models belong to the class of belief space POMDPs

�	



and the optimal value function equation can be directly rewritten using belief states�

V �
n �bn� � max

a�A

X
s�S

��s� a�bn�s�  �
X

o��next

P �ojbn� a�V
�
n���� �bn� o� a��� �����

The computation of a new belief state always depends on the preceeding belief state� new
observation and previous action� To bottom out the updating machinery we start with a prior
belief over all initial process states� that is� a probability distribution over process states at time
t � �� Once we know the prior belief� we can compute subsequent belief states easily using the
belief update formula�

����� POMDP with backward triggered observations

In the standard �forward triggered� POMDP model �gure ���� an observation at time t is
triggered by an action at�� at time t � 	� and is related to the process state st at time t�
However this model may not be the best for all real world domains and we can consider other
observation models as well�
One possible model corresponds to the observation model in which an action at performed

at time t causes an observation about the process state st to be made �see gure ����� That
is� the action performed at time t enables the observation that refers to the �before action�
state� We will refer to such an observation model as to the model with backward triggered
observations� Although the model seems to defy laws of causality and time� it may be more
suitable for some domains than the model with forward triggering� This is because the forward
model may su�er from the complementary problem� when action is actually responsible for the
observation� then after the action is nished the observation made does not have to refer to the
�after action� state� The whole problem is caused by modelling continuous domains by time
discretization� Then the choice of the model boils down to the question of which state is better
approximated by a new observation� the state that occured after or before the action�
Assuming that actions always delimit discrete time steps� observations in the backward

observation model are always delayed one time step� Despite this feature that makes the model
di�erent from the standard observation model� one can show that also now the information
state MDP can be constructed using belief information states�
The belief update for an action at�� and an observation ott�� that is related to the state at

time t� 	 but observed �made available� at time t is�

bt�s� � 	
X
s��S

P �sjs�� at���P �o
t
t��js

�� at���bt���s
��

where 	 is a normalizing constant and is equal to�

	 � 	�
X
s��S

P �ott��js
�� at����

The other two prerequisites of the information state process are satised as well� The second
one is trivial again and the third prerequsite �P �otjICt��� at��� � P �otjbt��� at���� holds since
the observation made at time t depends solely on the state at time t� 	 and an action at���
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Figure ���� POMDP with simple �backward triggered� observation model�

����� POMDP with the combination of forward and backward obser�
vations

Two previous models can be combined into the POMDP with forward and backward obser�
vations� This model�s basic structure is shown in the gure ���� The observation model does
not consist of one monolithic set of observations but rather of the two groups of observations�
One group is triggered in the forward and the other in the backward fashion� Using the similar
notation to that introduced above� observations at time t are split into those related to the state
at time t� ott� and those related to the previous state� o

t
t��� Futher� we assume the observations

associated with the same state are independent given that state�
Interestingly� this model can be also converted to the information state MDP with belief

states� To show that a belief state at time t must be Markov updateable� Let bt�� stand for
the belief state at time t � 	� at�� be an action performed at time t � 	� and ott�� and ott be
observations made at time t that are related respectively to a state at t� 	 and t� Then a new
belief vector bt at time t is computed as�

bt�s� � 	P �ottjs� at���
X
s��S

P �ott��js
�� at���P �sjs

�� at���bt���s
�� �����

where 	 is a normalizing constant equal to�

	 � 	�
X
s�S

P �ottjs� at���
X
s��S

P �ott��js
�� a�P �sjs�� at���bt���s

���

The derivation of the update formula �not shown here� exploits the independence between
forward and backward observations given the underlying process state� Similar to both forward
and backward observation models� the combination of the two satises the third condition as
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Figure ���� POMDP model with the combination of forward and backward observations�

observations made at time t depends either on the state at time t�	 or the state at time t� and
an action at��� Therefore a POMDP model with the combination of forward and backward
triggered observations falls also into the category of belief space POMDPs�

����� POMDP with delayed observations

The class of belief space POMDP models covers only a small part of possible POMDP models
used to represent real�world control problems� The important feature of many domains is the
need to model time lags in the information �perception� and control �action� channels� In
general�

� an action issued by an agent at time t will be performed at time t k�

� an observation made at time t will become available to the agent at time t k�

In this section we will focus on a POMDP model with delayed observations� The model
with delayed actions can be treated in a similar way�
The basic motivation for introducing the model with observation lags is that the time at

which the observation is made and the time at which it is seen by an agent can di�er� If time
is discretized the delay may span one or more time steps� The delayed model can be very
important� for example� in the medical domain in which some test results are not available
immediately� but only after some delay�
In the following we will show how one can go about constructing a suitable information

state MDP for a k�step delayed observation model �see gure ����� The important features of
the model in gure ��� are�

� observations are triggered backwards�
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Figure ���� POMDP with k�step delayed observation model�

� observations with di�erent time lags are assumed to be independent given the process
state�

� at every time t the agent can expect to receive results related to at most k past process
states�

An observation model with k step delays can be formalized as�

O � S �A �! �D � ��� 	�

where D � f�� 	� 
� � � �kg� denotes the delay with which the observation becomes available to
the agent�
Based on di�erent time lags� observations in ! can be distributed into groups� !��!�� � � � �!k�

where members of every group are observed with the delay corresponding to the index� Then�
one can describe the observation model alternatively as�

O � S � A� !� �!� � � � � �!k � ��� 	�

or using independence between observations with di�erent lags as�

O � fO�� O�� � � �Okg

��



where
Oi � S � A� !i � ��� 	�

for all � � i � k�
Contrary to other models� the computation of a new belief state for the k�step delayed model

cannot be done solely from the previous belief state� previous action and new observations� This
is because delayed observations in�uence the belief about the past state� that in turn a�ects
the current belief� This violates the third prerequisite of the su�cient information state process
and one cannot use a belief state as a su�cient replacement of the complete information vector�
A suitable su�cient information state process can be built using basic principles of prob�

abilistic inference in graphical models �see �Pearl ��� �Jensen ��� �Castillo et al� ����� Let �tt�i
be a contribution to the belief state at time t� i that comes from observations related to that
state and that were made up to time t�

�tt�i�s� �
tY

j�t�i

P �ojt�ijs� at�i��

Let us call � an observation vector�
Let �tt�i be a contribution to the belief state at time t � i from all actions made prior to

that time� related observations made up to time t� and prior belief at time t � ��

�tt�i�s� � P �sjott�i��� � � � � o
t�i��
t�i��� � � � � o

t
�� � � � � o

�
�� at�i��� at�i��� � � � � a�� �

�
��

where ��� stands for the prior belief at time t � �� As �
t
t�i captures the contribution to the belief

state from previous observations� we will call it the prior belief state �or vector�� Note� that �
in fact corresponds to � messages in Markov trees in Pearl�s notation �Pearl ���� However� we
already use the � symbol to denote a control policy and thus in order to avoid the confusion
we have chosen the new symbol ��
The belief in state s at time t can be expressed Using � and � vectors as�

btt�s� � 	�tt�s��
t
t�s�

where 	 is a normalizing constant equal to�

	 � 	�
X
s�S

�tt�s��
t
t�s��

The value of a prior belief vector �tt is computed recursively from the past state contributions�

�tt�i�s� � 	
X
s��S

P �sjs�� at�i��
t
t�i���s��

t
t�i���s�

for � � i � k � 	� and
�tt�i�s� � �t��t�i �s�

for k � i�
This means that in order to compute the new belief state properly one needs to know not

only new observations� but also observations related to the past k steps� past k actions and
prior belief for process state k�steps in the past� Therefore� one can construct an information
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state MDP using information states It�

It � fat��� � � � � at�k� O
t
t� O

t��
t��� � � � � O

t�k
t�k� �

t
t�kg

where Oj
i stands for all observations related to time i and observed up to time j� It is easy to

show that It is su�cient to compute P �stjICt �� Similarly we can show that an information state
is Markov updateable and that it allows one to correctly compute the probability of observations
seen in the next step� This can be seen since we can always�

� compute a prior belief �tt�k at time t � k from observations related to the state at that
time and previous state prior belief vector�

� update observation sets� by excluding observations related to a state at time t�k�	 and
including all new observations�

� compute the probability P �otjICt � at��� using It as the maximum observation delay is
limited to k steps�

Therefore the original POMDP model with k�step delays can be converted to the information
state MDP with process states corresponding to It�

��� Computing optimal control policies for POMDPS

The policy problem computes optimal control for all information states� This problem was
shown to be of polynomial complexity for the MDP framework and for both nite and in�
nite horizon problems �see Chapter 
�� Unfortunately the computation of optimal control
decisions in the partially observable case turns out to be far more complex and computa�
tionally demanding� This is illustrated by the fact that a POMDP decision problem with a
single initial state� nite horizon and no observation delays was shown to be PSPACE�hard
�Papadimitriou� Tsitsiklis ���� thus making the planning problem intractable and algorithms
providing exact solutions ine�cient�

����� Computing optimal control policy

Finite horizon problem

The nite horizon problem could be solved theoretically using the dynamic programming
paradigm� That is� assuming we know the optimal value function for i � 	 steps�to�go we
can compute the optimal value function for any information state with i steps�to�go as�

V �
i �Ii� � max

a�A

X
s�S

��s� a�P �sjIi�  �
X

o��next

P �ojIi� a�V
�
i���� �Ii� o� a���

described also as V �
i � HV �

i��� Then the optimal control action is�

��i �Ii� � argmaxa�A
X
s�S

��s� a�P �sjIi�  �
X

o��next

P �ojIi� a�V
�
i���� �Ii� o� a���

Then starting from the � steps�to�go value function �expressing the expected cost associated
with information states at the end� one could theoretically compute optimal value and control
functions for all possible information states for 	 step to go� then use the 	 step�to�go optimal

��



value function to compute optimal actions and value functions for all information states at 

steps�to�go and so on up to n steps�to�go�

Computing � optimal control for the innite discounted horizon

Finding an ��optimal value function for the innite discounted horizon could be approached
similarly using the value iteration strategy� Knowing that the value function mapping H is an
isotone contraction� we could construct a simple value iteration method with step�

Vi�� � HVi

that converges to the unique xed point solution V � �using the result of the Banach theorem��
Therefore� after a su�cient number of iterations we could obtain any ��optimal solution� Using
the optimal or � optimal substitute� the optimal control is�

���I� � argmaxa�A
X
s�S

��s� a�P �sjI�  �
X

o��next

P �ojI� a�V ��� �I� o� a���

Note that the value iteration update step is equal to the dynamic programming update step�

����� Computability of the optimal or � optimal solutions

There is a serious problem in applying both of the above computational schemes in practice�
The problem stems from the fact that in the POMDP the information state space is innite
�for example� there is an innite number of belief states in the su�cient belief state space��
Then having a continuous component in the state description poses the following threats�

� a value function for the complete information state space may not be representable by
nite means and�or computable in a nite number of steps�

� a control function that maps the information state space may not be computable in a
nite number of steps�

Luckily the above threats do not always materialize and one can guarantee in some cases the
computability of value and control functions using a nite number of dynamic programming or
value iteration updates as well as the their nite description� In the following we will narrow our
attention to the problem of nding optimal value functions for a class of belief space POMDPs�
This class� as discussed above� covers POMDPs with standard �forward triggered�� backward
triggered observations models� as well as their combinations�

Computing optimal value functions for belief space POMDPs

A nice and important feature of POMDP models with su�cient belief states is that their optimal
or ��optimal value functions are piecewise linear and convex� That is� V �

i �Vi for the innite
discounted horizon� � can be expressed as�

V �
i �b� � max

�k
i
�	i

X
s�S

b�s��ki �s�

where b denotes a belief state and "i is a set of linear vectors �ki dening the value function� A
piecewise linear and convex value function for a two state POMDP is illustrated in gure ����
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Figure ���� An example of a piecewise linear and convex value function for a POMDP with two
process states fs�� s�g� Note that for the components of the belief state hold� b�s�� � 	� b�s���

The piecewise linearity and convexity of the value function will be shown in the following
theorem� It is based on the theorem proven by Smallwood and Sondik for standard observation
models �Smallwood� Sondik ���� The theorem presented here can be viewed as a generalization
of the result that covers a class of belief space POMDPs�

Theorem � �Piecewise linear and convex value functions� Let Vinit be an initial value function
that is piecewise linear and convex� Then a value function obtained after a �nite number of
update steps for a belief space POMDP is also �nite� piecewise linear and convex� that is�

V �
i �b� � max

�k
i
�	i

X
s�S

b�s��ki �s��

where b and �ki are vectors of size jSj� and "i is a �nite set of linear �i vectors�

Proof� In the proof a notation for the nite horizon case and the dynamic programming update
is used� However� the proof holds also for the value iteration update and the innite discounted
horizon criterion� Let us assume that the optimal value function for any bi�� at i�	 steps�to�go
is expressed using a nite set of vectors "i�� � f��i��� �

�
i��� � � � � �

l
i��g as�

V �
i���bi��� � max

�k
i��

�	i��

X
s�S

bi���s��
k
i���s��

We will show that for i steps the optimal value function is also piecewise linear and convex�
Knowing that a belief state is a su�cient information vector� we can write the belief of being
in state s at i � 	 steps�to�go after performing action a in the belief state bi and subsequently
observing o as�

bi���s� � P �sjbi� a� o��

Using this in the value function we get�

V �
i���bi��� � max

�k
i��

�	i��

X
s�S

P �sjbi� a� o��
k
i���s��
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Substituting the value function in to the equation ��� we get�

V �
i �bi� � max

a�A

X
s��S

��s�� a�bi�s
��  �

X
o��next

P �ojbi� a� max
�k
i��

�	i��

X
s�S

P �sjbi� a� o��
k
i���s�

This can be further rewritten as�

V �
i �bi� �

� max
a�A

X
s��S

��s�� a�bi�s
��  �

X
o��next

P �ojbi� a� max
�k
i��

�	i��

X
s�S

P �sjbi� a� o��
k
i���s�

� max
a�A

X
s��S

��s�� a�bi�s
��  �

X
o��next

max
�k
i��

�	i��

X
s�S

P �ojbi� a�P �sjbi� a� o��
k
i���s�

� max
a�A

X
s��S

��s�� a�bi�s
��  �

X
o��next

max
�k
i��

�	i��

X
s�S

P �s� ojbi� a��
k
i���s�

� max
a�A

X
s��S

��s�� a�bi�s
��  �

X
o��next

max
�k
i��

�	i��

X
s�S

�X
s��S

P �s� ojs�� a�bi�s
��

�
�ki���s��

Let �b	a	oi�� � "i�� denotes the optimal selection of � �the one that maximizes the value function�
for xed b� a� o� Then we can write�

V �
i �bi� �

� max
a�A

X
s��S

��s�� a�bi�s
��  �

X
o��next

X
s�S

�X
s��S

P �s� ojs�� a�bi�s
��

�
�bi	a	oi�� �s�

� max
a�A

X
s��S

bi�s
��

�
��s�� a�  �

X
o��next

X
s�S

P �s� ojs�� a��bi	a	oi�� �s�

�
�

Assuming the complete belief space� the expression in brackets can evaluate to jAjj"i��j
j�nextj

di�erent vectors� one for every combination of actions and permutations of �i�� vectors of size
j!nextj� Assuming that each vector equals some �

k
i � "i� we can rewrite the V

�
i �bi� as�

V �
i �bi� � max

�a�j
i
�	i

X
s�S

bi�s��
a	j
i �s�

where
�a	ji �s�� � ��s�� a�  �

X
o��next

X
s�S

P �s� ojs�� a��a	o	ji�� �s�

corresponds to a linear vector for an action a and the j�th permutation of �i�� vectors of size
j!nextj� But that means that V �

i �bi� is also piecewise linear� convex and is dened by a nite
collection of � vectors "i�
As an initial function Vinit is piecewise linear and convex� the value function acquired after a
nite number of update steps must be also piecewise linear and convex� which concludes the
proof� �

The major consequences of the above theorem are that�

� starting from a nite� piecewise linear and convex function one can always compute the
value function for a nite number of update steps in nite time�
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� the value function acquired after a nite number of update steps can be represented by
nite means� using a nite number of linear � vectors�

� the control function is computable�

Useful linear � vectors

A value function Vi consists of a nite number of linear segments �� vectors�� This was shown
in the theorem proof by constructing a linear vector set "i that consisted of linear vectors
corresponding to all possible combinations of actions and pairs of observations and �i�� vectors�
The total number of all possible linear vectors is jAjj"i��jj�nextj� However� in practice the
complete set of linear vectors is rarely used� This is because some of the linear vectors are
completely dominated by other vectors and their omission does not in�uence or change the
resulting piecewise linear and convex function� A linear vector that can be eliminated without
changing the resulting value function solution is called a redundant linear vector� Conversely� a
linear vector that singlehandedly achieves optimal value for at least one point of the information
vector space is called a useful linear vector��
For the sake of computational e�ciency it is important to keep the size of the linear vector

set as small as possible �keep only useful linear vectors� over dynamic programming or value
iteration steps� This is because nding the value function V �

i requires one to check and try
all linear vectors in "i�� and including redundant ones� The e�ect of not removing redundant
linear vectors after every update would then lead to the growth of the number of redundant
vectors and can be a source of major ine�ciency�
Unfortunately� it has also turned out that the problem of nding useful linear vector sets

cannot be solved e�ciently with regard to jSj� jAj� j!nextj� j"i��j� j"ij� This was proved in
�Littman et al� ��c�� who showed that the problem can be solvable e�ciently only when RP �
NP � This means that one does not only face the potential exponential growth of the number
of useful linear vectors� but also ine�ciencies related to the identication of such vectors� In
the following we will explore several methods for computing value function updates that output
piecewise linear value functions described only by useful linear vectors� Such updates are then
repeatedly used within the main dynamic programming or value iteration procedures�

��� Algorithms for updating piecewise linear and convex
value functions

In the following we will brie�y review some of the existing algorithms for computing piecewise
linear and convex value function updates� Unfortunately� as mentioned above� neither these
nor other algorithms are guaranteed to run in time polynomial in jSj� jAj� j!nextj� j"i��j� j"ij�
The rst group of methods fall into the category of generate and test algorithms� We start

with a simple generate and test algorithm� called Monahan�s algorithm �Monahan �
�� and then
proceed with its more complex extensions� These algorithms try to construct a useful linear
vector set by combining linear vectors in "i�� and testing them for redundancy using either
intermediate or nal redundancy tests�
The alternate methods for computing useful linear vector updates are based on Sondik�s

idea of computing an optimizing linear vector for a single belief point �Smallwood� Sondik ����

�In dening the redunant and useful linear vectors we assume that there are no linear vector duplicates� i�e�
only one copy of the same linear vector is kept in the set �i�
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These methods try to locate belief points that can seed new useful vectors� The search for
�seed� points must be complete in the sense that belief points examined must guarantee that
none of the useful vectors will be missed� We will describe and analyze two algorithms from
this group� The rst is called the linear support algorithm and is due to Cheng �Cheng ��� �see
also �Cassandra ����� The second is the Wittness algorithm and is due to �Cassandra ��� and
�Littman ���� Other methods that fall into this category are Sondik�s method �Cassandra ��� or
Cheng�s relaxed region algorithm�Cheng ��� �Cassandra ���� A nice description of several exact
algorithms is provided in �Cassandra ����
Finally� at the end we will propose a new Gauss�Seidel speedup of the value iteration method

for innite discounted horizon problems�

����� Monahan�s algorithm

Monahan�s algorithm uses a simple generate and test approach �Monahan �
� �Cassandra ����
The generation phase of the algorithm corresponds to the enumeration of a complete and
possibly redundant set of �i vectors� Every �i vector corresponds to one possible combination
of an action and a permutation of previous step vectors �i�� of size j!nextj� A linear vector
obtained for an action a and j�th permutation of size j!nextj of vectors in "i�� is computed as�

�a	ji �s�� � ��s�� a�  �
X

o��next

X
s�S

P �s� ojs�� a��a	o	ji�� �s��

This gives a total of jAjj"i��j
j�nextj vectors �ki in "i�

In the testing phase all redundant vectors in "i are tested and removed� A redundant vector
is a vector that does not singlehandedly optimize the value function on at least one point of
the belief space� Assuming that �ki is a vector to be tested for redundancy� the test can be
accomplished by setting up the following linear program �see �Monahan �
� or �Cassandra �����

maximize� 

using the following constraints�X

s�S

b�s�
h
�ji �s� � �ki �s�

i
 
 � � for all �ji �s� � "i such that �ji �s� �� �ki �s�

X
s�S

b�s� � 	

b�s� � � for all s � S�

The elements of b �b�s�� and a parameter 
 are treated as linear program variables� If it is
found that the maximum possible 
 is less than or equal to � �
 � ��� it must be the case that
�ki is not singlehandedly best at some point of the belief space� Then� it is either dominated
or covered by other � vectors� Therefore� testing the resulting 
 makes it possible to exclude a
specic redundant vector from "i�
In principle one can test all possible vectors using the above linear program� However� this

can be quite expensive� especially when large linear programs need to be solved� The testing
process can be sped up to some extent by excluding some of the redundant �s through a cheaper
pure dominance test� In the pure dominance test� a vector �ki can be excluded �is redundant�

�




whenever there is a vector �ji such that�

for all s � 	 � � � jSj �ji �s� � �ki �s� holds�

A simple dominance test can cut the size of the linear vector set before more expensive linear
programming test is used� This modication was suggested in �Eagle ����

����� Extensions of Monahan�s algorithm

The main problem with Monahan�s algorithm is that it tries to generate blindly all possible
vectors rst and only then to remove the redundant ones� However� it is also possible to test a
partially built solution �Cassandra et al� ��� �Zhang� Liu ���� This feature makes it possible to
interleave the generate and test phases and save some time by recognizing and pruning partial
components that are suboptimal earlier� The idea of interleaving the generation and test phases
can be used to construct new versions of Monahan�s approach�

Interleaving processes of linear vector generation and testing

Let us assume that a set of observations !next is partitioned into M disjoint subsets
f��next� � � ��

k
next � � ��

M
nextg� Then we can rewrite the expression for computing a new linear vector

using the partitioning as�

�a	ji �s�� � ��s�� a�  �
X

o��next

X
s�S

P �s� ojs�� a��a	o	ji�� �s�

� ��s�� a�  �
X

o���
next

X
s�S

P �s� ojs�� a��a	o	ji�� �s�  � � � 

 �
X

o��k
next

X
s�S

P �s� ojs�� a��a	o	ji�� �s�  � � � 

 �
X

o��M
next

X
s�S

P �s� ojs�� a��a	o	ji�� �s��

Now assume two vectors� �a	li and �a	mi � with identical action a and with linear vector choices

�a	o	ji�� that di�er only in the partition !knext� But then� whenever�X
o��k

next

X
s�S

P �s� ojs�� a��a	o	li�� �s� �
X

o��k
next

X
s�S

P �s� ojs�� a��a	o	mi�� �s� for all s� � S�

the linear vector �a	mi must be redundant and can be excluded from the useful vector set� This
represents a redundancy test for two partially constructed linear vectors and can be applied
within any partition� The test can be extended to handle a set of linear vectors by using the
same linear program as used for complete linear vector sets� The main advantage of the partial
test is that the number of linear vectors to be compared and tested is usually smaller� and
therefore cheaper�
One can construct various methods that employ di�erent partitioning schemes and generate

linear vectors from components that have passed partial �lower level� redundancy tests� For
example one can create a hierarchical scheme that uses a xed ordering of observations !next
and that constructs the solution gradually by computing and testing partial linear vectors for
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the rst two observations� then partial linear vectors for the rst three observations� and so on�
up to all observations� The advantage of such an approach is that only partial linear vectors
found to be nonredundant on the lower level are combined and used on the next level� This
leads to the incremental scheme that interleaves generation and test phases� The incremental
approach was proposed and its performance tested in �Cassandra et al� ���� It can result in
signicant speedups for problems with a large number of redundant linear vectors�

Pruning redundant partial linear vectors across di�erent actions

The idea of partitioning allows one to do early redundancy tests and pruning for linear vectors
created for the same action� However� the question is whether we can apply early pruning and
use a similar approach also accross di�erent actions� The idea for doing this is proposed and
described below and is based on the upper bound linear vector estimates�

Let "Ami be a set of useful linear vectors built for actions Am � A� Let �a
�	j
i be a linear

vector obtained for action a� �� Am and the j�th permutation of j!nextj linear vectors in "i���

Let b�a�	ji be an upper bound estimate of �a
�	j
i � Then if b�a�	ji is found redundant with regard to

"Ami then it must hold that �a
�	j
i is redundant as well and can be excluded�

The question now is how to compute an upper bound estimate of the complete linear vector

for some partially built linear vector� Let �a
�	j	k
i be a partial linear vector built for the partition

!knext�

�a
�	j	k
i �s�� �

X
o��k

next

X
s�S

P �s� ojs�� a���a
�	o	j
i�� �s��

Then we can construct an upper bound estimate b�a�	j	ki for it as�

b�a�	j	ki �s�� �
X

o��k
next

X
s�S

P �s� ojs�� a�� max
�i���	i��

�i���s��

which can be computed very easily� Then combining together either exact partial vectors or

their upper bound estimates for di�erent partitions we can compute an upper bound b�a�	ji � For
example� using the exact partial solution for the rst partition and upper bound estimates for
all other partitions we get �

b�a�	ji �s�� � ��s�� a�� �

���� X
o���

next

X
s�S

P �s� ojs�� a���a
�	o	j
i�� �s�

�� � � � b�a�	j	ki �s��  � � � b�a�	j	Mi �s��

�� �
The fact that one can relatively easily compute the upper bound estimates of partial linear

vectors for every partition �one needs to compute max�i���	i��
�i���s� only once� can be used

to do the redundancy check of partially built linear vectors across actions� This test can be
combined with the redundancy test for partial linear vector sets and xed actions� discussed
above� In general the early elimination of redundant partial linear vectors can speed up the
construction of the useful linear vector set "i and can be very useful in cases in which the
number of useful linear vectors is relatively small compared to the size of the maximum linear
vector set�
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����� Cheng�s linear support algorithm

Cheng�s linear support approach �Cheng ��� �Cassandra ��� exploits piecewise linearity and
convexity of the value function to construct a set of useful linear vectors from scratch� The
algorithm is based on two key features�

� It is possible to nd a useful linear vector�s� for any point of the belief space �using
Sondik�s point update method �Smallwood� Sondik �����

� Any subset b"i of useful vectors "i denes a piecewise linear and convex approximation
that is worst at intersections of vectors in b"i� and�or at intersections of such vectors with
belief space boundaries �Cheng ����

The above two features give rise the following idea for nding the useful vector set� starting
from the initial incomplete useful set� nd all useful vectors gradually by checking points created
by intersections of already known � vectors� This idea is embodied in the following algorithm
which is the modied version of Cheng�s algorithm�

Chengs�s algorithm �"i���
select arbitrary point b of the belief space�

initialize b"i with a useful vectors built for b and mark them�
while there exists a marked vector in b"i

do select marked vector � from b"i�
nd all extreme points of the region for which � gives the optimal value

�using other vectors in b"i and simplex constraints��
for each extreme point b of region �

compute useful vector for b�

if the new useful vector is not in b"i
add it to b"i and mark it�
otherwise ignore it�

unmark ��

return b"i as "i�
The algorithm relies on the ability to compute�

� all extreme points of the belief space region dened by some useful linear vector �ki �
b"i�

i�e� �ki is optimal on the region�

� useful vectors for an arbitrary belief state�

Let us look more closely at these tasks�

Computing all extreme points of the belief region

Let �ki be a useful vector in b"i� Then a belief space region for which it is optimal satises the
following constraints�

X
s�S

b�s�
h
�ji �s�� �ki �s�

i
� � for all �ji �s� �

b"i such that �ji �s� �� �ki �s�
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Figure ���� A situation in which a linear vector that is optimal for some belief point can become
redundant� The vector is dominated and fully covered by other linear vectors�

X
s�S

b�s� � 	

b�s� � � for all s � S

The problem with computing all extreme points for the �ki region is that the number of

di�erent extreme points can be exponential in b"i or jSj� But this means that computing and
checking all extreme points of the �ki region can lead to ine�ciency� as in general there is no
guarantee that every extreme vertex seeds a new useful � vector� Ideally� what we would like
is to compute and check only those vertices of the region that seed new � vectors� This is the
crucial point of the approach and any e�cient �polynomial time� solution to it will lead to the
e�cient running time of the overall algorithm�

Computing useful vectors for a single belief point

The other open spot in the algorithm description is related to the task of nding useful vectors
for a specic belief point� The main problem here is that there can be an � vector that is
optimal at some point but despite that it is redundant� This corresponds to the situation in
which the vector is covered and dominated by other linear vectors� The situation is illustrated
in gure ���� Therefore one cannot simply select a vector that gives the optimal value for the
target point without a guarantee that there is some belief point that is singlehandedly optimized
by the vector� In the following it will be shown how such a vector can be found e�ciently�
Let us rst consider the problem of computing the optimal value function for some belief

point b� This can be achieved using the value function equation�

V �
i �b� � max

a�A

�X
s��S

��s�� a�b�s��  �
X

o��next

�
max

�k
i��

�	i��

X
s�S

�X
s��S

P �s� ojs�� a�b�s��

�
�ki���s�

��
�

Following the shown parenthesization we can compute the optimal value function from inside
out using the following steps�
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	� For a xed a and o try all �ki�� and select the result that maximizes�

X
s�S

�X
s��S

P �s� ojs�� a�b�s��

�
�ki���s��


� For a xed a do step 	 for all possible o� and sum the maximal results�

�� Compute
P

s��S ��s
�� a�b�s�� and add it to the result achieved in step 
�

�� For all possible a select the best overall result�

This task can be accomplished in time O�jAjj!nextjj"i��jjSj
���

As seen above� the task of computing the value function at point b is relatively easy� However
our task is to nd a linear vector that optimizes the value at b and is also useful�

Sondik�s linear vector update method

The optimal linear vector for a belief point b and an action a can be computed using Sondik�s
approach �Smallwood� Sondik ����

�b	ai �s� � ��s� a�  �
X

o��next

X
s��S

P �s�� ojs� a��

�b	a	o�
i�� �s�� �����

where ��b� a� o� indexes a linear vector �i�� in a set of linear vectors "i�� �denes Vi��� that
maximizes� X

s��S

�X
s�S

P �s�� ojs� a�b�s�

�
�i���s

��

for a xed combination of b� a� o� The optimizing linear vector for a point b is then obtained by
choosing the one giving the best value function result from among candidate vectors computed
for all actions� That is� assuming "bi is a set of all candidate vectors� the resulting vector must
satisfy�

�bi � argmax�b�a
i
�	b

i

X
s�S

�b	ai �s�b�s��

Sondik�s method for computing the linear vector that optimizes the value function for point
b can be accomplished also in O�jAjj!nextjj"i��jjSj�� time� Unfortunately� there can be more
than one �bi vector that optimizes Vi�b�� Then the problem is to select a linear vector that is
also guaranteed to be useful�
The existence of more linear vectors that optimize the value function at some point b can

be caused by having�

� more than one linear vector �

�b	a	o�
i�� �s�� that optimizes

X
s��S

�X
s�S

P �s�� ojs� a�b�s�

�
�i���s

���

� more than one optimizing �b	ai �

The problem of multiple choices can be resolved by constructing a linear vector that is
guaranteed to be useful� This can be achieved in both cases by using a procedure that selects
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the optimizing vector from among contenders by comparing linear vector values on a xed
sequence of critical belief points �dimensions�� The procedure selects rst the vector with the
largest component in the rst dimension and in the case of ties the vector with the largest
component in the second dimension and so on� Such a choice guarantees that the selected
vector will lead to the optimal value not only for a belief point b but also for some belief
point in b�s close neighbourhood �see also �Littman ����� Moreover the vector is guaranteed
to singlehandedly achieve the optimal value for such a point� Therefore the selected vector
must be useful� Note that in order to guarantee usefulness� a sequence of xed belief points
�dimensions� needs to be the same for both sets of linear vectors�

����� Witness algorithm

The Witness algorithm �Cassandra ��� �Littman ��� adopts in principle the same idea as Cheng�s
linear support algorithm and tries to build the useful vector set gradually by identifying points
that seed useful linear vectors� However� the major distinction between the two is that the
Witness algorithm applies the idea to nd useful � vectors "ai that describe the action�value
function Qi��� a�� The resulting value function is constructed by combining results for di�er�
ent action�value functions using the redundancy test from Monahan�s procedure to enforce
usefulness� Contrary to this� Cheng�s algorithm builds the value function Vi directly�
The fact that the Witness algorithm identies action�values rst and only then it combines

them can be again a source of major ine�ciency� This is because the number of useful �
vectors generated for some action can be exponential with regard to the useful set of vectors
of the resulting value function� However the main advantage and most important feature of
the Witness algorithm is that it can construct the action value function e�ciently� Then the
overhead from nding useful vectors that dene all action�value functions and their subsequent
combinations is outweighed by the e�ciency of the procedure�
The e�ciency of the action�value computation stems from the fact that for every useful �ki

vector in c"ai �partially built linear vector set� it is always possible to nd a belief point �if it
exists� for which there is a di�erent optimal �ji not included in

c"ai � Such a point is called a
witness point �hence Witness algorithm�� This feature makes it di�erent formCheng�s algorithm
in which for every new useful vector found� the vertices of the region associated with it need to
be enumerated rst and then checked� with no guarantee that they will seed new useful vectors�
The blind enumeration of all possible vertices is thus the major source of ine�ciency� as the
number of vertices to be checked can be exponential in j"i��j or jSj� The following is a basic
description of the Witness algorithm�

Witness �"i��� a�
select arbitrary point b of the belief space�

initialize c"ai using a useful vector dening action�value function for b and a� and mark it�
while there exists a marked vector in c"ai

do select marked vector � from c"ai �
while there is a witness point b� for � and c"ai

do

compute a useful vector for b�� mark it and add it to c"ai �
unmark ��

return c"ai as "ai �
The key part of the algorithm is the problem of nding the witness point� that is a point of
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the belief space that is optimized by �ki with regard to
c"ai � but not with regard to the complete

set "ai � This problem can be solved by constructing a special linear program for every possible
observation o � !next and every vector �li�� � "i�� such that�

�li�� �� �k	a	oi��

where �k	a	oi�� is an �i�� vector from "i�� used to construct �ki � The linear program then
corresponds to �Cassandra �����

maximize� 

using the following constraints�X

sinS

b�s�
h
�ji �s� � �ki �s�

i
� � for all �ji �s� �

c"ai such that �ji �s� �� �ki �s�

X
s��S

X
s�S

P �s� ojs�� a�b�s��
h
�k	a	oi�� �s� � �li���s�

i
 
 � �

X
s�S

b�s� � 	

b�s� � � for all s � S�

Components of b as well as 
 represent linear program variables� Assume that �li�� is a

better choice than �k	a	oi�� for at least one point within the region that is currently optimized

by �k	ai � Then a variable 
 is larger than �� 
 � �� and components of b represent the point
for which there is an � vector with better value� Thus solving the linear program for every
possible observation o � !next and vector �ki�� � "i��� and checking the resulting 
� allows one
to identify a witness point associated with a useful vector �i�

����� Value iteration updates

All of the discussed methods can be without change applied to compute updates in the value
iteration method and innite discounted horizon problem� The value iteration method runs
until some required precision of the solution value function is reached� The precision can be
guaranteed using one of the two stopping criteria� absolute or relative �see section 
�
�
�� The
absolute criterion uses a minimum number of value iterations one has to perform �they are
derived directly from the Banach theorem�� while the relative stopping criterion is based on
Bellman�s residuals�
A slight problem with the relative stopping approach is that the value function is dened

over an innite belief space� compared to the MDP case that works with a nite state space�
However� value functions for belief state POMDP are piecewise linear and convex� thus one is
always able to compute the maximumdi�erence between two such functions in a nite number
of steps� Methods for doing this are discussed for example in �Littman ����

Incremental �Gauss�Seidel� method

A simple value iteration method is rarely used in the Markov decision framework� Instead� a
Gauss�Seidel modication that incorporates immediately any change in value function values
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is commonly used� This speeds up the convergence rate and e�ectively replaces parallel value
updates with a continuous update scheme�
The question is if it would be possible to construct a Gauss�Seidel version of the value

iteration method also for POMDPs� The prerequisite to this is to nd a method that allows
one to gradually change the value function so that in the limit the optimal value function is
reached� The main idea that makes the construction of such a method possible is a new one
and is based on piecewise linear lower bounds �Hauskrecht ��b� �Hauskrecht ��b��

Gauss�Seidel updates

Let Vi�� be a piecewise linear lower bound on the optimal value function V � � HV � and let
"i�� be a set of linear vectors describing it� Then a new linear vector �i computed for an
arbitrary belief point b using Sondik�s update formula satises�X

s�S

�i�s�b�s� � max
�i���	i��

X
s�S

�i���s�b�s��

This inequality holds because the update formula implements a value function mappingH and
H is an isotone contraction� But then we can construct a new piecewise linear convex function
Vi such that Vi�� � Vi � V �� simply by updating a linear vector set�

"i � "i�� 
 �i�

Note that by computing new "i� some of the previously useful linear vectors can become re�
dundant� One can apply redundancy tests discussed above to elimate such vectors�
The new update method updates and improves the lower bound value function gradually�

point by point� and makes results of previous linear vector updates immediately available� In
general the update rule can be combined with any point selection strategy� that guarantees
the convergence to the optimal solution� That is the strategy is able to eventually locate all
necessary points� Systematic and complete point selection strategies can be built by modifying
exact methods discussed above� or using simple random strategy that converges to the optimal
solution in the limit�

Problem of precision

The major problem with the incremental update rule is that it makes impossible the determi�
nation of the boundary of a value iteration step� That is� starting from an arbitrary piecewise
linear lower bound value function� one cannot say or detect when the improvement worthy of at
least one parallel value iteration step has been made� Thus one can implement neither xed step
nor Bellman residual stopping criteria to guarantee the required precision of the actual solu�
tion� Contrary to the incremental Gauss�Seidel method� it is easy to detect the precision of the
obtained solution when parallel value function updates are used� Thus the di�erence between
parallel and incremental Gauss�Seidel methods boils down to the ability to check ��optimality
of the current solution versus speed and better convergence� One promising avenue of research
would be to explore the combination of the two methods that exploits positives of each one and
that interleaves exact value iteration steps with incremental Gauss�Seidel updates� We believe
that this will allow us to acquire solutions with guaranteed precision for more complex problems
than are solvable with currently available exact methods�
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��	 Forward decisionmethods for 
nding optimal or near�
optimal POMDP control

A policy task that produces complete optimal or ��optimal control functions is computationally
very expensive and very hard to accomplish in practice for POMDPs with larger state� action
and observation spaces� However� when one expects to nd the optimal control or value function
only for a single information state� forward decision methods often represent the best choice�
The most appealing property of forward methods is that after a nite number of steps

they can reach only a nite number of information states� Information states that can be
reached correspond to di�erent action�observation sequences one can generate from the initial
information state� Forward methods and strategies used for POMDPs are similar to those for
MDPs and are based on the forward decision tree expansion� However partial observability
introduces a new dimension of complexity that makes the optimization task harder�
The basic computational structure used for nding the best decision is a decision tree� The

main di�erence between MDPs and POMDPs is that in the POMDP framework the decision
nodes are associated with information states while in the MDP framework they are associated
with true process states� The fact that su�cient information space can be of innite size causes
an innite number of di�erent decision subtrees to be present for the innite horizon problem�
This makes it impossible to�

� bound the size of the tree needed for the exact computation�

� cut the computational time through result sharing�

as used in the MDP framework� However� we can still use pruning strategies and eliminate those
branches of the tree that are provably suboptimal� Assuming we can show that action�value
functions for two actions a and a� satisfy�

lbound�Q�a� I�� � ubound�Q�a�� I��

we can eliminate action a�� The e�ectiveness of pruning then depends strongly on the quality
of value function bounds provided�

���� Computing value function bounds

The bounds can be computed by using the minimum and maximum expected one step rewards�
Bounds for the n�step nite horizon problem and information state In are�

lbound�In� �
�
��n�� � 	���� � 	�

	
Ml  �nM�

l

ubound�In� �
�
��n�� � 	���� � 	�

	
Mu  �nM�

u

whereMl�Mu are the minimal and maximal expected one step rewards andM�
l �M

�
u are minimal

and maximal zero steps�to�go rewards� Bounds for the innite discounted horizon problem are
computed similarly�

lbound�I� �
Ml

	� �

ubound�I� �
Mu

	� �
�

�	



The above bounds are not very tight� In general far better bounds can be found using other
more complex bound strategies� These will be proposed� described and analyzed in the Chapter
��

���� Incremental forward methods

Forward decision methods compute the optimal control by forward unfolding of the value func�
tion equation� The unfolding steps correspond to dynamic programming updates �steps� for
the nite horizon problem and to value iteration updates for the innite discounted horizon
problem� The simplest decision methods can be based on the blind expansion of update for�
mulas� This causes the decision tree to grow exponentially with the number of steps and it can
become innite for the innite horizon problem� The basic idea of more intelligent methods is
to eliminate the full expansion of the decision tree and still compute the same control response�
This can be done by devising methods that interleave bound improvement and pruning stages�

Improving internal node bounds

Bounds associated with an internal node of the decision tree can be computed from bounds
provided at leaves of the partially expanded tree by performing update backups� This means
that the quality of bound values at internal nodes depends both on the bound values supplied
to leaves of the partially expanded tree� as well as on the number of updates �backups� one
must perform to propagate the bound e�ect from leaves to the internal node� In other words
there are two possible strategies that can lead to the improvement of the bound at any internal
decision tree node� either improve the leaf bound function or further expand the partially built
tree�
Any improvement in the bound used at leaves translates directly to an improvement of

bounds at internal nodes� The reason for this is that H mapping is isotone and thus any
change in leaf bounds propagates also to internal node bounds�
The e�ect of the number of update steps �backups� on the quality of internal node bounds

can be direct or indirect� depending on the reward model used� The e�ect is direct for an
innite discounted horizon model� indirect for the nite horizon case�
Assume we have xed an initial value function bound for a partial tree built for an innite

discounted horizon problem� By increasing the size of the tree the number of backups increases
as well� Then using the same initial bound at new leaves translates to an improvement of the
bound� This is because H is an isotone contraction and bounds are guaranteed to improve with
more backup updates �correspond to iteration steps��
A nite horizon problem must use di�erent leaf bounds �value functions� for decision trees

of di�erent depths� This is because nodes at di�erent levels are associated with di�erent steps�
to�go value functions� Expanding the tree by one more level requires that a di�erent leaf value
function is used� However� it is often reasonable to assume that both the previous and the new
leaf value function bounds are produced by the same procedure that monotonically degrades
the bound precision for more steps to go� i�e� bounds for two consecutive steps satisfy�

jV �
i � bVij � jH�V �

i�� � bVi���j�
where V � stands for the optimal value function and bV stands for an upper or lower bound� The
condition guarantees that the expansion of the decision tree by one level always leads to the
improvement of the internal node bounds�
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���� Incremental breadth��rst expansion strategy

The simplest incremental decision tree method uses breadth�rst expansion strategy� The idea
of the method is the following� If the decision about the optimal or ��optimal action cannot be
made based on the current tree and bounds� then the decision tree is expanded in a breadth�rst
manner� that is� all leaf nodes are expanded one level and bounds for all nodes are updated
using bounds at new leaves� The algorithm implementing breadth�rst strategy is shown below
and it is a POMDP modication of the breadth�rst algorithm we constructed for the fully
observable case �see Chapter 
�� The algorithm uses leaf value function bounds VL and VU and
for the initial information state I� computes the action that is guaranteed to be ��optimal�

Incremental expansion � breadth�rst�POMDP � �� I�� �� VU � VL�
initialize tree T with I� and ubound�I��� lbound�I�� using VU � VL�
repeat until �single action remains for I� or ubound�I�� � lbound�I�� � ��

call Improve�tree�T � POMDP � �� VU � VL ��
return an action with the largest lower bound as a result�

Improve�tree�T � POMDP � �� VU � VL�
if root�T � is a leaf

then expand root�T �
and set bounds lbound� ubound of new leaves using VL� VU �

else for all decision subtrees T � of T
do call Improve�tree�T �� POMDP � �� VU � VL��

update bounds lbound�root�T ��� ubound�root�T �� for root�T ��
when root�T � is a decision node

prune suboptimal action branches from T �
return�

The major problem with the breadth�rst approach is that it expands all leaf nodes at
once� However� in practice not all subtrees help to discriminate between actions evenly� thus
the renement of bounds is usually in�uenced more by some subtrees and less by the others�
Breadth�rst expansion strategy expands leaf nodes blindly and it results in expansions that
are unneccessary or not very helpful for the correct decision�

���� Using heuristics to guide the decision tree expansion

The problem with the breadth�rst expansion can be partially remedied by using various heuris�
tics that try to locate branches with larger bound renement potential and to expand them rst�
A simple heuristic that seems to work quite well is to promote the expansion of the decision
tree based on bound di�erences� The heuristic is based on the assumption that a larger bound
span has a larger potential to be improved �shrunk� and thus has a large chance to result in
pruning� The incremental expansion algorithm shown below expands and subsequently recom�
putes �improves� the branch of the decision tree with the largest bound span� The branch to
be expanded �improved� is found in the top�down fashion using the following rules�

� at the decision node corresponding to It� choose a succesor chance node with the largest
bound di�erence� ubound��It� a��� lbound��It� a���

� at the chance node corresponding to �It� a� choose a successor decision node It�� with the
largest weighted bound di�erence� P �ojIt� a��ubound�It���� lbound�It�����
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Incremental expansion � heuristic�POMDP � �� I�� �� VU � VL�
initialize tree T with I� and ubound�I��� lbound�I�� using VU � VL�
repeat until �single action remains for I� or ubound�I�� � lbound�I�� � ��

call Improve�tree�T � POMDP � �� VU � VL ��
return action with the largest lower bound as a result�

Improve�tree�T � POMDP � �� VU � VL�
case

root �T � is a leaf�
expand root�T� and set bounds lbound� ubound of new leaves using VL� VU �

root�T � is a decision node�
select subtree T � corresponding to the chance

node with the largest bound span�
call Improve�tree�T �� POMDP � �� VU � VL��

root�T � is a chance node�
select subtree T � corresponding to the decision

node with the largest weighted bound span�
call Improve�tree�T �� POMDP � �� VU � VL��

update bounds lbound�root�T ��� ubound�root�T �� for root�T ��
when root�T � is a decision node

prune suboptimal action branches from T �
return�

The main problem with the above algorithm is that it starts to perform backups �updates�
after a single leaf node is expanded� As one node expansion can often lead to a bound improve�
ment that is small� frequent backups with small changes can cause a signicant slowdown of
the algorithm� This deciency may be remedied by expanding more then one successor node in
one bound improvement cycle� In order to nd a good compromise between the slow one�node
heuristic expansion and the large scale all node breadth�rst expansion we propose a simple
randomized strategy that selects branches to be expanded in proportion to their bound di�er�
ence� The strategy can be implemented by modifying the breadth�rst algorithm� such that
nodes corresponding to possible branches are expanded with probability�

exp
Mdiff��ubound�x��lbound�x����T

where Mdiff is the largest bound span from among the candidates and T is a temperature
constant� The randomized strategy usually leads to the expansion of the decision tree at more
leaf nodes in one improvement cycle� Note that at least one branch of the tree is always
expanded�

���� Computing the decision in linear space

Though good heuristics can speed up the computation� the optimal decision method still needs
to explore trees of extreme sizes� Although time is almost always the issue in evaluating the
decision procedures� the computational process can be a�ected also by another limited resource�
memory needed to store the decision tree� In the following we will focus on the memory issue
and propose the algorithm that computes the required decision in a linear space� The method
does not have any immediate benet with regard to runtime e�ciency and in general makes
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the running time worse� Its only benet is in saving the memory needed to store the tree�
The basic idea of the linear space algorithm is to exploit the heuristic expansion strategy

with the capability to cut o� and recover branches not currently targeted by an expansion
process� The method works in space linear in jAj� j!j and d where d is the maximum depth
of the decision tree that needs to be constructed� The selection of the node to be expanded is
governed by the following rules�

� at the decision node corresponding to It� choose a successor chance node with maximum
ubound��It� a���

� at the chance node corresponding to �It� a�� select a decision node It�� with the largest
bound di�erence� P �ojIt� a��ubound�It���� lbound�It�����

The linear space algorithm is shown below� It dynamically cuts and recovers previously cut
decision tree branches by repeated computation� similar to the iterative deepening procedure
�see �Korf ����� A branch expansion is done in two steps� recovering of the best result rst and
improving it afterwards� Only after this happens is control returned to the predecessor node�

Incremental expansion � linear space�POMDP � �� I�� �� VU � VL�
initialize tree T with I� and ubound�I��� lbound�I�� using VU � VL�
set ubound��I�� � ubound�I�� and lbound��I�� � lbound�I���
repeat until �single action remains for I� or ubound��I��� lbound��I�� � ��

call Improve�tree�T � POMDP � �� VU � VL ��
return action with the largest lower bound as a result�

Improve�tree�T � POMDP � �� VU � VL�
set b	 root�T ��
when b has no successors �either leaf node or successors were cut��

expand b�
compute bounds ubound�� lbound�� ubound� lbound of new leaves from VU � VL�
recompute ubound�b�� lbound�b� using ubound�� lbound� bounds of its successors�

while ubound�b�� lbound�b� � ubound��b�� lbound��b�
case

b is a decision node�
select successor c of b corresponding to chance node with largest ubound��c��
prune subtrees of all other successors of b�
call Improve�tree�tree�c�� POMDP � �� VU � VL ��

b is a chance node�
select successor d of b corresponding to a decision node

with largest P �ojIt� a��ubound
��c�� lbound��c���

prune subtrees of all other successors of b�
call Improve�tree�tree�d�� POMDP � �� VU � VL��

recompute ubound�b�� lbound�b� using ubound�� lbound� bounds of its successors�
when b is a decision node

prune suboptimal actions branches from T �
set ubound��b� � ubound�b�� lbound��b� � lbound�b�
return�

The algorithm works with two sets of bounds�

� ubound� lbound that denote bounds computed in the current improvement cycle�
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� ubound�� lbound� that refer to bounds computed in the previous improvement cycles�

ubound�� lbound� thus refer to the bounds computed before the current improvement cycle was
initiated� and allow us to test if improvement in the computed bounds was achieved� The
improvement is guaranteed when�

ubound�b�� lbound�b� � ubound��b�� lbound��b�

holds� as ubound� lbound are bound values computed in the current cycle�
Note also that the active decision tree at any node allows only one successor node to be

expanded to the depth of more than 	� All other branches are temporarily pruned and are
rebuilt whenever needed� Every temporarily pruned branch has the next node that stores the
ubound�� lbound� values it can achieve� This means that for any decision node there are at
most jAj successor chance nodes and only one of them can be expanded to the greater depth�
Similarly every chance node has at most j!j successors with at most one successor expanded to
a depth of more than 	� As the maximumdepth of the tree explored is d� the number of nodes
one needs to keep is linear in d� jAj� j!j�

��� Combining bound improvement strategies

Forward methods� as discussed so far� assume that the value function bounds used to prune the
decision tree are improved only through the decision tree expansion� That is� initial bounds
used at leaves are given a priori and are xed during the problem solving� However� we have
already pointed out that a change in the leaf bounds can improve internal node bounds as well�
Therefore we may also construct methods that improve incrementally the value function bound
at leaves and keep the size of the decision tree xed� Incremental methods capable to improve
bound value functions are discussed in more detail in the next chapter�
The two improvement strategies can also be combined� The basic problem we face is the

following� There are two methods to improve bounds� These have di�erent time complexity and
improve di�erent things� The point is to nd an appropriate cost�benet tradeo� between the
two and answer the question of when one method is better then the other� Costs are associated
with the computation time and benets are associated with bound improvements�
The decision tree method is usually better for smaller size decision trees� The reason for

this is that it does not require too much e�ort to expand the tree and backup the solution� On
the other hand� when a decision tree becomes very large� the computation of improved bounds
using the decision tree can become very expensive� Also� for the innite discounted problem�
the potential of a large step improvement in bounds diminishes with the depth of the decision
tree �due to discounting�� thus lowering the chance of reaching the required bound precision�
When one faces a large decision tree the improvement of the leaf bound value functions

often becomes more appropriate� This is because an improvement of the complete bound can
become computationally cheaper than any improvement accomplished through the expansion
and backups� Methods capable of improving the value function bounds incrementally for the
complete information vector space will be described in the next chapter�
A strategy that combines advantages of both methods can be constructed using a metalevel

decision procedure that selects the most promising improvement procedure to be tried next
based on available cost�benet proles� The proles can be either static and provided at the
beginning or can change �adapt� with regard to the actual cost�benet results acquired for the
problem� An adaptive procedure then monitors costs and benets of a decision tree expansion
and leaf bound improvement� and adjusts the prole accordingly�
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��� Summary

The framework of partially observable Markov decision processes �POMDPs� models two sources
of uncertainty� action outcome uncertainty and partial observability� To nd the optimal con�
trol the POMDP is converted to an information�state MDP� that uses information states cor�
responding to complete histories of actions and observations or appropriate su�cient statistics
that preserve the Markov property of the information process� The common problem with
information state MDPs is that they use states that are continuous or states that expand the
dimension with elapsed time� This feature makes the computation of optimal value functions
and optimal control policies very hard� In fact� optimal or ��optimal solutions are possible only
for a class of POMDPs that can be converted into belief�state MDPs� These are solved using
dynamic programming or value iteration methods and rely on piecewise�linearity and convexity
of value functions �Smallwood� Sondik ���� Alternatively� when the optimal decision for a single
initial state is sought� forward decision tree methods based on bounds can be applied�

Contributions

The chapter describes the POMDP framework� and summarizes exact methods for solving
control problems within the framework� New contributions presented in this chapter are related
to various improvements and speed�ups of exact methods� These include�

� A speed�up of the incremental version of the Monahan�s algorithm� The incremental ver�
sion interleaves generate and test phases of the basic Monahan�s algorithm �Monahan �
��
and is based on early pruning of redundant partially built linear vectors� The pruning
for Q�functions has been investigated and proposed in �Cassandra et al� ���� We have
proposed a modication that allows to do early pruning of partially built linear vectors
also accross di�erent actions� based on upper bound estimates�

� New Gauss�Seidel improvement of the exact value iteration algorithm for the innite
discounted horizon problems� The method improves incrementally a piecewise linear and
convex lower bound function by computing new linear vectors for selected points of the
belief space and adding them to the previous step function� Thus a new linear vector
obtained can be immediately used to compute next updates� This makes it possible to
propagate improvementsmore rapidly� Also� it is not necessary to recompute the complete
value function from scratch for every update step�

� Forward decision methods that nd optimal or � optimal control for a single initial in�
formation state� The methods work with bounds and incrementally expand and prune
the decision tree� The methods proposed here include� breadth�rst� bound�span heuris�
tic� randomized heuristic and linear space algorithms� Also suggested is a new method
that combines incremental decision tree expansion and incremental bounds improvement
strategies using a metalevel decision procedure�

We have also explored and studied modications of the standard POMDP model that use
di�erent state�observation dependencies� We have showed that some of the models �models
with backward triggered observations and combination of backward and standard models� can
be converted to belief�state MDPs with piecewise�linear and convex value functions that are
computable� similarly to the standard model� Unfortunately� this no longer holds for models
with observation delays�
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Chapter �

Approximation methods for

solving POMDP problems

The major problem with the optimal and ��optimal POMDP control solutions is that procedures
for nding them are computationally very expensive� This makes exact methods practical only
for POMDP models of very small size� A typical approach to such a problem is to relax the
requirement of the solution accuracy and accept a �good� solution whenever it can be acquired
fast� This re�ects the common tradeo� between accuracy and speed� The exploration of more
e�cent approximation methods for POMDPs is the focus of this chapter�

��� Types of approximation methods

Approximation strategies for POMDPs include�

� approximations of value functions and policies�

� approximations �reductions� of the information�state MDP�

����� Approximations of value functions and policies

The main idea of the rst approach is to approximate optimal value or control functions using
simpler functions bV � I � R or b� � I � A� These functions are dened over the same
information space� and are computed using simpler update rules�
The output of methods can be either a value function approximation or an approximation of

the optimal policy� In the rst case� the target approximate control is obtained from the approx�
imate value functions in a standard way� For example� the control for the innite discounted
horizon is computed as�

b��I� � argmaxa�AX
s�S

��s� a�P �sjI�  �
X

o��next

P �ojI� a�bV �� �I� o� a���
In the second case� the control policy is returned directly by an approximation routine� Both
cases are usually closely related� and the computation of an approximate control policy often
builds on approximate value function solutions�

��



����� Approximation 	reduction
 of the model

The second approach reduces the information�state MDP constructed for the POMDP model�
The primary target of reduction strategies is the information state space� The information
space is approximated by a feature space bI� which is usually of smaller size and summarizes the
important characteristics of the state with regard to control� The resulting approximate model
is then used to compute value or control functions dened over the feature space bV � bI � R andb� � bI � A� The approximate value and�or control functions for the original information space
are then computed by mapping the information state to a feature state and using associated
feature�based value and control functions�

����� The combination of the two approaches

The two approximation approaches are not exclusive and can be combined when needed� This
leads to the approximation on the level of the model� as well as on the level of functions dened
over the new feature space�

����� The structure of the chapter

The objective of this chapter is to describe and analyze various new and known approximation
methods� The primary focus will be on methods that approximate optimal value functions�
These are based on approximate versions of exact dynamic programming �value iteration� up�
dates described in the previous chapter� Such updates can then be applied to compute both
nite and innite discounted horizon problems� At the end of the chapter the main ideas of
alternative approximation strategies that include policy approximation �section ���� and model
reduction �section ��	�� will be described�
All methods designed and described here can be applied to belief space POMDP models

with su�cient belief information space� However� some of them are more general and suitable
for other POMDP models as well� for example models with time lags� The description of
value function approximation methods includes also proofs of their properties� namely bound
and convergence properties� Some of the proofs are new� but some are originally due to other
researchers and are reproved here� The reason for doing this is to provide a uniform view in
which methods and their properties are described with regard to the approximate updates they
implement� This in turn simplies their theoretical comparison� The performance of the value
function approximation methods discussed in this chapter will be experimentally tested and
compared in the Chapter ��

��� Value function approximations

����� Using approximate value functions to compute control response

Let bV and bQ denote approximations of value and action value functions and let b� stand for
the approximate control function resulting from it� Then the control function b� for the innite
discounted horizon problem and a belief space POMDP can be dened using the approximate
value function as�

b��b� � argmaxa�AX
s�S

��s� a�b�s�  �
X

o��next

P �ojb� a�bV �� �b� o� a��
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Figure ��	� Computing control response using action�value and value function approximations�

or using bQ function as� b��b� � argmaxa�A bQ�b� a��
Similar formulas can be written and used for the nite horizon case�
The computation associated with selecting the control action is best viewed as the one step

�partial or complete� expansion of the decision tree with an approximate value function used at
the leaves of the decision tree� The complete one step expansion occurs when the approximation
of the value function bV is used� while a partial one step decision tree expansion corresponds
to the approximation with bQ functions� This is illustrated in gure ��	� Assuming that the
computation of a value for value and action value functions is comparable� the control response
with action�value approximation should be faster� This is because we need to work with a tree
with jAj leaves� compared to the tree with jAjj!nextj leaves� On the other hand one can expect
that the memory requirement for storing jAj approximate action�value functions will exceed
requirements for remembering single value function� This is just another example of how speed
can be traded for memory�
The idea of selecting a control action through a one step decision tree expansion can be

pushed further� A control action can be selected using a larger size decision tree� with more
expanded levels and an approximate value function used at its leaves� The reason for an
expansion of the decision tree to more levels is similar to that in the exact forward methods�
and one expects the value function to improve more with more expanded steps� However
exact forward methods use and compute bounds� while in this case an arbitrary value function
approximation can be plugged in�

����� Incremental methods

The value function approximation can be used by a control agent to select action responses
in the on�line mode� When time permits� the control response can be further improved in
two ways� using a larger decision tree� assuming that the larger tree �which represents more
iterations or recursions� makes it possible to obtain a better value function at the root of the

tree� or directly by improving the value function bV that is used at the leaves of the tree�
The selection of the control response can be implemented using simple or more complex

anytime algorithms� The algorithm performs the decision tree expansion� and subsequent con�
trol decision improvement� continuously up to the occurence of some critical event� Similarly
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the algorithm can be designed to incrementally improve the approximate value function it uses�
or combine both improvement strategies�

����� The role of value function bounds

The complete optimal or ��optimal value function is hard to compute� However� one can often
benet from knowing the approximate range in which the optimal value function can be found�
Such a range can be identied using various approximate methods that are guaranteed to
produce upper and lower bounds of the optimal value function�
Bound methods can be used within the POMDP framework in several ways� They can

provide a good initial value function for the exact version of the value iteration algorithm� or
can be combined and interleaved with steps of exact methods� For example bounds can be used
to prune early suboptimal actions and thus reduce the complexity of the exact problem solving
routines� The important thing in this context is that bounds can often be improved and further
tightened with exact iteration �dynamic programming� steps� For the value iteration case� this
is because the mapping H is an isotone contraction� and an exact update step applied to a
bound always preserves the bound and improves the approximation�
A typical problem with selecting actions is that an approximate value function bV can be

signicantly di�erent from the optimal value function V �� Then a control function b� computed
from bV using standard equation may in fact lead to an expected reward that is far lower than
the expected reward suggested by bV � The important question is whether we can guarantee
that the action found does not fall below treshold value� This can be achieved by selecting the
action using the value function that lower�bounds the optimal value function� That is� whenbV � V � holds for the innite discounted problem� a control function�

b��b� � argmaxa�AX
s�S

��s� a�b�s�  �
X

o��next

P �ojb� a�bV �� �b� o� a��
satises�

bV b��b� �
X
s�S

��b� b��b��b�s�  �
X

o��next

P �ojb� b��b��bV �� �b� o� b��b���
� H bV �b� � bV �b�

Altough a control function based on this lower bound does not fall below the expected reward
suggested by an associated value function bV it can be too conservative� Then using a value
function that is not a lower bound of the optimal function can still lead to better expected
rewards�

����� Convergence and stability of iterative methods

Approximation methods for the innite discounted horizon problem are usually built on the
idea of approximate value iteration� These try to replicate exact value iteration using its
approximate form� bVi�� � bH bVi
where bV stands for approximate value functions of various forms and bH denes a function
mapping derived in some way from H that is used to compute updates of approximate value
functions� The xed point solution cV � � bH bV � or its close approximation would then represent
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the intended output of the approximation routine�
The main problem with the iteration method is that in general it can converge to unique

or multiple solutions� diverge or oscillate depending on the function form� value function map�
ping and initial values� Therefore� unique convergence cannot be guaranteed for an arbitrary
mapping bH� The convergence of a specic approximation method needs to be proved�
����� Described value function approximation methods

Value function approximations that will be described and discussed in the following include�

� MDP�based approximation �section �����

� fast�informed bound method �section �����

� blind �xed� policy approximations �section �����

� curve tting methods �least square error� �section �����

� grid�based interpolation�extrapolation methods �section �����

� grid�based linear vector methods with Sondik�s updates �section �����

��� MDP�based approximations

The optimal value function V � for both innite discounted and nite horizon problems can
be approximated by the MDP�based approximation method �Lovejoy ��� �Littman et al� ��a��
The method approximates the optimal value function for the POMDP using the optimal value
function V �

MDP for the fully observable case�

bV �b� �X
s�S

b�s�V �
MDP �s�

The basic idea of the MDP�based approximation is illustrated in gure ��
� The approximate
value function is described by a single linear function that is fully dened by values at critical
points of the belief space� These correspond to optimal MDP values�
An MDP�based method can be described also by means of the value function updates that

one would repeatedly apply over multiple steps of dynamic programming or value iteration
procedures� Expresing the method using value function updates often simplies the comparison
of approximation and exact methods�
Let bVi be a value function described by a single linear vector �MDP

i � VMDP
i � Then a new

value function bVi�� that is obtained through MDP�based update is�
bVi���b� �

X
s��S

b�s��max
a�A

���s� a�  �
X
s��S

p�sjs�� a�VMDP
i �s��

� HMDP
bVi�b��

bVi�� is described by a single linear vector with components�
VMDP
i�� �s� � ��s� a�  �

X
s��S

p�sjs�� a�VMDP
i �s�
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Figure ��
� MDP�based approximation� Values at critical points of the belief space are obtained
from the optimal MDP solution�

which matches exactly the update rule for the perfectly observable MDP� Therefore the MDP�
based update always leads to the value function bVi�� that is desribed by a single linear vector�
����� Upper bound property

The important property of this update rule is that it upper bounds the exact update rule� That
is� H bVi � HMDP

bVi holds� This property is trivial and follows from the fact that one cannot
get a better solution with less information� The proof is shown bellow�

Theorem � �Upper bound property of the MDP based update rule� Let bVi be a value function

described by a single linear vector �MDP
i � VMDP

i � Then it holds that H bVi � HMDP
bVi�

Proof�

H bVi�b� � max
a�A

X
s��S

��s�� a�b�s��  �
X

o��next
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X
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P �s� ojs�� a�b�s���MDP
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� max
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X
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b�s�����s�� a�  �
X
s�S

P �sjs�� a�bVMDP
i �s��

�
X
s��S

b�s��max
a�A

���s�� a�  �
X
s�S

P �sjs�� a�bVMDP
i �s��

� HMDP
bVi�b�

�

����� In�nite horizon solution

For the innite discounted horizon case� the value function mapping HMDP is an isotone con�
traction� Thus it leads to the unique xed point solution bV � � HMDP

bV �� Such a solution
upper�bounds the optimal value function�

Theorem �� Let V �
MDP be an optimal value function for the associated fully observable MDP

problem� Then bV ��b� �
P

s�S b�s�V
�
MDP �s� is an upper bound on the optimal value function

V �� that is V � � bV ��
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Proof� The proof is based on showing that H bV � � bV � holds� Let V �
MDP be an optimal solution

to the perfectly observable case� Then it holds that�

V �
MDP �s

�� � max
a�A

��s�� a�  �
X
s�S

p�sjs�� a�V �
MDP �s�

Then for any b it holds that�

H bV ��b� � max
a�A

X
s��S

��s�� a�b�s��  �
X

o��next

X
s�S

X
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� max
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X
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X
s�S

X
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P �sjs�� a�b�s��V �
MDP �s�

� max
a�A

X
s��S

b�s�����s�� a�  �
X
s�S

P �sjs�� a�V �
MDP �s��

�
X
s��S

b�s���max
a�A

��s�� a�  �
X
s�S

P �sjs�� a�V �
MDP �s��

�
X
s��S

b�s��V �
MDP �s� � bV ��b�

Knowing that H is isotone and that H bV � � bV � holds it follows that H� bV � � H bV � � bV �

must be satised as well� Using the isotonicity argument recursively� V � � HV � � � � �H�bV � �
H bV � � bV � must also hold� But this means that V � � bV � is true� which concludes the proof�
�

����� Summary of the method

The main advantage of this method is that it is fast� as the MDP problem can be solved in time
polynomial in the number of states and actions �see Chapter 
�� As the MDP solution assumes
perfect observability� the resulting value function is overly optimistic� and provides an upper
bound on the optimal value function� The important property of the MDP�based solution is
that it can be used to compute upper bounds also for POMDP models with observation delays�
The idea here is the following� an upper bound on the value function for a model with no
observation delays �standard model� should upper�bound also the value function constructed
for the delayed model� Or in other words� one cannot do worse with information that is revealed
ahead of time� than without it�
A disadvantage of the MDP based method is that it tends to ignore �investigative� actions�

that is actions that can help to narrow the uncertainty about the true state of the process by
enabling observations� This causes the QMDP based control to never choose such an action�
This feature was noticed and pointed out by �Littman et al� ��a�� However� this does not hold�
when control actions are selected based on value function VMDP �

��� Fast informed bound method

The approximation obtained by the MDP�based approach can be improved by a new method
# the fast informed bound method� The method uses a newly designed update rule that upper
bounds the exact update rule similarly to the MDP�based method�
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Let bVi be a piecewise linear and convex value function represented by a set of linear vectors
"i� Then the new fast informed update rule corresponds to�

bVi���b� � max
a�A

X
s��S

��s�� a�b�s��  �
X

o��next

X
s��S

max
�k
i
�	i

X
s�S

P �s� ojs�� a�b�s���ki �s�
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X
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b�s��

�
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X
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i
�	i

X
s�S

P �s� ojs�� a��ki �s�

�
� bHFIB

bVi�b�
����� Complexity of a new update rule

An important feature of the new method is that it preserves piecewise linearity and convexness
of the value function� That is� a new value function obtained from a piecewise linear and convex
function is again piecewise linear and convex� Moreover� the resulting value function consists
of at most jAj di�erent linear vectors� each corresponding to one action� This can be seen from
the update formula� where a linear vector for an action a corresponds to�

�ai���s
�� � ��s�� a�  �

X
o��next

max
�k
i
�	i

X
s�S

P �s� ojs�� a��ki �s�

That is� there are at most jAj di�erent �ai��s we can derive using the fast informed update
rule� This property makes the rule very appealing as it guarantees not to grow the size of the
set of linear vectors over value iteration �dynamic programming� steps� Thus the update is
always e�cient with regard to jSj� jAj� and j!j� This is unlike the exact update that may lead
to a function that consists of jAjj"ijj�nextj linear vectors� which is exponential in the number
of observations�

����� Bound property of the new update strategy

The important property of the new fast informed update rule is that it upper bounds the exact
update rule� This is proven in the following theorem� In fact the steps of the proof were
originally used to derive the rule�

Theorem �� �Upper bound property of the fast informed update rule� Let bVi corresponds to a
piecewise linear convex value function

Vi�b� � max
�k
i
�	i

X
s�S

�ki �s�b�s��

Then it holds
H bVi � HFIB

bVi�
Proof� For the exact update rule� HVi�b�� we can write�
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The trick in deriving the new update rule is to exchange the sum and max operators in
the exact update formula� This will e�ectively allow one to choose an optimizing �maximizing�
linear vector for every observation and current state dimension independently� Contrary to this�
in the exact method a single optimizing linear vector for every observation and all current state
dimensions is selected�

����� In�nite discounted horizon casebHFIB is a contraction mapping under the max norm� much like H� with a xed point solutionbV � � V �� The fact that HFIB is a contraction mapping can be shown by using the proof in
theorem � in section ��
�� �similarly we can show that HFIB is isotone by following the steps

of the proof of theorem ��� In the following we will show that the xed point solution bV � is an
upper bound on the optimal value function�

Theorem �� Let V � be an optimal value function and bV � be a �xed point solution computed
by the fast informed bound method� Then it holds that bV � � V ��

Proof Let bVi correspond to a piecewise linear function that upper bounds the optimal value
function� that is� V � � bVi� Using the theorem 		 and the fact that H is isotone we can write�

V ��b� � H bVi�b� � HFIB
bVi�b� � bVi���b�

Therefore for any bVi�� it must hold bVi�� � V �� As bVi�� is again a piecewise linear upper bound
�the initial condition�� by extending this result to an innite number of steps� bV � � V � follows�
�

����� Extensions of the fast informed bound method�

The main idea of the fast informed bound method is to select the optimizing linear vector for
every observation and current state dimension separately� This is unlike the exact case when
we seek a linear vector that gives the best result for every observation and a combination of
all current state dimensions� However� there is a lot of middle ground in between the two
extremes� One can� for example� design an update rule that tries to choose optimal �maximal�
linear vectors for every observation and for every set of disjoint pairs of current state dimensions�
Of course� one can proceed further and try to choose linear vectors that optimize the expression
for three dimensions� or in general for any disjoint partitioning of the state space dimensions�
Let S � fS�� S�� � � � � S

mg be a partitioning of the state space S� Then one can costruct the
following approximate update rule�
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For all possible partitionings� the result acquired by such an update is guaranteed to converge
to the upper bound on the optimal value function �the proof is exactly the same as for the simple
fast update rule�� A single partitioning obviously leads to the exact update rule� The promising
can be the exploration of heuristic partitioning schemes that would combine and optimize over
states �closer� to each other�

����� Summary of the fast informed bound method

The idea of the fast informed update rule and its extension to arbitrary partitioning is a new
one� and was reported for the rst time in �Hauskrecht ��b�� The main advantage of the fast
informed update rule is that the number of linear vectors acquired after the update is bounded
by the number of actions� This makes the method very suitable for computing a good upper
bound fast� Our experience with using the method for approximate control is very good� and
will be discussed in the next chapter�

��� Blind policy approximations

The MDP approximation method gives us a value function that upper�bounds the optimal
value function� It is acquired relatively easily by solving the fully observable MDP problem�
A similar approach that minimizes expected rewards in a fully observable MDP� as opposed to
maximizing them� can be used to compute a lower bound of the optimal value function� The
bound property follows from the fact that under partial observability� one cannot do worse than
by minimizing rewards under perfect observability� However� it is possible to come up with far
better lower bounds� The method we propose here is based on the idea of blind control policies�

����� Blind policy

Denition � �Blind control policy� Let � � f��� ��� � � � � �i� � � �g be a control policy with control
functions �i � I � A� where I denotes information vector space� The policy is called blind when
control functions �i � � map all information states to a single control action� that is all �i are
of the form �i � I � faig with ai � A denoting a single action�

The main feature of a blind control policy is that it ignores all observations� The value
function corresponding to the blind policy � is computed within the fully observable Markov
process model as� bV �b� �X

s�S

b�s�VMDP	��s��

The blind policy method can be described by means of value function updates� similarly to
other methods� Let �� denotes the rst element �action� of the policy �� and ��� denote its

remainder� that is� policy � without its rst element� Let bVi be a single linear vector �i � V
���

i

��



that corresponds to the remainder of the blind policy� Then�

bV �
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X
s��S

b�s��max
a�A

�
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X
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�
� H�� bV ���

i �b�

The fact that a blind control policy ignores all observations means that it should not provide
better control than the optimal policy that utilizes all available information� Thus a blind policy
update should always lower bound the exact value function update�

Theorem �� �Lower bound property of a blind policy update� Let � be an arbitrary blind policy�

�� be its �rst element and ��� its remainder� Let bV ���

i be a value function corresponding to
��� that consists of a single linear vector �i � V

���

i � Then it holds
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i �
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The fact that a blind policy update always lower�bounds the exact update can be used to
construct a lower bound approximation of the optimal value function by taking an arbitrary
blind policy and computing its corresponding value function� The important thing is that the
blind policy value function consists of a single linear vector that is computable within the fully
observable framework� Moreover� every such linear vector can be directly combined with linear
vectors obtained for other blind policies�
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Figure ���� A two dimensional illustration of a piecewise linear and convex value function
obtained by combining linear value functions for two blind policies ��� ���

Combining value functions for more blind policies

A set of lower bound linear vectors computed for a set of blind policies can be combined into
a piecewise linear and convex bound� Let �� denote a value function acquired for some blind
policy� that is �� � V�� and let " be a collection of such functions� Then the piecewise linear
and convex function� bV �b� � max

��	

X
s�S

b�s���s�

is a lower bound of the optimal value function V ��b�� The idea of combining linear vector
bounds is illustrated in gure ���� Here two linear vectors corresponding to two di�erent blind
policies are combined into a piecewise linear and convex lower bound�

����� Constructing a complete blind update rule

We have described how to combine solutions for a set of blind policies in order to provide a
piecewise linear lower bound value function� This in principle allows one to compute a lower
bound value function that combines results for all possible blind policies� by simply nding
a value function for every policy and then combining the acquired linear functions into the
resulting lower bound� Unfortunately the problem with such an approach is that the number of
all possible blind policies can grow exponentially for n steps�to�go problem and it is innite for
the innite discouted horizon problem� The reason for this is that for every blind policy there
are jAj new policies that start with some of the actions and continue with the previous policy
afterwards�
The problem with the above approach is that it nds value functions also for policies that

are clearly suboptimal� that is they are worse than other policies� This can be remedied by con�
structing a new update rule� the so�called complete blind update rule that e�ectively interleaves
the enumeration of all blind policies and computation of their value functions�
Let bVi be a piecewise linear convex function and "i a set of linear vectors used to de�

scribe it� Now assume that every linear vector in "i corresponds to some policy� that is
"i � f��

�

i � ��
�

i � � � � � ��
m

i g where Pi � f��� ��� � � ��mg denotes a set of policies� Then every
policy in Pi can be extended in jAj possible ways by selecting one of the actions� The value
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function update for all possible actions and a policy �j is�
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The optimal lower bound value function bV i�� for all policies f��� ��� � � � � �mg is then ob�
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The blind update rule thus corresponds to�

bV i���b� � max
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X
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�	i

�
X
s��S

X
s�S
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� HBU
bVi�

Alternative derivation of the complete blind update rule

Interestingly one can arrive at the blind update rule in a slightly di�erent way by trying to
approximate the exact value function update� The idea of this derivation is shown below�
Let "i be a set of linear vectors describing an arbitrary piecewise linear convex function bVi�

Then the exact value function update can be approximated as�

H bVi�b� � max
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� HBU
bVi�b�

Thus the main di�erence between the exact and blind update rules is that the max and
the sum over next step observations are exchanged� This causes a choice of � vectors in the
blind update rule to become independent of observations �once sum and max operations are
exchanged� observations can be marginalized out�� This is unlike the exact case in which �
vectors are chosen separately for every observation�
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Complexity of the blind update rule

Assume the complete blind update rule from the equation ��	� Let �
�b	a�i be a linear vector
that optimizes�

max
�k
i
�	i

X
s��S

X
s�S

P �sjs�� a�b�s���ki �s�

for the xed a and b� Then we can write�
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The complete blind update rule selects an optimizing alpha vector �
�b	a�i for any b inde�
pendently of observations� This results in having at most j"ijjAj possible linear vectors after

update in bVi��� This is in contrast to the exact update� where the number of possible vectors
in the next step can grow exponentially with regard to the number of observations� and leads
to jAjj"ijj�nextj possible vectors� In this context� the blind update rule is best viewed as an
approximation of the exact update rule �similarly to the fast informed bound��

Innite horizon case

For the innite discounted horizon problem the complete blind value function update HBU is
an isotone contraction� similarly to H� This can be shown by using same proofs as in theorems
� and � in section ��
��� The contraction property implies that there is a unique xed point
solution and that the value iteration method based on the blind update rule converges to� It is
easy to show that the value function corresponding to the xed point solution is a lower bound
of the optimal value function� The proof is shown below and it is identical to the one provided
for the fast informed bound�

Theorem �� Let V � be an optimal value function and bV � be a �xed point solution computed
by the complete blind update method� Then it holds that bV � � V ��

Proof� Let bVi correspond to a piecewise linear lower bound of the optimal value function� that
is� bVi � V �� Using isotonicity of H and the fact that the blind policy update always lower
bounds the exact update we can write�

bVi���b� � HBU
bVi�b� � H bVi�b� � V ��b��

Therefore bVi�� saties bVi�� � V �� As bVi�� is also piecewise linear lower bound �same as the
initial condition�� we can extend the result to an innite number of steps� and bV � � V � must
follow� �
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����� E�cient blind policy methods

As shown above� one can compute the optimal lower bound �or its � precision approximation�
for all blind policies using the derived blind update rule� However the problem is that the value
function may similarly to the exact update� grow with every iteration� causing an exponential
increase in the size of the linear vector set� Thus� when we need the lower bound fast� the
optimal bound might not be the best solution�
The easiest way to compute a good lower bound is to use a xed set of blind policies� The

bound value function for such a set is obtained by combining value functions computed within
the perfectly observable framework for every policy in the set �see above�� Note that value
functions for a xed set of blind policies can be computed e�ciently both for the nite as well
as innite discounted horizon cases�
There are various strategies one can use to construct a set of xed blind policies to be

combined into the lower bound value function approximation� These may range from random
to various heuristic strategies� For example in our work� when we need to construct a lower
bound value function for the innite discounted horizon problem fast� we use simple one�action
policies� The advantage of this selection is that respective value functions are found simply by
solving jAj sets of linear equations�

V a�s� � ��s� a�  �
X
s��S

P �s�js� a�V a�s��

where a denotes the action used by the one�action policy�

����� Extensions to the �xed policy method

The idea of xed blind policies can be further extended into the �xed policy approach� The
xed policy method permits policies that condition actions on observations� This is unlike
the blind policy where actions are sequenced unconditionally� The xed policy approach has
been suggested and used by Anthony Cassandra �personal communication� and can be nicely
represented using policy graphs �Cassandra ����
The sample xed policy for the innite discounted problem is illustrated in gure ����

The arrow points to the initial action� that is� an action that is executed by the policy rst�
Subsequent actions in the policy depend on the results of observations� The important property
of this approach is that the value function for an arbitrary xed policy is computable e�ciently
within the fully observable Markov model �e�ciently with regard to the size of the policy graph��
For example� assuming a state space S � fs�� s�g� the value function for the policy on gure
��� is obtained by solving the set of linear equations�
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Figure ���� An example of a xed policy� Actions in the policy can be conditioned on observa�
tions�
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where action�x� corresponds to the action associated with node x of the policy graph� next�x� o�
represents a node one gets to after being in node x and seeing the observation o�
Once the system is solved� a value function corresponding to the policy � that starts at node

x� is computed as� bV� �X
s�S

b�s�V �x�� s��

Note that by solving the above system of equations one e�ectively acquires solutions not
only for the policy that starts at node x�� but also solutions for policies that start at x�� x
and x��

Properties of xed policies

A value function corresponding to a xed policy provides a lower bound of the optimal value
function� similarly to the blind policy case� This is because any xed policy is at most equivalent
to the optimal policy� and thus it cannot improve on the optimal value function�
As every xed policy is represented by a single linear vector that lower bounds the optimal

value function� a convex combination of results for more xed policies is possible and preserves
the lower bound� That leads to a value function�

bV �b� � max
��	

X
s�S

b�s���s�

that consists of a set of linear vectors "� each corresponding to one xed policy� Then bV �b�
provides a lower bound of the optimal value function� bV � V ��
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����� A summary of a blind policy method

The blind policy approach provides means for computing value functions that lower bound the
optimal value function� There are various versions of the method that work either with a xed
set of blind policies� or try to compute optimal lower bound that correspond to all possible
blind policies� thus making methods more or less e�cient� Although such bounds are often not
very tight� they very often provide a very good start for exact methods or other approximation
methods that are able to tighten the bound more� The important property of the blind policy
method is that it can be applied to lower�bound exact value function updates for an arbitrary
POMDP model ��
The idea of blind policies can be extended to a more general xed policy approach that

computes lower bound value functions based on more complex polices that permit conditioning
of actions using observations� Unfortunately� the xed policy approach leads to a lower bound
only for belief space POMDPs� thus it is not as widely applicable as the blind policy approach�

��	 Approximation of a value function using curve 
tting
least�squares 
t�

A common way to approximate a function over continuous space is to use curve tting tech�
niques� This approach uses a predened parametric model of the function and values associated
with a nite set of points� The strategy then seeks the best possible match between model pa�
rameters and observed point values� The best match can be dened using various criteria� most
often the least�squaress t criterion� In this method parameters of the model function are t
to reduce the squared errors for all sample points� that is to reduce�

Error�f� �
	




X
j

�yj � f�bj��
�

where bj and yj correspond to the belief point and its associated value� The index j ranges
over all points of the sample set�
The nice feature of the least�squares t method is that it can be implemented in various

forms� for example� using an exact or stochastic version of the gradient descent method�

���� Versions of least�squares �t

Let f denote a parametric value function over the belief space with adjustable weights w �
fw�� w�� � � � � wkg� Then the least�squares t method can be implemented using any of the
suitable optimization procedures� e�g��

� A dedicated procedure that selects least�squares error weights w for f based on all sample
points and their associated values�

� A gradient descent method that adjusts weights gradually in the error�reducing direction�

The on�line �or instance based� version of the least�squares error corresponds to the well�
known delta rule �see e�g� �Rumelhart et�al ����� The delta rule allows for the gradual adjust�
ment of the function parameters for every new sample seen� Let f be a function with parameters

�This can be shown using minor modication of the proof of the theorem ���
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�weights� w � �w�� w�� � � � � wk�� Then the delta update rule for a weight wi corresponds to�

wi 	 wi � �i�f�bj �� yj�
�f

�wi
jbj

where �i is a learning constant� and bj and yj correspond to the last seen point and its value�
The gradient descent method requires the function to be di�erentiable with regard to ad�

justable weights� This means that one needs to use smooth approximations of the value function
and this also in the case when the optimal value function is nondi�erentiable �for example piece�
wise linear��

���� Combining value iteration and least�squares �t

The least�squares t can be used to construct an approximate value iteration �dynamic program�

ming� algorithm with a step� bVi�� � HLSF
bVi� In the context of POMDPs� this approach was

used in the work of �Littman et al� ��a� and �Parr� Russell ���� where they used reinforcement
learning updates to speed up the parameter learning process�
The major drawback of value iteration methods with the least�squares t is that their stabil�

ity is not guaranteed and that they can also diverge� This was shown in �Tsitsiklis� Van Roy ����
�Baird ���� In general� this makes it impossible to guarantee that the least�squares approxima�
tion of the optimal value function or a reasonably close substitute will be found via value
iteration� However� the behavior of the least�squares strategy combined with value iteration is
not understood very well and it is still possible that under a suitable selection of a value func�
tion model� sampling points and initial value function one can guarantee the result to stabilize
in some bounded region around the optimal least�squares choice�
Unfortunately issues of divergence and stability have not been considered and investigated

to su�cient depth in AI and more work needs to be done in this area� The intuition behind
the threat of divergence can be illustrated in the following� Assume that the target function in
some belief space region is approximated by a value function that assigns larger values to points
in the region �compared to actual values�� Further� assume that such a region is actively used in
the computation of new value function updates for a set of sample points in the iteration step�
thus producing values that are larger than the true target values� Fitting such points and new
values using the least�squares approach can then translate into an increase in the error in the
badly estimated region� In general such an error can grow larger with more iterations� leading
possibly to the amplication of the error �a kind of positive feedback� and to divergence�

Parallel and Gauss�Seidel value iteration algorithms

Value iteration� powered with a stochastic on�line version of a least�squares t� can use either
parallel or incremental �Gauss�Seidel� updates� In the rst case� the value function from the
previous step is xed� and a new value function is computed from scratch using a set of belief
point samples and values computed through one step expansion� Once the parameters are
stabilized �by attenuating learning rates� the newly acquired function is xed� and the process
proceeds with another iteration� In the incremental �Gauss�Seidel� version� there is a single
value function model that is both updated and used to compute new values at sampled points�
Note that both versions are subject to the instability and the divergence threat� as described
above�
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���� Parametric function models

As pointed out earlier� the on�line version of the least�squares t method requires a function
model that is di�erentiable� The typical choice of a convex function is simple� and usually
corresponds to linear bV � linear bQ �Littman et al� ��a�� or a quadratic function�
One interesting and relatively simple least�squares method is based on the least�squares

approximation of linear action�value functions �Q�functions� �Littman et al� ��a�� Here the

value function bVi�� is approximated as a piecewise linear and convex combination of bQi��

functions� bVi���b� � max
a�A

bQi���b� a�

where� bQi���b� a� � ��b� a�  �
X

o��next

p�ojb� a�bVi�� �b� o� a���
The least�squares t approach is applied to approximate every linear Q�function� This leads
to the approximation with jAj linear vectors� Note that least�squares Q�function method is
di�erent from the fast informed bound method that also works with jAj linear vectors� The main
di�erences are that the fast informed bound updates linear vectors directly� and it guarantees
an upper bound and unique convergence� while Q�function least�squares relies on updates at
some number of sample points� and does not guarantee neither bound nor unique convergence�
More sophisticated parametric function models are possible as well� For example one convex

parametric function model suggested in the literature is �Parr� Russell ����

bV �b� �
��X
��	

�X
s�S

��s�b�s�

�k��
�
k

where " stands for the set of linear vectors � with adaptive parameters to t and k is a �temper�
ature� parameter that provides a better t to the underlying piecewise linear convex function
for larger values� The function represents a soft approximation of a piecewise linear convex
function� with the parameter k smoothing more or less the piecewise linear approximation�

���� Summary of least�squares �t

The main advantage of least�squares error methods is that they implement a relatively simple
update rule that needs to compute new updates of values only for a nite set of sample points�
The typical choice of a function used in approximations is simple� and usually relies on linear
models� The advantage of such functions is that they reduce to relatively simple weight up�
date rules� However� in principle one can use the outlined methods� also with more complex
parameter functions that try to t better the optimal value function �see e�g� �Parr� Russell �����
On the other hand� the quality of methods based on least�squares error depends strongly

on a given function model� initial parameter values� as well as a choice of belief points used in
the least�squares� Devising suitable function models as well as proper initial values is in many
cases like providing information that we do not know and need to compute� for example the
number of linear regions needed to approximate the resulting function� Another troublesome
thing is its combination with the value iteration procedure� In general such a combination
cannot guarantee the stability and convergence to the best possible approximation� Another
disadvantage of methods based on least�squares t is that the resulting approximation does
not provide a bound� and therefore does not provide any clue or suggestion about the optimal
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solution�

��� Grid�based interpolation�extrapolation strategies

A value function over the continuous belief space can be approximated nonparametrically by a
set of grid points� their associated values and an interpolation�extrapolation rule that is used
to estimate values at non�grid points� The main advantage of such a value function model is
that it can be updated easily by computing new values only for a nite set of grid points�

Denition 
 �Interpolation�extrapolation rule� Let f � I � R be a real valued function de�ned
over the information space� G � fbG� � b

G
� � � � �b

G
k g be a set of grid points and $G �

f�bG� � f�b
G
� ��� �b

G
� � f�b

G
� ��� � � � � �b

G
k � f�b

G
k ��g be a set of point�value pairs� Then RG � I�$G �R

that estimates a function value f for any point of the information space I using only values
associated with grid points is called an interpolation�extrapolation rule

Using the interpolation�extrapolation rule� the complete value function is updated easily by
computing updates only for a selected set of grid points� Let bVi be an arbitrary value func�
tion� Then new updated function bVi�� is computed using grid�based interpolation�extrapolation
update as� bVi���b� � RG�b�$

G
i���

where values associated with every grid point bGj in $
G
i�� are computed as�

bVi���bGj � � max
a�A

��b� a�  �
X

o��next

P �ojb� a�bVi�� �bGj � o� a���
The grid�based value function update can be described also using a value function mapping

HG as� bVi�� � HG
bVi�

A family of convex rules

A set of all possible interpolation�extrapolation rules is enormous� In our work we will focus
on a set of convex rules that represents a relatively small but but very important subset of
interpolation�extrapolation rules�

Denition � �Convex rule� Let f be some function de�ned over the information space� G �
fbG� � b

G
� � � � �b

G
k g be a set of grid points� and $G � f�bG� � f�b

G
� ��� �b

G
� � f�b

G
� ��� � � � � �b

G
k � f�b

G
k ��g be

a set of point�value pairs� The rule RG for estimating f using values f�bG� �� f�b
G
� �� � � �f�b

G
k � is

called convex when for every information state b the value bf�b� is computed as

bf �b� � RG�b�$
G� �

jGjX
j��

�jf�bj �

such that � � �j � 	 for every j � 	� � � � � jGj and
PjGj

j�� �j � 	�

A convex function�approximation rule is a special case of the averager approximation scheme
described by Gordon �Gordon ��a�� The slight di�erence is that Gordon�s model allows one to
express a bias that is independend of the sample �values at grid points�� The family of convex
rules includes rules very common in practice� like� nearest neighbor� kernel regression� and point
interpolation�
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Nearest neighbor

In the nearest nearest neighbor the value function for some point b is estimated using the value
at the closest grid point� where closest is dened with regard to some metric over the information
state space� Then for every information state b there is exacly one nonzero parameter �j � 	
and all other �s are zero� That is�

bf �b� � RG�b�$
G� � f�bGj �

where k b � bGj kM�k b � bGi kM holds for all i � 	� 
� � � � � k� M represents a distance metric
dened on the information space�
The nearest neighbor rule computes a value function using a single grid point� This leads

to a piecewise constant function where regions with equal values correspond to regions with a
common nearest grid point�

Kernel regression

The value computed by a nearest neighbour rule depends on a single grid point� This causes
it to absorb all the biases introduced by such a point� In order to remedy this problem�
one can compute the approximation using more grid points in its neighborhood� A function
approximation rule that takes into an account more grid points and their associated values is
kernel regression�
In kernel regression� �s represent normalized weights associated with grid points that are

derived using some distance metric M � The approximate function bf �b� for an arbitrary infor�
mation state b is computed as�

bf �b� � RG�b�$
G� �

kX
j��

�bjf�b
G
j �

where
�bj � 	 exp�kb�b

G
j k

�
M����

with 	 being a normalizing constant equal to�

	 �
kX

j��

exp�kb�b
G
j k

�
M���� �

and where � is a parameter that �attens or narrows weight functions� The important property
of a kernel regression rule is that it computes a smooth approximation of the function� unlike
the nearest neighbor rule�

Point interpolation

The point interpolation rule not only prescribes� how values at grid points are combined� but
also imposes an additional constraint that explicitly relates the grid points and � coe�cients
used�
In the point interpolation� the approximate function bf �b� for an arbitrary information state
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b is computed as�

bf �b� � RG�b�$
G� �

jGjX
j��

�jf�b
G
j �

such that all additional constraints hold�

b �

jGjX
j��

�jb
G
j

� � �j � 	 for every j � 	� � � � � jGj

jGjX
j��

�j � 	

The fact that grid points used to compute function approximation must always interpolate
the unknown point will help us to show the upper bound property for belief state POMDPs�
This topic will be discussed later in the section�

����� Properties of convex rules

A set of convex rules di�ers from other interpolation�extrapolation rules in many respects� In
the following we will examine two properties of high importance for the computation of value
function approximations� These are� isotonicity of the value function mapping HG and the
contraction property of HG for the innite discounted horizon�

Isotonicity of a value function mapping based on a convex rule

It is well known that the exact value function mapping H is isotone �see �Heyman� Sobel �����
However we are interested in learning if the isotonicity of H is preserved in HG� Although
isotonicity is not guaranteed to be preserved for an arbitrary interpolation�extrapolation rule
it can be shown that it is satised for every convex rule� That is� U � V imples HGU � HGV �

Theorem �� �isotone mapping� A value function mapping based on convex rule HG is isotone�
Proof� The proof of isotonicity is simple and directly follows from the isotonicity of the original
exact mapping H �see also �Lovejoy ����� The isotonicity of value function mapping H implies
that when V � U then HV � HU must hold� As grid�based value function mapping with a
convex rule allows only nonnegative coe�cients � then HG derived from H must be isotone as
well� �

Convergence of value iteration with a convex rule

In general the mapping HG for the innite discounted horizon problem may not lead to the
convergence of the value iteration method� However it is possible to show that it converges
uniquely for all convex rules�
The proof of the convergence of the approximate value iteration with a convex rule is based

on the reduction of the problem to the MDP problem with the same discount factor� Note
that the convergence result is independent of the form of the optimal value function� and thus
can be used not only for the standard POMDP models but also for models with observation
channel lags or continuous state MDPs� For an alternative proof of convergence that uses the
contraction property see �Gordon ��a��
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Theorem �
 Let bV G be a grid�based value function approximation de�ned by a �nite set G
of grid points� their associated values fbV �bGj � � bGj � Gg and a convex rule RG� Then a value
iteration method with an update step

bV G
i�� � HG

bV G
i

converges to a unique �xed point solution bV �
G�

Proof� The main idea is to convert the problem of a grid�based update to an MDP update
with the same discount factor� For any grid point bGj we can write�

bVi���bGj � � max
a�A

��bGj � a�  �
X

o��next

p�ojbGj � a�bV G
i �� �b

G
j � a� o��

� max
a�A

��bGj � a�  �
X

o��next

p�ojbGj � a�

jGjX
k��

�o	ak
bV G
i �b

G
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� max
a�A

��bGj � a�  �

jGjX
k��

bV G
i �b

G
k �

� X
o��next

p�ojbGj � a��
o	a
k

�

Now denoting �
P

o��next
p�ojbj� a�G�

o	a
k � as P �bGk jb

G
j � a�� the whole problem can be reduced

to the MDP problem with the identical discount factor �� and with states corresponding to grid
points�

bVi���bGj � � max
a�A

��bGi � a�  �

jGjX
k��

P �bGk jb
G
j � a�bV G

i �b
G
k ��

The prerequisite � � �j � 	 for every j � 	� � � � � jGj and
PjGj

j�� �j � 	 guarantees that

P �bGk jb
G
j � a� can be interpreted as true probabilities�

It is well known �see e�g��Puterman ���� that the mappingH with a discount factor � � � � 	
for the MDP is a contraction mapping� and that the value iteration method based on it converges
to a unique xed point solution� Therefore the approximate value iteration method converges
to the unique solution as well� �

Note that both the isotonicity and convergence proofs apply for any POMDP model� not
only belief space POMDPs� Therefore by using any of the convex rules� we always guarantee
the convergence of the grid based update for any POMDP� and this also despite the fact that
we have no idea about the shape of their value functions�

Grid�based approximate value iteration algorithm

A convex rule can be used to construct a simple grid�based approximate value iteration al�
gorithm� Such an algorithm is illustrated below� The algorithm starts from the initial value
function bVinit and stops when a relative stopping criterion dened for grid point changes is
satised� The algorithm implements a Gauss�Seidel version of the value iteration in which each
newly obtained grid point value is used immediately to update values for other grid points�
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Approximate value iteration �bVinit� jGj�
select a set of grid of points G of size jGj
for every point b � G

compute bVinit�b� and store it in the bV G denition
repeat until the relative stopping criterion is met

for every point b in G

compute new update bV �b� and
update the value in bV G

return bV G

����� Constructing grids

A problem that has been left open is related to the grid point selection� There are various
methods to select grid points that include�

� regular grids�

� random grids�

� heuristic grids�

Regular grids �Lovejoy �	b� partition �triangulate� the belief space evenly to equal size
regions� This is basically the same idea that is used to partition evenly the n�dimensional
subspace of Rn� In fact there is an a�ne transform that allows us to map isomorphically grid
points in the belief space to grid points in the n�dimensional space �see �Lovejoy �	b� for the
discussion��
In contrast to regular grids� random and heuristic grids do not provide any regular parti�

tioning of the belief space� In the rst case grids are selected randomly using samplingmethods�
in the second case various heuristics that bias the selection of points are employed�
The advantage of nonregular grids �sometimes called variable grids� is that any increase

in the resultion of the grid can be achieved by simply addding new belief points� On the
other hand� regular grids are restricted to a specic number of points� and any increase in
the resolution of a grid is paid for by an exponential increase in the grid size� For example a
sequence of regular grids for a 
��dimensional belief space �corresponds to a POMDP with 
�
states� consists of 
�� 
	�� 	���� ����� �
���� � � � grid points�� This prevents one from using
the method with higher grid resolutions for problems with larger state spaces�

Neccessary condition for the point interpolation grids

The nearest neighbor and kernel regression rules do not impose any special requirement on
what the grid must look like or what points must be present� However� one can easily notice
that the point interpolation grid must always include critical points of the belief simplex� The
reason for this is that in order to make interpolation work for any point of the belief space�

�The number of points in the regular grid sequence can be computed as 	Lovejoy 
�b��

jGj �
�M � jSj � ���

M ��jSj � ���

where M � �� �� � � � is a grid renement parameter�
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critical points must be present� Otherwise� one would not be able to interpolate missing critical
belief points or any points in their neighborhood�

����� Bound property of the point�interpolation rule

The isotonicity and convergence properties of grid�based methods with convex rules have been
shown regardless of the form and shape of the optimal value function� But the fact that the
optimal value function V � is convex �holds for belief space POMDPs� allows one to say more
about properties of a resulting approximate value function� More specically it is possible to
show that the value function computed by the grid�based update combined with point interpo�
lation always upper�bounds the value function computed by an exact update �see �Lovejoy �	b��
�Lovejoy ����

Theorem �� �Upper bound property of a grid�based point interpolation update� Let bVi be a

piecewise linear and convex value function� Then it holds H bVi � HG
bVi�

Proof� The proof is based on Jensen�s inequality� Let bVi be a piecewise linear convex function
and G � fbG� � b

G
� � � � �b

G
k g be set of grid points used in the point interpolation update� Let b be

a belief point such that b �
Pk

j�� �
b
jb
G
j and such that � � �bj � 	 and

Pk
j�� �

b
j � 	 hold�

As an exact update for a belief space POMDP preserves piecewise linearity and convexness�
we know that H bVi is piecewise linear and convex� Then for a belief point b we can write�

H bVi�b� � H bVi� kX
j��

�bjb
G
j �

�
kX
j��

�bj

h
H bVi�bGj �i � HG

bVi�b�
where the upper bound follows from Jensen�s inequality� �

Innite discounted horizon solution

A value function mappingHG implementing a convex rule has been shown to satisfy the isotone
contraction property for the innite discouted horizon problem� That means� there is a xed
point solution bV � � HG

bV � the value iteration method will converge to� The fact that the
grid�based point interpolation update upper bounds the exact update can be used to show that
the approximate value iteration method converges to the value function that upper bounds the
optimal value function for belief state POMDPs� that is� bV � � V � �Lovejoy �	b� Lovejoy ����

Theorem �� �Upper bound property of a �xed point solution� Let H be a value function map�
ping for the POMDP problem with a su�cient belief information space and HG be a value
function mapping constructed from it using a grid�based point interpolation rule� Then the �xed
point solution bV � � bHG

bV � is an upper bound on the optimal value function V �� i�e� V � � bV ��

Proof� Let bVi correspond to a piecewise linear function that upper bounds the optimal value
function� V � � bVi� Then using the result of the previous theorem and the fact that H is isotone�
we can write�

V ��b� � H bVi�b� � bVi�b�
	��



and
V ��b� � H bVi�b� � HG

bVi�b�
As H bVi�b� is a piecewise linear and convex function �initial assumption� and both H and HG

are isotone we can write�

V ��b� � H� bVi�b� � HGH bVi�b� � H�
G
bVi�b�

Knowing that both H and HG are contractions and converge to their respective xed point
solutions� then applying the previous step repeatedly innitely many times the following must
be satised�

V ��b� � HV ��b� � HG
bV � � bV �

�

This means that the approximate value iteration method with a grid�based point interpo�
lation rule computes upper bound value functions� Note that neither the kernel regression nor
the nearest neighbor can guarantee any bound property�

Constructing the interpolation rule

The e�ciency of the grid�based point interpolation update depends strongly on the e�ciency
of the implentation of such an interpolation rule� The interpolation rule must rst select a
set of points from the grid G suitable for interpolation� that consists of at least jSj linearly
independent belief points for any nonboundary point of a belief simplex� In general there can
be


jSj
jGj

�
possible minimal sets� and nding the best interpolating set can be time�consuming�

One possible solution to this is to use regular grids �see above� that evenly partition the belief
space and allow one to choose an interpolating set e�ciently� However such grids must use a
specic number of points and any increase in the resolution of a grid is paid for by an exponential
increase in the grid size� This prevents one from using the method with higher grid resolutions
for problems with larger state spaces�
To provide for more �exibility of the method� we have proposed a new point interpolation

method that can use arbitrary grids and is guaranteed to run in time linear in the size of
the grid �Hauskrecht ��b�� The rule builds on the fact that any point b of the belief space of
dimension jSj can be easily interpolated with a set of grid points that consists of an arbitary
point b� � G and jSj � 	 critical points of the belief simplex �critical points correspond to
�	� �� �� � � ��� ��� 	� �� � � ��� etc��� That is� for any grid point b� � G there is a simple interpolating

set that allows one to compute a linear interpolation bV b�

i �b� at an arbitrary point b� As for any
convex function the interpolation guarantees an upper bound� the tightest possible bound value
achieved for a set of grid points can be chosen�

bVi�b� � min
b��G

bV b�

i �b��

The value function approximation corresponding to the described point interpolation rule is
illustrated in gure ���� The approximation is characterized by its �saw� shape� which is
in�uenced by the choice of the interpolating points�
The proposed interpolation rule can be computed in O�jGjjSj� time� which is linear in the

size of the grid� This makes it a good candidate to use for a larger number of grid points�
Also� any increase in the grid resolution is very easy� as one simply needs to add new points
to the previous ones� The simplicity of grid extension allows one to implement relatively easily
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Figure ���� A two dimensional illustration of the simple linear point interpolation rule� The
candidate interpolating set is restricted to a single internal point of the belief space�

various e�cient incremental strategies that improve the upper bound for the innite discounted
horizon problem�

Incremental grid based methods

A simple incremental improvement algorithm for the innite discounted horizon problem is
illustrated below� The algorithm starts from the initial upper bound bVinit� expands the grid
gradually in k point increments� and uses Gauss�Seidel updates for points in the active grid�
As the grid size is bounded by linear growth� the algorithm is guaranteed to run e�ciently for
a xed number of iterations�

Incremental upper bound �k� bVinit�
select an initial set of grid points G
for every point b � G

compute bVinit�b� and store it in bV G denition
repeat until the stopping criterion is satised

repeat until the grid expansion criterion is met
for every point b in G

compute new update bV �b� and
update the value in bV G

select a set of k points GEXP to expand G
for every b � GEXP

add b to G and bV �b� to bV G

return bV G

An initial bound bVinit can be computed using either MDP�based approximation or the fast
informed bound method presented earlier� Note that MDP�based approximation corresponds
exactly to the solution obtained by the approximate value iteration with the point interpolation
rule and with the grid that consists solely of critical belief points�
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Constructing a heuristic point interpolation grid

In general the quality of bounds produced by the grid�based point interpolation method is
strongly in�uenced by a grid selection strategy� The advantage of our simple interpolation rule
is that it does not enforce a specic grid �like regular grids�� Thus it can be easily combined
with an arbitrary selection method� which may include various heuristics�
A heuristic method for selecting grid points that we have designed� implemented and tested

attempts to maximize improvements in bound values using stochastic simulations� The method
builds on the fact that every grid suitable for interpolation must include critical points �other�
wise the interpolation cannot be guaranteed�� A value at any grid point b improves more when
more precise values are used for its successor belief states� i�e� belief states that correspond to
� �b� a� o� for an optimizing action a and an observation o� Incorporating such points into the
grid would then increase the chance of larger improvement of values associated with critical
points� Naturally one can proceed with selection further� by incorporating succesor points for
the rst level successors into the grid set as well� and so on�
The stochastic simulation method samples likely successor belief points in the following

steps�

	� select an action a that is optimal for b given the current upper bound value function�


� select the next observation randomly according to the probability distribution p�ojb� a�

�� compute the next belief point b� � � �b� o� a��

Similar stochastic simulation methods within the POMDP framework were used for example in
�Parr� Russell ��� �Littman et al� ��a�� Note that other approaches for constructing heuristic
grids for the point interpolation strategy are possible� One such approach has been proposed
recently in �Brafman ��� and it renes the grid by examining di�erences in value function values
at current grid points�

����� Extensions of the simple interpolation rule

The idea behind the simple interpolation rule can be extended further to improve the selection
of interpolating sets used� For example� one can try to select interpolating sets that consist of
two arbitrary belief points and jSj � 
 critical points� three belief points and jSj � � critical
points� and so on� up to jSj arbitrary belief points� However� these improvements are mostly
paid for by an increased computational complexity asssociated with enumerating all plausible
combinations� Note that the process of selecting points to be combined does not have to be
done blindly and smart heuristics for focusing on suitable combinations can be utilized�

����� Summary of grid�based interpolation�extrapolation methods

The exact value function update can be approximated using a grid�based update rule� The rule
computes value function updates for a nite set of information states �grid points� and uses
interpolation�extrapolation techniques to derive new value function values for all other states�
This makes it possible to e�ciently derive a new value function�
There are numerous interpolation�extrapolation strategies� However most suitable and fre�

quently applied interpolation�extrapolation rules belong to the family of convex rules� Updates
based on convex rules are isotone and are guaranteed to converge for the innite discounted
horizon problem� The important thing is that this holds for any infomation state space and
thus it covers an arbitrary POMDP model�
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The fact that for belief space POMDPs the value function is known to be piecewise linear
and convex can be used to show that any approximate update based on point interpolation
upper bounds the exact update� Thus� it can be used to compute an upper bound of the
optimal value function and this both for nite and innite horizons�

��� Grid�based linear vector method grid�based Sondik�s
method�

An alternate value function approximationmethod can be constructed by applying Sondik�s ap�
proach for updating linear vectors �derivatives� to a grid of points �Lovejoy ��� �Hauskrecht ��b��

Let bVi be a piecewise linear convex function described by a set of linear vectors "i� Then
a new candidate linear vector for a belief point b and action a can be computed e�ciently as
�Smallwood� Sondik ����

�b	ai���s� � ��s� a�  �
X

o��next

X
s��S

P �s�� ojs� a��

�b	a	o�
i �s�� ���
�

where ��b� a� o� indexes a linear vector �i in a set of linear vectors "i �dening bVi� that maximizes
the expression� X

s��S

�X
s�S

P �s�� ojs� a�b�s�

�
�i�s

��

for a xed combination of b� a� o� The optimizing linear vector for a point b is then acquired
by choosing the vector with the best overall value from vectors computed for all actions� That
is� assuming "bi�� is a set of all candidate vectors� the resulting vector must satisfy�

�b	�i�� � argmax�bi��
�	b

i��

X
s�S

�bi���s�b�s��

The point based linear vector update is a basis of a number of exact algorithms �Sondik�s�
Cheng�s� that update value function over iteration or dynamic programming steps� However
exact methods require one to always nd a complete set of points that seed new linear vectors
and thus guarantee the complete update� Unfortunately the search for a complete set of points
can also turn out to be a source of major ine�ciency� In contrast to this approach a class
of approximation methods can be based on incomplete sets of points that are easy to locate
�via random� or e�cient heuristic selection�� Let HGL denote a value function mapping that
restricts linear vector updates to a set of arbitrary� and thus often incomplete� grid points G�

����� Lower bound property of the grid�based Sondik�s update

In both exact and grid based updates one computes a set of linear vectors that dene new
piecewise linear and convex value functions� However if an incomplete set of points is used for
the update� the resulting value function lower bounds the value function one acquires using the
complete exact update rule� The proof of this is shown bellow�

Theorem �� �Lower bound property of the grid�based linear vector update�� Let bVi be a piece�
wise linear value function and G a set of grid points one uses to compute linear vector updates�
Then it holds HGL

bVi � H bVi�
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Figure ���� An incremental linear vector method� The lower bound piecewise linear function is
improved by a new linear vector computed for a belief point b using Sondik�s method�

Proof� The proof is trivial and is based on a completeness argument� Let "i�� be a set of

optimizing linear vectors computed for a grid set G and bVi� As points used for a grid�based
update may be incomplete� the resulting value function dened by "i�� may lack useful linear
vectors that optimize �maximize� a value function for some region of the belief space� Thus

HGL
bVi � H bVi must hold� �

����� In�nite horizon case

The grid�based linear vector update method uses an incomplete set of points� Because of this�
a value function mapping HGL for the innite discounted horizon case does not have to satisfy
a contraction property and a value iteration method based on such a mapping does not have to
converge� The grid�based update rule with an incomplete set of grid points can lead to various
behaviors over value iteration steps� most often oscillations�
In order to guarantee the stability and convergence of the value iteration method when

working with an incomplete set of points� we propose the following incremental method that
gradually improves the piecewise linear and convex lower bound value functions�

Incremental lower bound method

Assume that bVi � V � is a convex piecewise linear lower bound on the optimal value function�
dened by a linear vector set "i� and let �b be a linear vector for a point b that is computed
from bVi by the Sondik�s method� As it holds that bVi�b� � P

s b�s��b�s� � V ��b� �from the

isotonicity of H� one can construct a new improved value function bVi�� � bVi by simply adding
new linear vector �b to "i �Hauskrecht ��b�� That is� "i�� � "i 
 �b�
The idea of the new update rule is illustrated in gure ���� Note that the rule can be

easily extended to handle a set of grid points G� In such a case the new linear vector set is�
"i�� � "i 
 "Gi�� where "

G
i�� consists of new linear vectors computed for grid points from "i�

However� it is advantageous to perform updates of grid points one by one� as this allows one
to implement a much faster Gauss�Seidel approach� Note also that after adding one or more
new linear vectors to "i� some of the previous linear vectors can become redundant and can
be removed from the convex value function denition� Various ways to do this are discussed in
�Monahan �
� �Eagle ��� �Cassandra ����
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A simple incremental lower bound algorithm is shown below� The algorithm starts from the
initial lower bound bVinit �with a linear vector set "init�� selects a belief point and updates the
existing lower bound with a new linear vector� An initial bound is computed using for example
the blind or xed policy approach discussed earlier�

Incremental lower bound �bVinit�
set " dening current bound bV to "init
repeat until the stopping criterion is met

select a belief point b
compute new update �b for b
add the �b to "

return bV
The above Gauss�Seidel style algorithm tends to grow the size of the linear vector set b"i with

every iteration� However� this growth is only linear compared to the potentially exponential
growth of exact methods� The major advantage of the method is that it gives room for an
application of various point selection heuristics that can lead to a better and tighter linear
vector set� Various modications of the above incremental lower bound algorithm are possible�
e�g� one can use a xed set of grid points to be updated repeatedly� or one can select the points
to be updated using some heuristics�

Heuristic point selection strategies

The update phase of the incremental lower bound method is not limited to a specic point
choice� Thus one may combine it with arbitrary point selection strategies� The strategies can
be based on simple random selection of grid points� or more sophisticated strategies based
on various heuristics� Random grid selection strategies can be then used to benchmark the
improvement from heuristic strategies�
With an objective to speed up the improvement of the bound� we have designed and imple�

mented two relatively simple heuristic strategies that try to optimize updates of a bound value
function�
The rst strategy attempts to optimize updates only at critical points by ordering them

appropriately� It builds on the fact that states with higher expected rewards �e�g� some desig�
nated goal states� backpropagate their e�ects locally� Therefore it is desirable that states in the
neighborhood of the highest reward state are updated rst� and distant ones later� The strat�
egy for ordering critical points uses the current value function to identify the highest expected
reward states� and the POMDP model to determine local dependencies and order neighboring
states�
The second strategy uses the idea of stochastic simulation� similar to the one used in the

upper bound method� The strategy generates a sequence of belief points that can result from
an �initial� belief point through simulation� such that a sequence of belief points with higher
probablity are more likely to be generated� The points of the sequence are then used in reverse
order to update the current value function�
The two heuristic strategies can be combined into one two�tier strategy� in which the top

level strategy orders critical belief points� and the lower level strategy uses stochastic simulation
to generate a sequence of belief points that are likely to result from a given critical point�
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����� Summary of the grid based linear vector method

The grid�based linear vector method represents a renement of the Sondik�s method to arbitrary
grids� The grid�based update leads to a piecewise linear convex function that is dened using a
smaller number of linear vectors and that lower bounds the exact update� The main advantage
of the grid�based method compared to the exact update is that it can compute a value function
approximation fast� not wasting time by trying to locate all belief points that would guarantee
the exact update�
The grid�based linear update rule can be turned into a new incremental linear update rule

for the innite discounted horizon problem� The rule gradually improves a piecewise linear and
convex lower bound� It uses the Gauss�Seidel style of updates and avoids the need to recompute
the value function from scratch for every iteration step�

��� Approximation of policies

Although a control response can be always computed from the value function approximation
through one step decision tree expansion� it is also possible to compute the policy directly� This
approach requires control functions that are dened over possibly innite information space in
some �exible and nite form� In the following we will brie�y describe a method that uses policy
graphs �trees� �Cassandra ��� �Littman ����

����� Representing control using policy 	control
 trees

A policy for the belief space POMDP framework and for both nite and innite horizon prob�
lems can be represented using a policy tree �Cassandra ��� �Littman ���� The policy tree consists
of nodes that are associated with action choices and links that represent conditional continua�
tions of control choices based on observations� The policy tree can be also viewed as a collapsed
decision tree in which decision nodes are substituted with a xed action choice� For the innite
discounted horizon problems policy trees can be represented using policy graphs with cycles
�wrap�around trees�� An example of a policy graph for the innite horizon problem was shown
in gure ��� in section ������
A policy graph can be used to represent any control policy� including the optimal one� In

fact there is a strong correlation between policy tree representation and the structure of value
function for belief information spaces� and one can construct a solution policy tree using a slight
modication of the exact update value function �Littman ���� In principle� every region of the
belief space that is represented by a linear vector corresponds to a node in the policy tree� and
links between policy tree nodes represent optimal choices of linear vectors used in update steps�

Constructing approximate policies using policy trees

Every node in the policy tree corresponds to a linear vector that describes a piecewise linear
and convex value function corresponding to such a policy� The interesting thing is that we can
compute the linear vector for any node and any xed policy simply by solving a set of linear
equations� This has been shown and described in section ������ That re�ects the fact that it
is relatively easy to compute a value function for a xed policy� although one must not forget
that the policy itself can be quite complex�
The fact that we know how to compute the value function for any xed policy tree can be

used to construct a policy approximation algorithm that starts from an initial policy tree� and
by performing structural or action changes� gradually produces a better policy approximation�

		�



Note that the improvement would be relatively easy to check as any xed policy lower bounds
the value function for the optimal policy� Such an approach can employ various heuristic
strategies for making structural changes that are likely to further improve the quality of a
policy�
The policy approximation approach outlined above has not been investigated to our knowl�

edge� and thus o�ers a promising alternative to various value function approximation methods�
The advantage of the approach is that optimal policies have less structure than optimal value
functions� and therefore are representable more compactly�

����� Other policy approximation methods

Alternatively� a control function for a belief information space can be represented using a nite
set of grid points� their associated actions� and a rule that denes how to determine an action
for a nongrid point� Nearest neighbor is a simple rule choice and the action for any belief point
is an action associated with the grid point closest to it� More complex rules� that select an
action for a non�grid target belief point using actions associated with more than one grid points
in its neighborhood can be also created� However� in such cases� one must provide a strategy
for resolving con�icts when di�erent actions are suggested by several relevant grid points�
An approximate policy can be constructed by computing control responses for all grid points

from the value function approximation� This is a direct approach and works ne for both nite
as well as innite discounted horizon cases� But� when one needs to compute the approximate
policy for the innite discounted horizon case� it is possible take advantage of the form of
the control function that needs to be found� Then it is possible to adapt the policy iteration
method� described for the fully observable MDP� also to belief state MDPs� Such a method
is also refered to as approximate policy iteration method�Bertsekas ���� The method starts
from some xed policy� computes its value function approximation using an arbitrary method
�computing a value function for a xed policy is easier�� Then� every action associated with a
grid point representing a control function is checked to see if it improves the value function for
such a point� If yes the change is made and process continues�
The main problem with approximate policy iteration is that it does not have to converge�

and can oscillate among a set of policies� This is because of approximations� as it can happen
that value function values for the �improved� policy may turn out to be worse than value
function values for the previous policy�

���� Model based approximations

The main idea behind value function approximation methods was to replace the exact update
rule with a more e�cient approximation� In all cases the resulting value function was dened
using the original information state space I�
A complementary approach to the value function approximation is based on the approx�

imation �reduction� of the information�state MDP� The reduction can target components of
the information�state MDP or components of the underlying POMDP model �states� actions�
observations� transitions� observation and cost models�� The most typical approximations are
those that in some way transform or reduce the su�cient information state space�

			



������ Approximation of the information state space

The approximation of the information�state space could be achieved by substituting more com�
plex information space with a simpler feature state space �Bertsekas ��� �Tsitsiklis� Van Roy ����
The feature space is usually of smaller size� summarizes the important characteristics of the
information state with regard to the control� and is easier to manipulate and work with� Feature
states �vectors� can be often viewed as abstractions or aggregations of su�cient information
states�
The relation between the information and feature vectors is captured by a feature extraction

mapping F � that maps information states to feature states�

F � I � bI�
Then� assuming the feature�based value and control functions�

bVF � bI � R

b�F � bI � A

are known� one can express approximate value or control functions for the information state I
as� bV �I� � bVF �F�I��b��I� � b�F�F�I���
Note that while the optimal policies for the original information�state MDP are deter�

ministic� the optimal feature�based policies for the same problem can be stochastic �see e�g�
�Singh et al� ����� However stochastic policies are harder to compute and deterministic feature�
based policies are often assumed�

Feature vector updates

A feature vector bIt at time t can be obtained in two di�erent ways �see gure �����
	� from the original information vector It� i�e� bIt � F�It��


� from the previous step feature vector bIt��� action at�� and observation ot� i�e�bIt � �F �bIt��� ot� at����
In the rst case the feature process is always associated with the underlying su�cient infor�

mation process� and every information state is always mapped to the same feature state� On
the other hand� when the feature process is dened as a separate process �can be described by
a separate MDP� there is a potential for a continuous loss of information content due to the
approximation of the information space� This may lead to the situation in which information
and feature state processes are not tightly mapped �aligned� and a single information state can
occur together with more than one feature state� This is also the reason why optimal policies
for reduced models may be stochastic�

Constructing feature state space

A feature state space and associated feature extraction mapping introduce a bias telling what
features of the problem need to be considered and what can be abstracted out� Note that
the feature space together with the mapping in fact represents partitioning of the original
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Figure ���� Two di�erent models for updating feature states� 	� through feature extraction
mapping from the underlying information state� 
� using a special feature�based update proce�
dure that is independent of the information state update�

information space� with information states in the same partition being mapped to the same
feature state� Information states in the same partition are treated as a single aggregate state
on the feature level� leading to the loss of precision and approximation�
For the purpose of control one would like to use features that reduce the complexity of the

state space and have the smallest possible e�ect on the quality of control� The feature space
and related mapping can be either�

� dened by the designer or expert in the domain of interest�

� automatically inferred from the original model�

The rst approach can be used to reduce the complexity of the original problem in areas
where an expert is able to dene the most important reductions� The feature space and a
related mapping then incorporate knowledge re�ecting the expert�s intuition or experience about
the control domain and about the importance of various problem characteristics to achieve
better control� This approach can be very valueable especially for problems with large state or
observation spaces�
In the second case the feature space and the feature mapping is inferred from the original

more complex model� Usually the goal here is to come up with the feature space and the
mapping that cuts down the complexity of the original information state as much as possible
and that has also minimal possible e�ect on the quality of control that would result from the
approximation� Such an approach is crucial for solving control problems for which an expert�s
knowledge is not available� or where one must work with large and complex models� This
problem has not been su�ciently investigated� and remains open�
In the following we will discuss two representatives of feature�based approximations� These

are based on�
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� truncated histories�

� POMDP model reductions�

Other information�state reduction methods are possible as well� For example� �D�Ambrosio ���
proposed and tested reductions in which continuous belief space was transformed to its quali�
tative abstraction using ��calculus �Goldszmidt ����

������ Truncated history

One approach to information�state reductions is based on truncated histories �White� Scherer ���
�Platzman ���� The approach builds on the heuristic saying that the decision about the control
can be done reasonably well using only a set of recent actions and observations� The approach
thus seeks the replacement of the complete information vector in both nite and innite dis�
counted horizon update formulas�

V �It� � max
a�A

X
s�S

��s� a�P �sjIt�  �
X

o��next

P �ojIt� a�V �� �It� o� a�� �����

with truncated information states�

bIMt � fat�M � ot�M��� at�M��� � � � � at��� otg

that re�ect only the recent M step process history�
Note that by using the truncated histories� the problem of expanding dimension that made

the complete information vector �corresponds to a complete history of all actions and obser�
vations� unsuitable for the computation has been eliminated� The feature vector space based
on truncated histories consists of a discrete set of recent history vectors that replace innite
information space� However� the feature vector space based on truncated histories can still be
exponential in the number of history items used� For example for the POMDP model with ac�
tion and observation spaces A�! the full M step truncated history space consists of jAjM j!jM

feature vectors� When considering also cases in which history length is shorter thanM the size

of the feature vector space is jAjM��j�jM����
jAjj�j�� �White� Scherer ����

Computing a value function for a feature space

Feature vector space reduces the complexity of the su�cient information state space� This
leads to a loss of detail and precision as more than one su�cient information states are mapped
to one feature vector� This opens the problem of how to compute the optimal value function
�maximum expected reward� for an aggregate feature state� In general� one can think about
dening or computing a conditional probability distribution of being in some information state
given a feature vector and using this distribution to compute aggregate value function for the
feature vector as a weighted average of value functions for all corresponding information vectors�
However� it is often easier to choose simpler aggregation method� The obvious choice is to select
a lower �upper� bound aggregate value function that assigns a value to a feature vector based
on the minimum �maximum� value function value of its components�
For an M �step truncated history the choice of minimum or maximum values leads to the

following upper and lower bound aggregate value functions �see �White� Scherer �����
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��s� a�P �sjIMt � s�t�M�  �
X

o��next

P �oja� IMt � s�t�M�VL�� �I
M
t � o� a��

VU �I
M
t � � max

a�A
max

s�
t�M

�S�

X
s�S

��s� a�p�sjIMt � s�t�M�  �
X

o��next

P �oja� IMt � s�t�M �VU �� �I
M
t � o� a���

where VL and VU stand for upper and lower bound functions� state s
�
t�M represents a process

state at time t �M � that is the state just before the history information was taken� Taking
the worst and best choice of a state s�t�M we get upper and lower bounds on the optimal value
function� Note that whenever the specic observation and action sequence cannot be reached
from st�M � that is when P �IMt jst�M� � �� st�M should not be considered as a choice� This
can happen in situations in which transitions or observation matrices contain zeros and some
combinations of action�observation sequences are not possible� Thus S� in the equations stands
for a set of states that are consistent with the observed history�

Computing value function bounds for a nite horizon problem

Value function approximations based on a truncated history can be computed using dynamic
programming� In order to account for all possible states� equations described above must be
modied to re�ect the fact that a truncated history at the beginning can be shorter than the
maximum truncated lengthM � Assuming an n steps�to�go problem� a value function for a step
i � n is computed as�

VL�I
k
i � � max

a�A
min

s�
i�k

�S�

X
s�S

��s� a�p�sjIki � s
�
i�k�  �

X
o��next

P �oja� Iki � s
�
i�k�VL�� �I

k
i � o� a��

where k � min�n � i�M ��

Computing value function bounds for the innite discounted horizon problem

Similarly to the optimal value function one can compute the value function using the value
iteration method� However� the major question is whether the method converges to the unique
solution for every posible initial value function� This property follows whenever the new value
function mapping HTH dened for truncated histories satises the contraction property� The
contraction property of HTH has been proved for example in �White� Scherer ���� and thus a
value iteration method with HTH converges to a unique xed point solution� Moreover� the
result also preserves the bound� Therefore one is able to use both HTH mappings to compute
the optimal value function bounds for the innite discounted horizon case�

Reducing a set of possible truncated histories

The major problem with the approximation that uses an M step truncated history is that the

state space size can be exponential in M � There can be jAjM��j�jM����
jAjj�j�� possible histories one

needs to work with in the worst case� This causes the major slowdown whenever the truncated
history length M is large�
The size of the space of truncated histories can be in many cases reduced directly by exclud�

ing suboptimal actions or impossible observations� Various tricks to eliminate such elements
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from the space of histories are discussed in �Platzman ���� Alternatively one can include in the
feature space only those items from the history that are most relevant and in�uence the quality
of the control more� Deriving autonomously which items in the history are more relevant and
need to be included would help to reduce the growth of the feature space as well�

������ POMDP model reduction

An alternate approach to reduce the complexity of the information state MDP� and by this
means all associated computations� is to reduce the complexity of the underlying POMDP
model� This is most often done by reducing the number of process states and substituting them
with aggregate process states� Note that this is slightly di�erent from simpling information
states� although changes in the process state will show up in the information state as well�
The components of the new POMDP model can be built using state space reduction tech�

niques similar to the model reduction techniques described in the MDP chapter� For example
the transition probabilities for the new POMDP model can be computed from the original
POMDP model using a new aggregate state space SAgg and a conditional probability of being
in some state s � S given an aggregate state sAgg � SAgg � P �sjsAgg�� Knowing this probability
distribution one can easily compute the new transition probability matrix�

P �sAgg� jsAgg� � a� �
X
s�S

P �sjsAgg� �
X

s��sAgg
�

P �s�js� a�

where s� ranges over all states covered by an aggregate state sAgg� �
The major problem with this approach is related to the selection of the aggregate state

space and the probability P �sjsAgg�� In the ideal case� one would like to select these such
that aggregate Markov chain re�ects the properties of the original chain and expected rewards
associated with new aggregate states are good approximations of expected rewards dened over
the original state space� The problem with this is that it would require one to aggregate together
states with similar value function values� This is an open area of research� and methods that
utilize a priori expert knowledge or derive appropriate aggregations autonomously can be used
for this task�
The POMDP reduction method discussed above assumed that the relation between the

original model and aggregate state model can be completely dened through relations between
aggregate and original states� However there is always a possiblity that one can dene a new
�abstracted� POMDP model directly by providing all the neccessary information about its
components and the relations between the original and new state spaces�

���� Summary

The problem of computational complexity of exact methods can be resolved by using approx�
imation methods that trade o� accuracy and precision of the solutions for speed� There are
numerous methods one can use to compute approximate solutions for the POMDP policy prob�
lem� These are mostly based on value function approximations that attempt to approximate
optimal value functions� using more e�cient dynamic programming and value iteration updates�
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method bound convergence

MDP�approximation upper yes
Blind�policy ��xed policy� method lower yes

Fast�informed bound upper yes
Curve �tting �least�squares �t� no no
General grid�based interpolation�extrapolation no no

Grid�based linear interpolation upper yes
Grid�based nearest neighbor no yes
Grid�based kernel�regression no yes

Grid�based incremental linear vector method lower yes

Table ��	� Bound and convergence properties of value function approximation methods�

Bound and convergence properties of approximation methods

The methods and their solutions can be analyzed and compared theoretically along various
properties� The two that are most important are bound� and convergence for innite discounted
horizon problems� The table ��	 summarizes bound and convergence properties of several value
function approximation methods and their solutions�

Contributions

The main contributions of our work in this chapter are�

� Summary of approximationmethods for solving complex POMDP problems� analysis and
proofs of their properties� Some of the proofs are based on the work of other researchers
but some are new and are presented here for the rst time� We have tried to present all
methods in a uniform way� that is every method was described by means of an update
rule it implements� This in turn makes easier their comparison with the exact and other
approximate update rules�

� New fast informed bound method� that uses a simple and e�cient update approximation
scheme and upper bounds the exact update rule� The rule approximates value function
using at most jAj linear vectors�

� Blind policy method that uses a set of blind policies to compute components of the
piecewise linear lower bound of the optimal value function�

� New grid�based point interpolation rule that supports arbitrary �variable� grids� and
thus arbitrary grid selection strategies� This is unlike regular grid methods that evenly
partition the belief space and use xed sets of grid points

� New heuristic approach for constructing point interpolation grids� The method uses
stochastic simulations and attempts to improve the value function value for critical be�
lief points� The method can be combined also with other grid�based interpolation�
extrapolation strategies� for example nearest neighbor�

� New incremental linear vector method for innite discounted horizon problems that is
based on Sondik�s linear vector updates� The method computes and incrementally im�
proves a piecewise linear and convex lower bound of the optimal value function over

		�



iterations steps� The method can use arbitrary set of grid points �including heuristic
ones� and is also a basis of the Gauss�Seidel speedup technique for exact value iteration�
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Chapter �

Value function approximation

methods� an experimental study

The objective of this chapter is to empirically compare the performance of several value function
approximation methods and their solutions on complex POMDP control problems� It naturally
complements the previous chapter� which was more formal and focused on the description
of approximation methods� their properties� and relations� In the following� approximation
methods will be evaluated using two criteria�

� the quality of value function bounds�

� their control performance�

In the rst part of the experiment� approximation methods that provide upper and lower
bounds on the optimal value functions will be tested� In the second part� several value function
approximation methods will be compared directly on the control task and will be judged solely
based on their control performance�
The role of empirical research in scientic exploration is enormous� It helps us conrm or

refute our expectations and guides our exploration of the eld by giving us a better under�
standing of features that had not been shown theoretically� Unfortunately the area of POMDP
approximations lacks large scale experimental work� Thus our primary mission is to take a
small step in this direction and provide a comparison of methods and their extensions� We
will compare both new and known approximation methods� including simple approximations
based on perfect observability� the curve tting approach based on least�squares t and more
sophisticated heuristic grid�based methods�
In the following� we will rst describe a set of three control problems we used in the exper�

iments� After that� upper and lower bound value function approximations will be compared�
Finally the control performance of various approximations will be examined and analysed�

��� Test problems

We tested value function solutions using a set of three innite discounted horizon POMDP
problems of di�erent complexity� The problems tested are�

� The Maze
� maze navigation problem �Hauskrecht ��b��
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Moves Sensors

Figure ��	� The robot navigation problem� Maze
�

� The Maze
�B maze navigation problem with a zero cost absorbing state

� The Shuttle docking problem �Chrisman �
�

The Maze
� navigation problem was designed to provide the hardest problem� with investigative
actions being of high importance for the optimization of the objective function� This was
achieved by providing a highly structured and narrow maze� with many obstacles that could
lead to a high score loss� The Maze
�B problem uses a slightly less structured maze� and
cost�reward model that penalizes blind maneuvering less compared to the Maze
� problem�
Thus� it is less dependent on investigative actions� Shuttle docking is a problem with low
uncertainty in both transition and observation models� This signicantly reduces the impact
of partial observability on the problem and solution� In the following we only give a brief
description of each problem� All three problems are described fully in appendix A �they can be
also downloaded on�line at� �http���www�medg�lcs�mit�edu�people�milos�thesis����

Test problem �	 Maze��

Maze
� �Hauskrecht ��b� is a maze navigation problem with 
� states� � actions and � obser�
vations� The maze �gure ��	� consists of 
� partially connected rooms �states� in which a
robot functions and collects rewards� The robot can move in � directions �North� South� East
and West� and can check for the presence of walls using its sensors� Neither �move� actions
nor sensor inputs are perfect and the robot can wind up moving in unintended directions� The
robot moves in an unintended direction with probability of ��� ���	� for each of the neighboring
directions�� A move into the wall keeps the robot in the same position� Investigative actions
help the robot to navigate by activating sensor inputs� There are 
 investigative actions that al�
low the robot to check inputs �presence of a wall� in the North�South and East�West directions�
Sensor accuracy in detecting walls is ���� for a two wall case �e�g� both north and south wall��
��� for a one wall case �north or south� and ���� for a no wall case� with smaller probabilities
for wrong perceptions�
The control objective is to maximize the expected discounted rewards with a discount factor

of ���� A small reward is given for every action not leading to bumping into the wall �� points
for a move and 
 points for an investigative action�� and one big reward �	�� points� is given
for achieving the special target room �shown as a circle on the gure� and recognizing it by
performing one of the move actions� After doing that and collecting the reward� the robot is
placed with some probability into one of the %initial� rooms�
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Moves Sensors

Figure ��
� The robot navigation problem� Maze
�B

Test problem �	 Maze��B

The Maze
�B problem �see gure ��
� is similar to Maze
�� The two problems use di�erent
maze topologies� However� the uncertainty associated with the outcomes of �move� actions and
the quality of perceptual information is the same as for Maze
��
The other major di�erence between the two maze problems is in the payo� model� Maze
�B

uses costs instead of rewards� Costs are assigned in the following way� 
� points for every action
that does not cause the robot to crash into the wall� �� points for any action �move� that bumps
the robot against the wall and � points for any action in the goal state �represented by a circle��
Note that the costs of various actions and their outcomes favor more move actions compared
to the Maze
� problem�
The goal state is a zero cost absorbing state �sink�� The objective is to optimize control for

the innite discounted horizon� with a discount factor of �����

Test problem �	 Shuttle docking

The Shuttle docking problem �Chrisman �
� consists of � states� � actions and � observations�
The states consists of the position of the shuttle relating to the most and least recently visited
space station� The objective is to continuously move and dock the shuttle at the least recently
visited space station� which is rewarded with 	� points� The discount factor used is �����
The major di�erence between the Shuttle problem and the maze problems is that it does

not have investigative actions� The observations used are considered to be free �no cost� and
always available� Also uncertainties associated with either transitions or observations are not
as bad as in the case of the maze problems� and in many cases� the relations are deterministic�
The Shuttle problem has features that make a control problem easier to solve �small amount of
partial observability� no investigative actions� a lot of determinism in action outcomes��

��� Comparing quality of bounds

����� Methods tested

We tested the bounds on value functions produced by several methods that were discussed in
the previous chapter and that were proved to have upper or lower bound properties� However�
we note that there are other methods one can use to compute upper or lower bounds that we
did not test� for example model reduction methods based on truncated histories discussed in

	
	



section ��	��
�

Upper bound methods

We tested and compared the following upper bound methods�

� MDP�based approximation�

� Fast informed bound method�

� Grid�based point interpolation with regular� random and heuristic grids�

The MDP based approximation is a basic method for computing an upper bound� The
solution it produces consists of a single linear vector� and is often used to initialize other� more
complex upper bound methods� Thus� the quality of the MDP�based bound will provide the
score against which the improvements of other methods can be measured and compared�
The fast informed bound method improves the MDP�based bound using a piecewise linear

and convex value function that consists of jAj linear vectors�
The MDP�based bound can be improved futher by using the grid�based point interpolation

method� Grid�based point interpolation can be implemented using di�erent types of grids
including regular� random and heuristic grids� We have tried and tested all three types of grids�
Regular grids were combined with the e�cient point interpolation strategy due to �Lovejoy �	b�
that always interpolates a target point using the grid�points that are closest to it� In addition�
both random and heuristic grids were implemented with a new point interpolation method
described in section ������ The heuristic approach implemented a new strategy proposed in
������ Di�erent types of grids have been tried for di�erent grid resolutions� We used grids of ��
points up to ��� grid points �in �� point increments�� The heuristic grids for larger resolutions
were constructed incrementally using previous step solutions� The regular grid method was
tested only on regular grids that fell in the tested range� These included a grid of 
	� points
for both maze problems� and grids of ��� 	
�� and ��� points for the smaller Shuttle problem�

Lower bound methods

We tested the following lower bound methods�

� Simple blind policy method�

� Incremental linear vector method with various point selection strategies�

The simple blind policy method �section ������ computes a piecewise linear and convex value
function that consists of jAj linear vectors� one for every blind one�action policy� The solution
lower bounds the optimal value function and can be used to initialize incremental linear vector
methods�
The incremental linear vector method �section ����
� is designed to gradually improve a

piecewise linear and convex lower bound� It can be combined with various strategies for selecting
points for updates� We tested four di�erent point selection strategies� These were evaluated
using �� point update cycles for up to ��� point updates� The strategies we compared are�

� A xed grid strategy with a xed set of �� belief points that are used repeatedly� The grid
points consist of all critical belief points� and the remaining points are selected randomly�

� A random grid strategy that selects every belief point to be updated randomly�

	





� An order heuristic strategy �see section ����
� that repeatedly picks �� belief points�
including all critical points� The critical points are ordered to maximize the update
e�ect�

� A two tier heuristic strategy �see section ����
� that combines the heuristic ordering strat�
egy with a forward simulation strategy� Every critical point �ordered� is simulated forward
for � steps� and a sequence of points obtained is updated in reverse order�

����� Experimental design

Value function solutions are dened over the continuous belief space� This makes it impossible
to compare bound results for every possible belief state� In order to compare the quality of
bounds obtained by di�erent methods we use a single score that measures the average value
obtained for a xed set of 
��� randomly generated belief points together with all of the critical
points of the belief simplex�

����� Test results

The result scores achieved for both bounds are listed in� gures ��� and ��� for the Maze
�
problem� gures ��� and ��� for the Maze
�B� and ��� and ��� for the Shuttle docking problem�
Note that the Maze
�B problem minimizes costs� and therefore the upper and lower bound
methods are exchanged compared to the problems that maximize rewards�

����� Evaluation of results

Upper bound

The worst results were achieved by the grid�based point interpolation method with random
grids� This is mostly because transitions in all models are local and sparse� This means that
from any critical point one can only get to belief states that lie on the boundary of the belief
simplex� that is� those belief points that contain a lot of zeros� In contrast to this� random
sampling is more likely to produce a belief point with nonzero probabilities� Since any boundary
point can be interpolated using only points on the same boundary� the internal points of the
belief simplex have no e�ect on their interpolation� and thus there is a very slim chance that
critical points will get updated by randomly generated grids�
Regular grids with small resolution have a signicantly better bound score because they

consist only of points on the belief simplex boundaries�
Overall� the best results were achieved by the heuristic grid method with forward point

simulations� The method was signicantly better than random and regular grids for both
Maze
� problems� and was beaten by a low margin by a regular grid method only on the
Shuttle problem� We believe that the main reason for this is that the heuristic grid method
uses a simple point interpolation rule that does not search for the best interpolating set� while
the regular grid method uses a minimum distance point interpolation rule�
The other contender # the newly designed fast informed bound method performed very well

on all test problems and was able to beat the grid based methods with lower grid resolutions�
The main advantage of the method is that it is easy and fast to compute� thus it is able to give
us a good upper bound in relatively short time�
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Figure ���� Maze
�� quality of upper bounds� The table and graph show bound scores obtained
by an MDP�based approximation� the fast informed bound method� and point interpolation
methods with three types of grids� regular� random and heuristic� The grid�based point inter�
polation methods were tested using di�erent resolutions �grid sizes� starting from MDP�based
approximations� The sequence of possible regular grids is sparse and the only grid �excluding
the initial one� that was within the tested range used 
	� grid points �score is labeled with an
asterisk in the table�� The other grid resolutions did not work and therefore they were not able
to improve the bound score�
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Figure ���� Maze
�� quality of lower bounds� The table and graph show bound scores obtained
by the incremental linear vector method and four di�erent point selection strategies� They were
tested and compared after every �� point updates� The initial value function was obtained using
a simple blind policy method that combines all one action policies�
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Figure ���� Maze
�B �cost minimization�� quality of upper bounds� The table and graph
show bound scores obtained by the incremental linear vector method and four di�erent point
selection strategies� They were tested and compared after every �� point updates� The initial
value function was obtained using a simple blind policy method that combines all one action
policies�
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Maze��B� lower bound
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Figure ���� Maze
�B �cost minimization�� quality of lower bounds� The table and graph show
bound scores obtained by an MDP�based approximation� the fast informed bound method� and
point interpolation methods with three types of grids� regular� random� and heuristic� The grid�
based point interpolation methods were tested using di�erent resolutions �grid sizes� starting
from MDP�based approximations� The only regular grid that was within the tested range used

	� grid points �the score is labeled with an asterisk in the table�� The other grid resolutions
did not work and therefore they were not able to improve the bound score�
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Shuttle� upper bound
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Figure ���� Shuttle docking problem� quality of upper bounds� The table and graph show
results obtained by an MDP�based approximation� the fast informed bound method� and point
interpolation methods with three types of grids� regular� random and heuristic� The grid�based
point interpolation methods were tested using di�erent resolutions �grid sizes� starting from
MDP�based approximations� The regular grids that were within the tested range used ��� 	
��
and ��� grid points �their scores are labeled with asterisks�� The other grid resolutions did not
work and therefore they were not able to improve the bound score�
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Figure ���� Shuttle docking problem� quality of lower bounds� The table and graph show bound
scores obtained by the incremental linear vector method and four di�erent point selection
strategies� They were tested and compared after every �� point updates� The initial value
function was obtained using a simple blind policy method that combines all one action policies�
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Lower bound

The experiments showed that there is no clear winning point selection strategy for the incre�
mental linear vector method� The di�erences among the strategies were very small� Also� on
di�erent problems� di�erent strategies performed best� A surprise was a relatively bad showing
of the two�tier heuristic strategy on the Maze
�B problem �minimization� where the quality
of its solutions fell behind all other methods� We believe that the reason for this is that the
strategy sampled the same set of belief points repeatedly with small potential for improvements�
Thus� the method would probably be better if it switched and interleaved heuristic selections
with some random selection strategy�
In general� the reason for small di�erences in the lower bound quality could be explained

by updating linear vectors �derivatives� for belief points� In such a case the new linear vector
in�uences a larger portion of the belief space and thus it is less sensitive to a specic point
selection strategy� Also possible is the explanation that we did not use a very good heuristic�
and better heuristics or their combinations can be constructed�

Bound results summary

Both upper and lower bound incremental methods were combined with various heuristic meth�
ods for locating new grid points� The heuristic grid approach for the grid�based point in�
terpolation based on forward simulations seems to be justied and was able to outperform
signicantly both random and regular grids most of the time� The results suggest that the
point�interpolation method is sensitive to a selection of grid points� Interestingly� we were not
able to get any signicant improvement from any of the heuristic approaches for the incremental
lower bound method� Moreover both random point selection and xed random strategies are
producing similar results� This suggest that the incremental linear vector is less sensitive to
the selection of the grid points used for updates�
Overall� upper and lower incremental bound methods �heuristic grid assumed for the point�

interpolation bound� were able to improve signicantly on the initial bounds provided by the
MDP�based method and the simple blind policy methods� However� despite this� the combina�
tion of upper and lower bound methods did not achieve very tight bound spans for the tested
range� except on the Shuttle docking problem with � states� � actions and � observations� We
believe we did not get very tight bounds on maze problems because one needs to use more
grid�points or updates for more complex problems �with larger state and observation spaces�
in order to get closer to the optimal solution� The tested ranges of grid sizes and updates were
simply not su�cient for the two more complex problems�

��� Testing control performance of approximation meth�
ods

There are many approximation methods that have been proposed to compute POMDP control
e�ciently �see �Lovejoy �	b� �Littman et al� ��a� �Parr� Russell ����� However� the comparisons
of these methods were either insu�cient or did not include problems of larger complexity� For
example� comparison studies that appeared in the AI literature have focused mostly on the
application of least�squares t strategies� and have not tried grid based approaches even though
they are common in operations research� Therefore a primary focus of our work in this is section
is to compare a spectrum of value function approximation approaches and their solutions on
the set of innite discounted horizon problems�
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����� Methods tested

We tested all of the value function approximation methods described in the previous chapter�
MDP�based approximation� the blind policy method� the fast informed bound method� the
least�square t approach� linear interpolation�extrapolation rules and incremental lower bound
method with Sondik�s updates� Some methods were represented by multiple entries because
they used di�erent grids or di�erent heuristics� The purpose of this variation was to show how
specic tricks or heuristics in�uence the approximation�

Optimal solutions

The results obtained for di�erent approximation methods were compared to the results one
would achieve with the optimal solution for the perfectly observable Markov process �where
process states are assumed to be perfectly observable�� and for the Shuttle docking problem�
they were also compared to results for the optimal POMDP solution with 	��� precision�� The
optimal solution for both maze problems was too hard to compute to any reasonable precision
due to the huge increase in the size of the linear vector set� The objective of the comparison
of the perfectly and partially observable cases was to provide some idea about how hard the
control task under imperfect observability really is� Note that in the perfectly observable case
the investigative actions usually become suboptimal�

Methods with multiple entries

Despite the threat of instability we computed and tested value functions obtained by value
iteration with a least�squares t� We tried two function models� a linear Q�function model
�Littman et al� ��a� and a softmax model �Parr� Russell ���� They were described in section
������ Q�functions were updated in parallel for a xed set of 	�� points that included all the
critical points of the belief simplex� The least�squares ts were computed at every step using
gradient parameter learning techniques� The initial set of Q�functions was based on solutions
acquired for the corresponding blind one�action policies� The least�squares function was tested
after 	�� 
� and �� iterations� Softmax function model was only used on the Maze
� problem�
Solutions with 	� and 	� linear vectors were acquired after 	� and 
� iteration steps� The
functions were updated in parallel for a xed set of �� and 	�� points respectively that included
all critical points of the belief simplex� In both cases models were initialized with the solution
acquired by the simple blind policy method�
Grid�based interpolation�extrapolation methods were tested using nearest�neighbor and

point interpolation rules� for grid sizes of ��� 
�� and ��� belief points� The interpolation
rule has been implemented by a simple interpolation method proposed in section ����� that
ts convex and piecewise linear value functions with a �saw��shaped function� Both nearest�
neighbor and point interpolation were tried on both random and heuristic grids� Heuristic grids
were generated using model�based sampling as described in the previous chapter �section �������
The point interpolation method was also tested on regular grids using the e�cient interpolation
strategy proposed in �Lovejoy �	b��
The control performance of the incremental linear vector method with Sondik�s updates was

tested for solutions acquired after ��� 
��� and ��� point updates� We used the same strategies
to select the belief points that were used for the bound experiments �section ��
��

�The solution for the Shuttle docking problem with the ���� precision was kindly provided by Anthony
Cassandra� It consists of ��� linear vectors�
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����� Experimental design

The quality of each method�s performance was tested using simulations for di�erent sets of
initial belief points� The simulation runs for each initial belief state were �� steps long� In each
run� the actual discounted reward or cost obtained by a control agent powered with a specic
value function approximation were collected� This gave us an approximation of the discounted
score the agent would achieve if it were to run forever� Beyond the overall reward �cost� score�
the other statistics were collected� such as the number of times a goal state was reached and
the number of observations in the run� Methods and their solutions were tested on two test
sets that consisted of�

� 
��� randomly generated belief points �arbitrary points��

� 	��� randomly generated critical belief points�

The Shuttle docking problem has not been tested on a set of random belief points� The reason
for this is that in the Shuttle problem� observations are very good indicators of the underlying
state and thus it is always possible to exclude the majority of underlying process states �only
belief states with few nonzero states are possible�� Therefore a test on the set with randomly
generated belief points does not make much sense�

����� Test results

Simulation results obtained for various methods and test sets are presented both in tables and
graphically �using bar diagrams� in the following way �

� Maze
� in tables ��	� ��
 and gures ���� ��	��

� Maze
�B in tables ���� ��� and gures ��		� ��	
�

� Shuttle in table ��� and gure ��	
�

The simulation results listed in the tables include� the average of discounted rewards �costs�
achieved for all simulation runs �achieved score�� the percentage of times the �goal� state
was reached in �� steps� the average of expected discounted rewards �costs� predicted by an
approximate value function for all simulation runs �expected score�� and the average number
of investigative actions per simulation run ��� steps�� The achieved score �average reward�
is the primary criterion to evaluate the performance of the method� The other statistics are
informative and tend to reveal more about the nature and the behavior of the methods�

Testing methods di�erences

The overall achieved score �average reward or average cost score� for a given test set quanties
the quality of control� However the average score itself does not tell us if two methods with
di�erent average scores are also statistically signicantly di�erent� The reason for this is that
two methods can produce di�erent average scores simply as a result of some underlying random
process� Thus to validate that the scores obtained are not the result of randomness we need
to show that the methods are in fact signicantly di�erent� We do this by comparing not only
their average performance� but by comparing their performance on many individual simulation
runs�
All methods were run and tested on the same set of belief points� We also assured that the

simulator was always initialized from the same process state� This means that sample rewards
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Figure ���� Maze
� comparison of control performance� The achieved score represents the
average reward on the set of 
��� random belief points�

Maze��	 control performance� Test set	 ���� critical belief points

Q-functions

softmax
regular
  grid

random
  grid

heuristic
   grid

fixed random
order
heuristic

2-tier
heuristic

random
  grid

heuristic
   grid

A
c

h
ie

v
e

d
 s

c
o

re

20

30

40

50

60

70

80

  MDP
approx.

   fast
informed

blind
policy

least-squares
      fit

    point
interpolation

nearest
neighbor

incremental linear
  vector method

Figure ��	�� Maze
� comparison of control performance� The achieved score represents the
average reward on the set of 	��� randomly selected critical belief points�
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Maze��	 control performance� Test set	 ���� random belief points
method method achieved percent expected average

parameters score of goal score observ	

MDP �observable� � ���	�� ��� �
	�� �
MDP�approximation � ��	
� ��	
� �
	�� �	��

Fast informed bound � ��	�� ��	
� ��
	�� ��	��
Simple blind policy � ��	�� �
	�� �
	�� ��	
�
least square �t points� ���� iter� �� ��	�� ��	�� ��	�� ��	�
with Q�functions points� ���� iter� 
� ��	� �	�� ��	�� ��	��

points� ���� iter� �� ��	�� ��	�� ��	�� ��	�
least square �t vectors���� points���� iter��� ��	� �
	�� ��	�
 ��	��
method with vectors���� points���� iter�
� ��	�� ��	�� ��	�� �	��
softmax function vectors���� points����� iter��� �	�� ��	� ��	�� ��	��

vectors���� points����� iter�
� ��	�� �
	�� ��	�� �
	�
Grid based regular grid �
�� points� ��	�� �	�� �	�� �	��
point interpolation random grid ��� points� ��	�� �
	�� �
	�� �	
�
method random grid �
�� points� ��	�� ��	�� �
�	� ��	�

random grid ���� points� ��	�� �	�� �
�	�� 	��
heuristic grid ��� points� ��	�� ��	
� ���	�� �	
�
heuristic grid �
�� points� ��	�� ��	� ��	�� �	��
heuristic grid ���� points� ��	�� ��	�� ��	�� �	�

Grid based random grid ��� points� ��	� �� 
�	� ��	��
nearest neighbor random grid �
�� points� ��	�� ��	�� ���	�� ��	��
method random grid ���� points� ��	�� ��	�� ���	�� ��	�

heuristic grid ��� points� �
	�� ��	�� ���	�� ��	��
heuristic grid �
�� points� ��	�� 

	�� �
	�� ��	��
heuristic grid ���� points� ��	�� 
	�� �	�� 

	�

Incremental linear �xed ��� updates� ��	�� �
	� ��	� ��	��
vector method �xed �
�� updates� ��	�� �	�� ��	�� 
�	��

�xed ���� updates� ��	�
 �	�� �	�� 
�	
�
random ��� updates� ��	�
 ��	� ��	� ��	
�
random �
�� updates� ��	�� ��	�� �	�� 
�	��
random ���� updates� ��	� �� �
	�� 
�	��
order heuristic ��� updates� �	�� ��	�� ��	� 
�	��
order heuristic �
�� updates� ��	�� �	�� ��	�� 
�	


order heuristic ���� updates� �
	�� �	�� �
	
� 
�	��

�tier heuristic ��� updates� ��	�� ��	�� ��	�
 
�	�

�tier heuristic �
�� updates� �	�� �	�� �
	�� 
�	��

�tier heuristic ���� updates� ��	�
 ��	�� ��	�� 
�	��

Table ��	� Simulation results for the Maze
� problem and 
��� random belief points� The
table includes results for the perfectly observable MDP control �for the purpose of comparison��
MDP�based approximation� fast informed bound method� simple blind policy� least square t
method with Q�function and softmax functions � tested for di�erent number of iteration steps
�	�� 
�� ��� and di�erent numbers of sample points �softmax also for 	� or 	� linear vectors��
grid�based point interpolation strategy with regular� random and heuristic grids �for various
grid sizes�� grid�based nearest neighbor with random and heuristic grid �for various grid sizes��
and incremental linear vector method for xed random� dynamic random� order heuristic and
two�tier heuristic point selection strategies �for di�erent number of updates��
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Maze��	 control performance� Test set	 ���� critical belief points
method method achieved percent expected average

parameters score of goal score observ	

MDP �observable� � ���	
� ��� �
	�� �
MDP�approximation � ��	�� ��	�� �
	�� �	��

Fast informed bound � ��	�� �
	�� ���	�� 	��
Simple blind policy � ��	�� ��	�� ��	�
 �	�

least square �t points� ���� iter� �� ��	�� ��	�� �	�� 	�
with Q�functions points� ���� iter� 
� ��	� ��	�� ��	

 	�

points� ���� iter� �� ��	�� �
	�� �	�� ��	��
least square �t vectors���� points���� iter��� ��	�� ��	�� ��	�� ��	��
method with vectors���� points���� iter�
� ��	�� �
	�� ��	�� ��	�

softmax function vectors���� points����� iter��� ��	�� ��	�� ��	�� 
	��

vectors���� points����� iter�
� ��	�� ��	� ��	�� ��	��
Grid based regular grid �
�� points� ��	�� �
	�� ��
	�� �	��
point interpolation random grid ��� points� ��	�� �� �
	�� �	��
method random grid �
�� points� ��	�� �
	�� �
	�� 	�

random grid ���� points� ��	
 �
	�� �
	�� 	��
heuristic grid ��� points� ��	�� ��	
� ���	�� �	
�
heuristic grid �
�� points� ��	�� ��	�� ��	�� ��	��
heuristic grid ���� points� ��	�� ��	
� �
	�� ��	


Grid based random grid ��� points� ��	

 ��	�� 
��	� �	

nearest neighbor random grid �
�� points� �	
 ��	�� ���	�� 
	��
method random grid ���� points� ��	�� 
�	�� ���	
� ��	��

heuristic grid ��� points� ��	�� �	
� �
�	

 ��	��
heuristic grid �
�� points� ��	� ��	� �
�	�� 
�	�
heuristic grid ���� points� ��	
� �
	�� 	�� ��	��

Incremental linear �xed ��� updates� ��	�
 �
	�� �
	

 ��	
vector method �xed �
�� updates� ��	�� �	�� �
	�
 

	��

�xed ���� updates� ��	�� 
	�� ��	�
 

	�
random ��� updates� ��	�� ��	�� �
	� ��	
�
random �
�� updates� ��	�� �	�� �
	�� 
�	�
random ���� updates� ��	�� � ��	�� 
�	��
order heuristic ��� updates� �	�� ��	�� ��	�� 

	��
order heuristic �
�� updates� ��	� �	�� ��	�� 
�	�
order heuristic ���� updates� ��	�
 �	�� ��	�
 
�	��

�tier heuristic ��� updates� ��	� �	�� ��	�� 

	��
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	�� �	�� �	


�tier heuristic ���� updates� �
	� �	
� ��	�� 

	�


Table ��
� Simulation results for the Maze
� problem and the set of 	��� critical belief points�
The table includes results for the perfectly observable MDP control �for the purpose of com�
parison�� MDP�based approximation� fast informed bound method� simple blind policy� least
square t method with Q�function and softmax functions � tested for di�erent number of itera�
tion steps �	�� 
�� ��� and di�erent numbers of sample points �softmax also for 	� or 	� linear
vectors�� grid�based point interpolation strategy with regular� random and heuristic grids �for
various grid sizes�� grid�based nearest neighbor with random and heuristic grid �for various grid
sizes�� and incremental linear vector method for xed random� dynamic random� order heuristic
and two�tier heuristic point selection strategies �for di�erent number of updates��
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Maze��B �costs�	 control performance� Test set	 ���� random belief points
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Figure ��		� Maze
�B� comparison of control performance� The achieved score represents
the average cost on the set of 
��� random belief points� Lower scores correspond to better
performance on this problem�

Maze��B �costs�	 control performance� Test set	 ���� critical belief points
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Figure ��	
� Maze
�B� comparison of control performance� The achieved score represents the
average reward on the set of 	��� random critical belief points� Lower scores are better for this
problem�
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Maze��B �costs�	 control performance� Test set	 ���� random belief points
method method achieved percent expected average

parameters score of goal score observ	

MDP �observable� � ���	�� ��� ���	
� �
MDP�approximation � 
��	�� �	�� ���	
� �	
�

Fast informed bound � 
��	�� �	
� ���	�� �	��
Simple blind policy � 
��	�� ��	�� ���	�� 
�	
�
least square �t points� ���� iter� �� 

�	�� �	� 
�
	�� ��	��
with Q�functions points� ���� iter� 
� 

�	�� �	
� 
��	�� ��	�

points� ���� iter� �� 

�	�� �	�� 
��	�
 ��	��
Grid based regular grid �
�� points� 
��	�� ��	�� ��	�� �
	��
point interpolation random grid ��� points� 
��	�� 
	�� ���	�� �	��
method random grid �
�� points� 
�	�� �	�� ���	�� �	��

random grid ���� points� 
��	� 
	
� ���	�� �	��
heuristic grid ��� points� 
��	�� ��	�� ���	� �
	��
heuristic grid �
�� points� 
��	�� �
	�� ���	�� �
	�
heuristic grid ���� points� 
��	�� ��	� ���	�� ��	��

Grid based random grid ��� points� ��
	�� ��	�� ���	� ��	
�
nearest neighbor random grid �
�� points� ���	
� 
�	�� ���	�� ��	�

method random grid ���� points� ���	�� 
�	
� ���	�� ��	��

heuristic grid ��� points� ���	�� �
	�� ���	�� �
	��
heuristic grid �
�� points� ��	�� ��	�� ���	� ��	��
heuristic grid ���� points� ���	� ��	�� ���	�� ��	�


Incremental linear �xed ��� updates� 
��	� �	�� 
�	 ��	��
vector method �xed �
�� updates� 

�	
� �	�� 
��	�� 	�


�xed ���� updates� 
��	�� �	�� 
��	�� �	��
random ��� updates� 

�	�� �	� 
�	� 	��
random �
�� updates� 
�	�� �	�� 
�	� �	��
random ���� updates� 
��	�� �	�� 
��	�� �	��
order heuristic ��� updates� 

�	�� ��	�� ���	� �
	�

order heuristic �
�� updates� 
�	�� �	�� 
�	�� �	��
order heuristic ���� updates� 
��	�� �	�� 
��	�� �	��

�tier heuristic ��� updates� 
��	�� �� ��	�� ��	��

�tier heuristic �
�� updates� 

�	�� �	�� 
��	�� �	��

�tier heuristic ���� updates� 


	�� �	�� 
��	�� �	�

Table ���� Simulation results for the Maze
�B problem �cost minimization� and 
��� random
belief points� The table includes results for the perfectly observable MDP control �for the
purpose of comparison�� MDP�based approximation� fast informed bound method� simple blind
policy� least square t method with Q�function functions � tested for di�erent number of iteration
steps �	�� 
�� ���� grid�based point interpolation strategy with regular� random and heuristic
grids �for various grid sizes�� grid�based nearest neighbor with random and heuristic grid �for
various grid sizes�� and incremental linear vector method for xed random� dynamic random�
order heuristic and two�tier heuristic point selection strategies �for di�erent number of updates��

	��



Maze��B �costs�	 control performance� Test set	 ���� critical belief points
method method achieved percent expected average

parameters score of goal score observ	

MDP �observable� � ���	�� ��� ���	�� �

MDP�approximation � 
��	� �	�� ���	�� �	��
Fast informed bound � 
��	�� �	
� ��	�� �	��
Simple blind policy � 
��	 ��	�� ���	�� 
�	��

least square �t points� ���� iter� �� �	�� �	
� 
��	
� 
�	�
with Q�functions points� ���� iter� 
� 
��	�� �	�� 
�
	� 
�	��

points� ���� iter� �� 
��	�
 �	
� 
��	�� 
�	��
Grid based regular grid �
�� points� 
��	� ��	�� ���	�� �	�

point interpolation random grid ��� points� 
��	
� � ���	�� �	
�
method random grid �
�� points� 
�
	�� �	�� ���	�� �	�


random grid ���� points� 
��	�� �	�� ���	�� �	��
heuristic grid ��� points� 
��	� �	
� ���	�� �	��
heuristic grid �
�� points� 
��	
� �	�� ���	�� �	
�
heuristic grid ���� points� 
��	�� �	�� ���	
� �	�

Grid based random grid ��� points� ���	
� 
�	�� �
�	�� �
	��
nearest neighbor random grid �
�� points� ���	�� �� ���	� 
�	��
method random grid ���� points� �
�	� 
� ���	�
 ��	��

heuristic grid ��� points� 
��	�� ��	
� ��
	�� ��	��
heuristic grid �
�� points� ���	�� ��	�� ���	
� ��	�
heuristic grid ���� points� 
��	�� ��	�� ���	�� ��	��

Incremental linear �xed ��� updates� 
��	�� ��	�� 
��	
� ��	��
vector method �xed �
�� updates� �	�� 
	�� 
��	�� �	�

�xed ���� updates� �	�� �	�� 

�	�� �	��
random ��� updates� 
��	�� ��	�� 
��	�� 	�
random �
�� updates� ��	�� �	
� 
��	�� �	��
random ���� updates� ��	
� �	�� 


	�� �	�
order heuristic ��� updates� 
�
	�� ��	�� 
��	�� ��	
�
order heuristic �
�� updates� 
�
	�� �	�� 
�
	�� �	��
order heuristic ���� updates� ��	�� �	�� 

�	�
 �	��

�tier heuristic ��� updates� 
��	�� ��	
� 
��	� ��	�

�tier heuristic �
�� updates� ��	�� �	�� 

�	�� �	�

�tier heuristic ���� updates� �	�� �	�� 
��	�� �	
�

Table ���� Simulation results for the Maze
�B problem �cost minimization� and 	��� random
critical belief points� The table includes results for the perfectly observable MDP control �for
the purpose of comparison�� MDP�based approximation� fast informed bound method� simple
blind policy� least square t method with Q�function functions � tested for di�erent number of
iteration steps �	�� 
�� ���� grid�based point interpolation strategy with regular� random and
heuristic grids �for various grid sizes�� grid�based nearest neighbor with random and heuristic
grid �for various grid sizes�� and incremental linear vector method for xed random� dynamic
random� order heuristic and two�tier heuristic point selection strategies �for di�erent number
of updates��

	��



Shuttle	 control performance� Test set	 ���� critical belief points
method method achieved percent expected average

parameters score of goal score observ	

MDP �observable� � ��	�� ��� ��	� �
POMDP optimal ���� precision ��	 ��� ��	�� �
MDP�approximation � ��	�� ��� ��	�� �

Fast informed bound � ��	�� ��� ��	�� �
Simple blind policy � 

	�� ��� �	
� �
least square �t points� ���� iter� �� ��	� ��� ��	� �
with Q�functions points� ���� iter� 
� ��	� ��� 
�	�� �

points� ���� iter� �� ��	 ��� 
�	�� �
Grid�based regular grid ��� points� ��	� ��� ��	�� �
point interpolation regular grid ��
� points� ��	�� ��� ��	�� �
method regular�grid ���� points� ��	�� ��� ��	�� �

random grid ��� points� ��	� ��� ��	�� �
random grid �
�� points� ��	� ��� ��	�� �
random grid ���� points� ��	�� ��� ��	�� �
heuristic grid ��� points� ��	�� ��� ��	�� �
heuristic grid �
�� points� ��	�� ��� ��	�� �
heuristic grid ���� points� ��	�� ��� ��	�� �

Grid�based random grid ��� points� ��	� ��� ��	�� �
nearest neighbor random grid �
�� points� ��	� ��� ��	�
 �
method random grid ���� points� ��	�� ��� ��	�
 �

heuristic grid ��� points� ��	�� ��� ��	�� �
heuristic grid �
�� points� ��	�� ��� ��	�� �
heuristic grid ���� points� ��	� ��� ��	�� �

Incremental linear �xed ��� updates� ��	�� ��� �	� �
vector method �xed �
�� updates� ��	� ��� ��	�� �

�xed ���� updates� ��	�� ��� ��	�� �
random ��� updates� 
�	�� ��� 
�	�� �
random �
�� updates� ��	�� ��� ��	�� �
random ���� updates� ��	�� ��� ��	�� �
order heuristic ��� updates� ��	�
 ��� 

	�� �
order heuristic �
�� updates� ��	 ��� ��	
� �
order heuristic ���� updates� ��	�� ��� ��	�� �

�tier heuristic ��� updates� 
�	�� ��� 
�	�� �

�tier heuristic �
�� updates� ��	� ��� ��	� �

�tier heuristic ���� updates� ��	�� ��� ��	�� �

Table ���� Simulation results for the Shuttle problem and 	��� random critical belief points�
The table includes results for the perfectly observable MDP control �for the purpose of com�
parison�� POMDP optimal solution �	��� precision�� MDP�based approximation� fast informed
bound method� simple blind policy� least square t method with Q�function functions � tested
for di�erent number of iteration steps �	�� 
�� ���� grid�based point interpolation strategy with
regular� random and heuristic grids �for various grid sizes�� grid�based nearest neighbor with
random and heuristic grid �for various grid sizes�� and incremental linear vector method for
xed random� dynamic random� order heuristic and two�tier heuristic point selection strategies
�for di�erent number of updates��

	��



Shuttle	 control performance� Test set	 ���� critical belief points
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Figure ��	�� Shuttle problem� comparison of control performance� The achieved score repre�
sents the average reward on the set of 	��� randomly selected critical belief points�

for the same initial belief point and for any two methods were dependent� that is samples were
connected �paired� �Sachs ���� Then to determine that two methods are di�erent we�

� computed their sample score di�erences �di�erences in rewards for all simulation runs��

� tested the null hypothesis that the mean �median� of the di�erences is zero�

Rejecting the null hypothesis at some signicance level then corresponds to the situation in
which two methods compared are di�erent�
To check mutual di�erences of all methods we applied the above di�erence test pairwise�

As sample di�erences turned out to be nonnormally distributed� we applied the nonparametric
Wilcoxon matched pair signed�rank test to test the null hypothesis for every pair of methods
�see �Sachs �����
The methods were tested pairwise and compared using three signicance levels ����� ���	 and

����	� Thus it might be the case that the null hypothesis �two methods are equal� is rejected
at a higher signicance level �say ����� but not at the lower level �e�g� ���	�� We performed
pairwise signicance tests on all problems� using a set of 
��� random belief points for maze
problems and a set of 	��� random critical belief points for the Shuttle problem� The complete
results of pairwise tests for Maze
� and Maze
�B problems� signicance level ���� and a set
of 
��� random belief points are summarized in tables ��� and ���� The pairwise signicance
results for the Shuttle problem are simpler� This is because there are only three groups of
methods� such that methods from di�erent groups are signicantly di�erent� while methods
within groups are not signicantly di�erent from each other� The rst group consists of the
blind policy method only� the second from solutions for incremental linear vector method with

	��



problem test set worst case di�erence at signicance level
���� ���	 ����	

Maze
� 
��� random ��	� ��	� ��
�
Maze
�B 
��� random 
��
� 
��
� 
��
�
Maze
�B w�o nearest�neighbor 
��� random 	���� 	���� 	���

Shuttle 	��� critical ��
� ���� ����

Table ���� The table lists worst case di�erences in achieved scores for all pairs of methods that
are not statistically di�erent at signicance levels ����� ���	� and ����	

�� update steps and random and two�tier heuristic strategies� and third group corresponds to all
other methods� Note that these groups mimic nicely the di�erences in average scores achieved�
For the set of test results obtained� when two methods are shown to be statistically sig�

nicantly di�erent at some level of signicance� we would like to know whether and how that
di�erence shows up in their average score� To get an estimate of this� we performed the follow�
ing�
For each problem� and for each pair of methods that failed to be signicantly di�erent �at

a given signicance level�� we recorded the di�erence in average scores registered by the two
methods� To present these data in a simplied form� we show the maximum of these di�erences
in Table ���� Any score di�erences larger than these numbers correspond� in our experiments�
with pairs of methods that are indeed signicantly di�erent from each other�
Worst�case di�erence quantities for the Maze
�B problem turned out to be in�uenced mostly

by grid�based nearest�neighbor methods combinations �with bad performance� relatively large
score spans and no signicant statistical di�erence�� Because of that we also computed worst�
case di�erences without nearest�neighbor entries and included them in the table ���� Note
that the listed quantities do not mean that a new method with a larger score di�erence is
automatically di�erent at the given signicance level nor that two methods with smaller average
score span cannot be signicantly di�erent� This is simply because the test used relies on 
���
or 	��� matched pairs of results and not the average score� Note also that di�erence quantities
should not be compared across problems�
Overall the signicance test showed that methods with larger achieved score di�erences are

indeed statistically di�erent� This means that observed di�erences are highly likely not to be
simply the result of randomness and comparison of the methods along achieved average scores
is justied�

����� Evaluation of results

MDP based approximation

The MDP based approximation method constructs a value function using a solution for a
perfectly observable case� that is one in which no partial observability and no investigative
actions need to be considered� Therefore� the solution is likely to approximate the optimal
value function better for problems with less uncertainty and partial observability� This was
conrmed also in our experiments� in which MDP�based approximation posted poor results for
the Maze
� problem� good results for the Maze
�B problem and excellent scores for the Shuttle
docking problem�
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Maze��	 pairwise signicance test� Test set	 ���� random belief points
method method ref	 achieved methods not di�erent at

parameters num	 score signi�cance level �	��

MDP �observable� � � ���	��
MDP�approximation � 
 ��	
� ��� ��� ��

Fast informed bound � � ��	�� �� �� �� 
�
Simple blind policies � � ��	�� ��� ��
Least square method points� ���� iter� �� � ��	� �� �� 
�� 
�
with Q�functions points� ���� iter� 
� � ��	� �� �� 
�� 
�

points� ���� iter� �� � ��	�� �� 
�
Least square vectors���� points���� iter��� � ��	� ��
method with vectors���� points���� iter�
�  ��	�� ��
softmax function vectors���� points����� iter��� �� �	� �� ��

vectors���� points����� iter�
� �� ��	��
Grid based regular grid �
 ��	�
point interpolation random grid ��� points� �� ��	�� 
� ��� ��� ��
method random grid �
�� points� �� ��	�� 
� ��� ��� ��

random grid ���� points� �� ��	�� 
� ��� ��
heuristic grid ��� points� �� ��	�� ��� ��
heuristic grid �
�� points� �� ��	�� �� 
heuristic grid ���� points� �� ��	�� �� ��

Grid based random grid ��� points� � ��	�
nearest neighbor random grid �
�� points� 
� ��	�� 
�� 
�
method random grid ���� points� 
� ��	�� 
�� 
�

heuristic grid ��� points� 

 �
	��
heuristic grid �
�� points� 
� ��	�� 
�� 
�
heuristic grid ���� points� 
� ��	��

Incremental linear �xed ��� updates� 
� ��	�� �� �� �� �� 
�
vector method �xed �
�� updates� 
� ��	�� 
�� 
� ��� �
� ��� ��

�xed ���� updates� 
� ��	�
 
�� 
� ��� �
� ��� ��� ��
random ��� updates� 
� ��	�
 �� �� 
�
random �
�� updates� 
 ��	�� 
�� 
�� ��� ��� �
� ��� ��
random ���� updates� �� ��	� 
�� 
�� 
� �
� ��� ��� ��
order heuristic ��� updates� �� �	�� 
� ��� ��
order heuristic �
�� updates� �
 ��	�� 
�� 
�� 
� ��� ��� ��
order heuristic ���� updates� �� �
	�� 
�� ��� ��
heuristic 
�tier ��� updates� �� ��	�� ��� ��
heuristic 
�tier �
�� updates� �� �	�� 
�� 
�� 
� ��� ��� �
� ��
heuristic�
�tier ���� updates� �� ��	�
 
�� 
�� 
� ��� �
� ��

Table ���� The results of the pairwise signicance tests for the Maze
� problem and a set of 
���
randomly selected belief points� The combinations of methods for which the null hypothesis
�two methods are same� cannot be rejected at signicance level ���� are listed� Every pair of
methods was tested using nonparametric Wilcoxon matched pair signed�rank test�

	�




Maze��B �costs�	 pairwise signicance test� Test set	 ���� random belief points
method method ref	 achieved methods not di�erent at

parameters num	 score signi�cance level �	��

MDP �observable� � � ���	��

MDP�approximation � 
 
��	�� ��� ��� ��
Fast informed bound � � 
��	�� �� ��� 
�� 
�� 
�� ��� �

Simple blind policies � � 
��	�� �

Least square method points� ���� iter� �� � 

�	�� �� �� 

� 
�� 
�� 
�� 
��
��� �


with Q�functions points� ���� iter� 
� � 

�	�� �� �� 

� 
�� 
�� 
�� 
��
��� �


points� ���� iter� �� � 

�	�� �� �� �� 

� 
�� 
�� 
�� ���
�


Grid based regular grid � 
��	�� �
point interpolation random grid ��� points�  
��	�� ��� ��� ��� ��� 
�� ��
method random grid �
�� points� �� 
�	�� 
� � ��� ��� ��� 
�

random grid ���� points� �� 
��	� �� � ��� ��� ��� 
�� ��
heuristic grid ��� points� �
 
��	��
heuristic grid �
�� points� �� 
��	�� 
� � ��� ��� ��
heuristic grid ���� points� �� 
��	�� 
� � ��� ��� ��

Grid based random grid ��� points� �� ��
	��
nearest neighbor random grid �
�� points� �� ���	
� 
�
method random grid ���� points� �� ���	� 
�

heuristic grid ��� points� �� ���	�� �� 
�
heuristic grid �
�� points� � ��	�� ��
heuristic grid ���� points� 
� ���	� ��� ��� ��

Incremental linear �xed ��� updates� 
� 
��	� �� � ��� ��� 
�� ��
vector method �xed �
�� updates� 

 

�	
� �� �� �� 
�� 
�� 
�� 
�� 
��


� ��� �

�xed ���� updates� 
� 
��	�� 
�� 
�� 
�� 

random ��� updates� 
� 

�	�� �� �� �� �� 
�� 

� 
�� ���

��� �

random �
�� updates� 
� 
�	�� �� �� 

� 
�� 
�� 
�� 
�

��� �

random ���� updates� 
� 
��	�� �� 

� 
�� 
�� 
�� 
� ���

�

order heuristic ��� updates� 
� 

�	�� �� �� �� 

� 
�� ��� ��� �

order heuristic �
�� updates� 
� 
�	�� �� �� �� 

� 
�� 
�� 
�� 
�

��� �

order heuristic ���� updates� 
 
��	�� 

� 
�� 
�� 
�� 
�
heuristic 
�tier ��� updates� �� 
��	�� �� � ��� 
�� 
�� 
�
heuristic 
�tier �
�� updates� �� 

�	�� �� �� �� 

� 
�� 
�� 
�� 
��


�� �

heuristic�
�tier ���� updates� �
 


	�� �� �� �� �� 

� 
�� 
�� 
��


�� 
�� ��

Table ���� The results of the pairwise signicance tests for the Maze
�B problem and a set of

��� random belief points� The combinations of methods for which the null hypothesis �two
methods are same� cannot be rejected at signicance level ���� are listed� Every pair of methods
was tested using nonparametric Wilcoxon matched pair signed�rank test�

	��



Blind policy method

The simple blind policy method produces a solution that combines the behaviors of blind
�no�information� agents� This means that the performance of such a solution should perform
badly when observations are very informative and can help signicantly reduce the uncertainty
about the underlying process state� On the other hand� the solution should be better when
observations are very noisy and are imprecise indicators of the underlying process state� In
such a case� acting blindly should yield results closer to results from informed but very weak
information source� Again� we were able to see such a behavior on our test problems in which
a relatively good performance was achieved on the Maze
� problem and worse results for the
Maze
�B and Shuttle docking problems�

Fast informed bound method

We were surprised by the very good performance of the newly designed fast informed bound
method� Interestingly� this method uses only jAj linear vectors �equals the number of actions��
Very good results on all test problem can be attributed mostly to the update strategy the
method employs� It is best viewed as an approximation of the Sondik�s update rule� It looks
like that this strategy produced a relatively good approximation of the shape of the �exact�
value function for all of the tested POMDP problems� However� the fact that our problems had
sparse transition matrices and single �goal� state might have been an important factor in this
respect�

Least�squares t

The approximate value iteration method with the least�squares t approach was tested with
a linear Q�functions model and for the Maze
� also with a softmax function model� The Q�
function method achieved very good simulation results on all three problems� Interestingly� for
Maze
�� a simpler Q�function model achieved better results than more complex softmax model
with 	� and 	� linear vectors� Despite the threat of instability� the functions seemed to stabilize
after about 	� iterations and did not change dramatically afterwards� For the softmax model
we also tried to start the approximate value iteration using di�erent initial functions and the
same set of grid points� The value function seemed to stabilize again but in a di�erent region�
This behavior can be attributed to the method�s problems with unique convergence�
In general� the high performance of the least�squares t can be attributed to the choice of

a function model that allowed us to match the optimal value function reasonably well because
of its the convex and piecewise linear shape�

Grid�based interpolation�extrapolation methods

The grid�based interpolation�extrapolation methods represented by the point interpolation and
nearest�neighbor approaches posted di�erent results on di�erent problems� The results di�ered
also for random and heuristic grid�point selection strategies�
The results show that for the point interpolation entries the scores achieved and their quality

are closely related to and depend on the performance of the MDP�approximation� That is� a
performance of MDP�approximation solution is correlated with a performance of point interpo�
lation methods� Although methods with point interpolation rules improved on the MDP�based
approximation� especially for problems in which MDP�based approximation performed poorly
�Maze
�� Maze
�B�� we did not see a dramatic di�erence �even for larger grid sizes�� and other
methods �e�g� fast informed bound and incremental linear vector method� were usually more

	��



successful� Heuristic grids tended to improve the performance most of the time� especially for
problems in which MDP�based approximation method performed badly �Maze
� problem��
The nearest neighbor approach delivered the worst performance on both maze problems�

although the performance was usually boosted by heuristic grids� The only problem where near�
est neighbor achieved results comparable to other methods was the Shuttle docking problem�
We believe that main reasons for this are� the optimal value function for the Shuttle docking
problem is relatively �at� the di�erences in values for all critical points of the belief space are
not very big� and the grid sizes we tested were su�cient to sample enough of the relevant belief
space �� states�� On the other hand� a poor showing of the method on both maze problems for
tested grid sizes can be attributed to the inability of the method to approximate the shape of
the optimal value function properly�
We believe that the main reason for the poor performance of nearest neighbor and not very

convincing results for point interpolation rules on both maze problems was that they were not
able to t the shape of the optimal piecewise linear and convex value function properly� The
shape of the value function for the grid�based point interpolation�extrapolation techniques is
in�uenced strongly by the selection of grid points and an interpolation�extrapolation rule used
to estimate nongrid points� Then poor choices of grid points and interpolation�extrapolation
rules lead to poor shape approximations �e�g� the choice of nearest neighbour rule leads to
piecewise constant function��

Incremental linear vector methods

The best performance was obtained by the incremental linear vector method with Sondik�s
updates� The method was tested using multiple point selection strategies that included xed�
random� and heuristic approaches� In all cases the method was started from the initial simple
blind policy solution� Interestingly� the di�erences between various point selection strategies
turned out to be very small� and we did not observe any signicant improvement using any of
the methods� The slim di�erences can be explained by�

� The e�ect of a derivative �linear vector� update is that it approximates well also points in
the neighborhood of the belief point that seeded the update� This reduces the sensitivity
of the method to a specic point selection strategy�

� The shape of the optimal solution over the belief space is approximated well in all cases
using a relatively small number of incremental updates� This is also supported by the fact
that no or small improvements in performance for value functions were seen for solutions
ontained after 
�� and ��� updates�

� The heuristics used are not very good and better point selection strategies can be devised�

The method was able to eliminate relatively rapidly the dependence and disadvantage from
the initial value function choice �simple blind policy solutions� on all three test problems� This
is documented by a signicant improvement of performance of the method �after more updates�
for cases in which blind policy solution performed poorly� like the Maze
�B and the Shuttle
docking problem� Overall we believe that the high performance of the method is mainly due to
its ability to approximate the shape of the optimal value function well�
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����� Summary of test results

Top performers

Overall� the best control performance was obtained by the new incremental linear vector method
with Sondik�s updates� It achieved the best or close to best results on all three test problems�
The second best performer was the least�squares method with linear Q�functions� The third
best performer was the newly proposed fast informed bound method� Interestingly all three
methods delivered top results on all three test problems� their performance was not test specic�
Also signicance tests for the Maze
� and Maze
�B problems conrmed that these methods
indeed di�er from the others� For the Maze
� problem the linear vector methods �with more
updates� turned out also to be signicantly di�erent from the other two top performers�
The unifying factor of the three best performing methods is that all of them try to approx�

imate the shape of the value function over iteration steps� This is done� in the case of linear
vector method by updating derivatives �linear vectors� using exact Sondik�s update rule� for
the fast bound method by using a simple update rule that approximates the derivatives of the
value function� and for the least�squares t by providing suitable piecewise linear and convex
parametric models� The value iteration procedure that tries to preserve the shape over iteration
steps also tends to approximate the shape of the optimal value function better� This is very
important for the control problem� where we would like to guess the right relative �rather than
absolute� value function values for di�erent belief points�
The top three methods have quite di�erent properties� The incremental linear vector method

gradually improves the piecewise linear function� Under the appropriate point selection strategy
is guaranteed to converge to the optimal solution� Unfortunately� the price paid for this is that
the complexity of the value function grows with every iteration although this growth is at most
linear �in contrast to the potential exponential growth for the exact method�� On the other
hand� both the Q�function least�squares t method and the fast informed bound method work
with restricted value functions that consist of jAj linear vectors� This keeps the complexity
of their updates constant over iteration steps� The main di�erence between the two methods
is that the fast informed bound method computes new updates directly �which can be done
quickly�� It upper bounds the exact update and it is guaranteed to converge uniquely� On the
other hand� the Q�function least�squares t needs to sample and update a set of belief points
rst� does not provide bounds and is not guaranteed to converge uniquely�

Worst performing methods

All of the other methods tested had results that were more problem sensitive� We believe that
the main factor in all cases was the shape of the value function used� which can be more or less
suitable for the problem at hand�
The simulation results showed that the grid�based nearest neighbor method performs worst�

Especially bad were the results it obtained on maze problems� where it was outperformed by
all other methods �even by simple blind policy and MDP approximations� by a large margin�
This is both for heuristic and for random grids� The signicance tests for maze problems
showed that results achieved by grid�based nearest neighbor methods are not a consequence of
randomness and that they di�er signicantly from all other contenders� The main reason for
its poor performance was the usage of the piecewise constant value functions that do not t the
underlying piecewise linear and convex value functions for smaller grid resolutions very well�
This makes the nearest neighbor method unsuitable for larger belief space POMDP problems�
and even in a case when the grid resolution is su�cient� there are always more e�cient and
better methods available�
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method runtime �sec�

MDP�based approximation 

Simple blind policy �

Fast�informed bound �
Least�squares �t with Q�functions ���� sample points�� �� parallel updates 

Grid�based point interpolation with the 
�� point regular grid ���

Table ���� Execution times of some of the implemented algorithms on Maze
� problem� The
algorithms were implemented in Lucid Common Lisp and were run on a Sun Microsystems
SPARC�	�� All methods except least�squares t were implemented using value iteration strate�
gies and relative stopping criterion with a precision parameter ��	� Least�squares t method
with linear Q�functions used 	�� sample points and parallel updates� Time it took the method
to compute 	� iterations is listed� Also grid�based point interpolation method with the regular
grid of size 
	� points is used�

��� Runtimes of methods

Value function approximation methods were implemented in Lucid Common Lisp and were
run on a Sun Microsystems SPARC�	�� Times to compute results for di�erent methods varied
on di�erent test problems� point selection strategies and�or choice of other parameters �like
precision parameters for the value iteration strategy�� Also various methods presented here have
been implemented with di�erent degrees of e�ort devoted to optimization of the calculations�
Therefore� di�erences in execution time should not be a basis for relative comparison of the
methods� The runtime results are presented here for informational purposes only�
Tables ��� and ��	� show runtimes of some of the implemented algorithms for the Maze
�

problem in seconds� Table ��	� is used for incremental methods and lists times needed to
achieve the improvement for a new grid�size or new set of updates� To illustrate the strong
dependence of methods on parameters� assume that we change the precision parameter for the
grid�based point interpolation method with the regular grid in table ��� from ��	 to ���� Then
the execution time of the method drops from ��� seconds to 
�� seconds�
The running times for the Maze
�B problem were not very far from those for the Maze
��

On the other hand� solutions for the simpler Shuttle problem were acquired very quickly� for
example a solution for the fast informed bound method �with precision ��	� was computed in
less than 	 second� and all ��� incremental linear vector method updates took about �� seconds�

��� Experimental biases

Although we have tried to cover a spectrum of POMDP problems of di�erent complexity in
our experiment� it is our obligation to point out known deciencies and possible gaps in our
approach� The main problem we currently see is related to the selection of test problems used
for our experiments�
In general all of the test problems have relatively small transition and observation complex�

ity� for example there are at most four possible adjacent rooms the robot can move into from
any specic room� Because of this the transition and observation matrices are sparse with a lot
of zeros� Thus the simulation results and the evaluation of methods are biased towards prob�
lems with such local characteristics� Although this bias may be justied for many real�world
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�� ���� ���� 
��� 
�� ��� �
�� ����

incremental linear
vector method

� �
 �� ��
 �
 ���� ��
� ���� ��� ���
 ���

Table ��	�� Execution times of some incremental algorithms for the Maze
� problem� Grid�
based point interpolation method uses the interpolation strategy and the the heuristic grid
expansions proposed in section ������ For every grid renement �increase of a grid by �� points�
the method is iterated until the precision of ��� reached� Time it takes the method to obtain
the solution for a new grid is measured and listed� Grid based nearest�neighbor works with the
same heuristic grid selection strategy and relative stopping criterion� Incremental linear vector
method uses a xed set of �� points that are repeatedly updated �using Sondik�s linear vector
updates�� The method is initiated with a simple blind policy solution and times to execute ��
update increments are listed�

problems �with natural local characteristics� to make the experiment better we also need to
test problems with high connectivity�

��	 Summary

Test conclusions

In the rst part of the experiment we tested bounds produced by several di�erent value function
methods using various grid sizes and number of updates� Although we were able to obtain sig�
nicant improvements in the bound quality for both initial bounds �MDP�based approximation
and simple blind policy method�� we were not able to achieve very tight bound di�erences for
the Maze
� problems for the tested range of grids and updates� This suggests that high quality
bounds are very likely hard to obtain for larger and more complex POMDP problems� Thus�
in general� one cannot expect to get very good bounds for complex problems for free and one
needs to pay the toll for each improvement�
In the second part of the experiment we tested the control performance of several value

function approximations� All tested methods were evaluated using a score representing average
achieved reward �cost� for a set of simulation runs for two sets of belief points� To make sure
that scores obtained are not a result of randomness �a sensible concern when dealing with
stochasticity� we performed pairwise statistical signicance tests for all methods� These tests
showed that methods with larger achieved score di�erences indeed di�er signicantly and thus
evaluation along average scores for tested methods is justied�
The control performance achieved by di�erent methods seems to be completely unrelated to

the quality of the bounds� This conrms that for the purpose of control� it is not absolute but
relative values� that is the shape of the value function that matters� This also gives us hope
that there are fast and e�cient methods that can lead to good control performance for more
complex POMDP problems� This is not true when the criterion used to judge the method is
the quality of the bounds in absolute terms�
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Methods that achieved the best simulation results used piecewise linear and convex repre�
sentations of value functions� and attempted to approximate the shape of the value function
over update steps� The clear winner for all three problems was the new incremental linear
vector method that computes linear vectors �derivatives� for selected points and incrementally
updates the existing piecewise linear and convex approximation with new vectors� The advan�
tage of the incremental linear vector method is that it can continue to improve the acquired
solution with more time� In the limit� under a suitable point selection strategy� it converges
to the optimal value function� The other top performers were the least�squares method with
Q�function model and the fast informed bound method �also a new one�� They use a restricted
number of jAj linear vectors over all iteration steps� This is unlike the incremental linear vector
method which can grow the size of the linear vector set with every iteration� Of the two� only
the fast informed bound method is guaranteed to converge� the least�squares t can su�er from
the problem of instability and divergence�
The worst control performance was achieved by the grid�based nearest�neighbor method�

which approximates the optimal piecewise linear and convex value function with a piecewise
constant function� The results suggests that nearest�neighbor is not suitable for the purpose of
control for large belief space POMDPs and that far better alternatives are available�

Contributions

This chapter presents and analyzes experiments we have performed on a set of three innite
discounted horizon problems of di�erent complexity using a large variety of di�erent approxi�
mation and bound methods� The need of large scale experiments in the POMDP domain for
the future exploration and understanding of the domain is enormous� Thus� the main con�
tribution of our work is in the large experimental study� providing achieved results and their
interpretation�
In our work we have experimentally tested various new and existing value function approx�

imation methods� their extensions and modications� The results presented showed that there
are various e�cient alternatives to the least�squares t approach that seemed to dominate the
AI literature� These are based on grid�based or other alternative approaches� like fast informed
bound� Their main advantage is that they do not su�er from the threat of potential instability
when combined with the value iteration method to solve innite discounted horizon problems�
Also results they achieve are often superior or comparable to those by the least�squares method�
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Chapter �

Extending POMDP framework�

Management of ischemic heart

disease

The main advantage of the POMDP framework is its ability to model two sources of uncertainty
that stem from action outcome and imperfect observability� This does not mean that the basic
framework can be applied to any domain without changes or that the framework can capture
all important features of any domain� When dealing with real�world problems we must often
�adapt� the formalism to t the domain� Extensions can be made in both directions� Some
extensions make the problem more complex but are required to solve the problem� e�g� models
in which observations are delayed� Other extensions take advantage of domain specic features�
model more of the underlying problem structure and make it possible to speed�up problem�
solving routines�
In the following we will explore and propose various new structural extensions to the ba�

sic POMDP framework� These exploit additional problem structure and help us to reduce
the complexity of problem�solving methods� The extensions are studied in the context of
a real�world problem from the area of medical therapy planning # the problem of manage�
ment of patients with ischemic heart disease�IHD� �Wong et al� ��� �Leong ��� �Hauskrecht ��a�
�Hauskrecht ��a��

	�� Modeling diagnostic and therapeutical processes us�
ing POMDPs

Throughout the history of AI in medicine� a large amount of research work has been devoted
to the development of methods and techniques capable of modeling the decision process of a
physician under uncertainty� The focus of work in this area has gradually shifted from problems
with static features to ones that emphasize the dynamic aspect of the decision process� While
most of the work on dynamic decision making addresses the issue of action outcome uncertainty�
the feature of partial observability is often irrelevant or is abstracted out� Research work that
assumes perfect observability includes the management of chronic heart disease �Leong ��� and
diabetes therapy planning �Hovorka et al� �
��
The assumption of perfect observability may not work well for problems in which observa�
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tions are imprecise indicators of the patient state �as is often the case in assessing underlying
disease� and when investigative actions have signicant cost �such as invasiveness and economic
expense�� In such cases� careful evaluation of the costs and benets associated with both treat�
ment and investigative actions with regard to global objectives is necessary and therapeutical
and investigative actions are often interleaved over the course of the treatement� A formalism
that allows us to capture the complexity of such a process is the POMDP framework� which
models both sources of uncertainty� various investigative and treatment choices� and costs and
benets associated with such interventions and their outcomes�

���� Chronic ischemic heart disease

An example of a therapy planning problem that requires one to consider two sources of uncer�
tainty is the management of chronic ischemic heart disease �IHD� �Wong et al� ��� �Leong ���
�Hauskrecht ��a� �Hauskrecht ��a��
Ischemic heart disease is a condition that is caused by an imbalance between the supply

of available oxygen and the demand for oxygen by heart muscle� This imbalance can cause
cardiac disfunction and subsequent impairment to blood circulation� The most common cause
of ischemia is coronary artery disease� which corresponds to the narrowing of coronary vessels
that reduces the perfusion of heart muscle most commonly due to atherosclerotic changes�
Coronary artery disease is a progressive disease with aggrevating symptomatology and cardiac
impairment� The leading symptom of ischemic heart disease is chest pain �angina�� Coronary
artery disease can also be accompanied by various complications� for example acute myocardial
infarction �MI��
Treatment of coronary artery disease can be conservative� using medications like Beta block�

ers� or more invasive� using surgery that attempts to repair obstructed coronary arteries� There
are two commonly used surgical procedures� percutaneous transluminal coronary angioplasty
�PTCA� and coronary artery bypass graft surgery �CABG�� Both procedures carry an increased
risk of death� a risk of perioperative MI and cause a lot of pain and discomfort for the patient�
One problem with assessing the status of coronary artery disease involves its ability to

change over time� In general� it is not possible to state the current status of patient�s coronary
arteries� or identify the level of the patient�s ischemia �O� demand�suppply mismatch�� However
there are investigative procedures that can reveal more about the underlying disease� such as
an angiogram or a stress test� Unfortunately these procedures are also invasive and�or carry
increased risks of MI and death�
Investigative and treatment actions can be repeated or changed over time depending on

the progression of the disease� For example� a patient can have several PTCA�s over a span
of a few years to clear coronary arteries� improve perfusion and relieve chest pain symptoms�
or a patient might undergo several stress tests� The objective of the problem is to determine
the best possible treatment step or sequence of steps with regard to various treatment goals or
objectives� These include the following qualitative goals�

� increase in the quality of life �e�g� relieve chest pain symptoms�

� decrease the chance of acute episodes �MI�

� increase length of life

� decrease the invasiveness of procedures

� decrease the economical cost of associated procedures
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In order to optimize such objectives one needs to consider various treatment alternatives now
and in future� their possible outcomes� and benets and risks of such choices with regard to
globally pursued goals�

���� A typical decision scenario

While doing routine medical screening� it is discovered that a patient shows signs of ischemia
on a resting EKG� No other observations �chest pain� etc�� are positive� Possible actions for
the physician are

� Do nothing and observe the patient� However� this leaves the patient at a higher risk of
MI or possible death�

� Administer medication� that tends to reduce the risk of MI �e�g� Beta blocker� aspirin��

� Request an angiogram� that reveals the precise status of the coronary arteries� and helps
determine whether the patient is in a higher risk group� Unfortunately� the angiogram has
an additional expense including patient discomfort� and risks of MI or death�

Once a decision has been made� such as prescribing the medication� the same decision process
must be repeated again after some time period� The result can be the same or an alternative
choice based on new observed symptoms and ndings at that time� For example� worsening of
the symptoms would cause one to consider an angiogram possibly followed by angioplasty or
bypass surgery� At each time point� the actual decision must take into account future progress
of the disease� as well as future treatment and investigative choices�

	�� Using POMDP to model IHD

The management of ischemic heart disease embodies characteristics that match well many
features of the POMDP formalism� The major problem faced when applying the POMDP
framework to the management of IHD is the size and complexity of the IHD model� Its com�
plexity is far beyond current limits of exact POMDP problem solving procedures� In order to
overcome this hurdle we focused on two complementary solutions�

� reduction of the complexity of the POMDP model by representing underlying structure�

� substitution of exact solution methods with approximate ones�

The objective of the rst approach is to capture and represent more features and structure of
the underlying domain model� as compared to the direct application of the POMDP formalism�
and thus hope to reduce signicantly state and observation space sizes one needs to work with�
This work led to a model with factored states consisting of both observable and partially observ�
able state variables� The second approach is typical when applying the POMDP methodology
to more complex problems and was the center of our discussion in previous chapters�
In the following we will describe the components of the POMDP model proposed and de�

signed for the ischemic heart disease domain�

���� Representing states

The state of a patient at any instance of time can be described using a nite set of random
state variables� State variables used in the IHD problem and their possible values are shown
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Figure ��	� Ischemic heart disease model� state variables representing process states and ob�
servations�

in gure ��	� In general every possible assignment of values to state variables describes one
unique patient state� However� the set of state variables we used for the ischemic heart disease
�IHD� problem is not homogenous and explicitly restricts certain combinations of variable values
using hierarchical �conditional� subsumption� The hierarchical constraints represent situations
in which some combinations of variables and their values are either impossible or are irrelevant
for the problem at hand� For example for the state variable� status� with possible values of
dead and alive� values associated with acute�MI� coronary artery disease or chest pain either
do not make sense or are irrelevant when the patient is dead� Using hierarchical subsumption�
state variables are �enabled� only when �status� is set to an appropriate value� Hierarchical
subsumption is also useful for describing a state using di�erent levels of detail� i�e� state
variables can describe both higher level abstracted state components as well as their lower level
elaboration� The state variable structure for the IHD problem is represented in gure ��	� lower
level state variables are enclosed in the rectangle�
State variables in the model can be used to describe the dynamics of a disease process over

time� These variables are called process state variables� A set of process state variables for the
IHD problem is shown in gure ��
� Notice that for example state variable chest pain is not
a process state variable� This is because it is assumed not to in�uence directly the dynamic
behavior of the disease process�
State variables can be observable� that is they correspond to variables that can be seen

directly at any point in time� On the other hand� variables that cannot be observed directly
correspond to hidden variables� The set of observable variables for the IHD problem is listed in
gure ��
� Notice that a state variable can be both a process state variable and an observable
variable �e�g� decreased ventricular function�� This captures the fact that not all process state
variables in a POMDP need to be represented and treated as hidden �or partially observable�
variables� This is also one of the major deviations from the ordinary POMDP model that
assumes that only partially observable process states exist� Explicit representation of both
observable and hidden process state variables allows us to combine the advantages of MDP and
POMDP formalisms� It leads to speed�ups in manipulation� inference and planning routines by
means of reducing the complexity of the information state space� This issue will be discussed
later�
Our POMDP model for the IHD is designed to evaluate and reason about the consequences
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Figure ��
� Ischemic heart disease model� types of state variables�
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Figure ���� Ischemic heart disease model� actions�

of long term treatment� The model omits many short term decisions� e�g� those that are related
to the management of acute chest pain� Also some state variables like acute MI are considered
to be observed directly� The state description also includes state variables re�ecting the history
of angiopasty �history PTCA� and the history of bypass surgery �history CABG�� The reason
for including these is that process states need to satisfy the Markov property and the transition
function that maps previous to next state is believed to be in�uenced strongly �at least in some
instances� by past PTCA or CABG procedures�

���� Actions

Actions correspond to treatment or investigative procedures �see gure ����� no�action cor�
responds to the choice in which no treatment or investigative action has been selected� In
general� treatment actions actively change the state of the patient to more appropriate state�
Investigative actions explore the state of the patient� especially the related hidden process state
variables� However investigative actions may not only reveal more about the underlying patient
state but can also lead to a change in the state �e�g� patient can die or get acute MI as a result
of an angiogram procedure��
In general a set of actions in the POMDP model can have exploratory� transitional and cost

e�ects� The exploratory e�ect of actions is based on their ability to induce observations that
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in turn can be suggestive of some internal states� An example is an angiogram investigation or
stress test� The transition e�ect of the action is represented by its ability to change the internal
state of the patient� for example PTCA can lead to the reopening of the blood supply in the
main vessels� The third e�ect of actions is their cost which can be measured in terms of patient
su�ering� patient discomfort and�or nancial cost� Actions that have only an exploratory
e�ect and are neither associated with a cost nor a�ect the state transition are not explicitly
represented in the action set�

���� Representing stochastic transition and observation models

Representing states in a factored form is very useful for representing various independencies
and regularites that enrich the stochastic relation between states and actions over time� In the
traditional POMDP model� stochastic relations between Markov process states over time on
one side and process states and observations on the other� are represented using transition and
observation matrices� These dene probability distributions for the patient state changes under
specic interventions� re�ecting for example the fact that the patient with coronary disease can
either die� su�er MI� or receive coronary artery repair as a result of PTCA or CABG� with
some probability or that severe ischemia can� to various degrees� lead to mild� severe or even
no chest pain�

Graphical models

Probabilistic independences and regularities between variables in factored form can be often
represented using graphical models� e�g� a Bayesian network� Figure ��� illustrates the tran�
sition and observation model built for the ischemic heart disease problem using a Bayesian
network approach� In this gure� random �chance� variables are represented by circles� and
actions as rectangles� Patterned circles correspond to observable variables� that is variables
for which values are assumed to be known at every time step� The graphical model shown in
the gure does not correspond to a typical Bayesian network but to its hierarchical extension�
where sets of random variables can be hierarchically subsumed by other variables� This ex�
tension allows us to represent types of independences that otherwise could not be represented
when a �at variable set is used�
The advantage of the hierarchical Bayesian network is illustrated on our IHD model� The

transition probabilities between previous state �at time t�	� and a state where the patient is
alive and su�ers from coronary artery disease of some severity are represented using two prob�
ability distributions� each exploiting di�erent independences� The rst probability distribution
concerns the variable status and represents the distribution of a patient being alive or dead as a
result of some procedure performed in the previous state� This distribution depends on values
of state variables in the previous time step� The second distribution represents a conditional
distribution of coronary artery disease given a previous state� an action and patient being alive�
Such a distribution can exploit a di�erent set of independences� i�e� the value of the coronary
artery disease variable being independent of some previous state variables when the patient is
alive� In general the hierarchical subsumption may capture di�erent sets of independences for
di�erent levels of detail� This leads to a simpler representation of the conditional distribution
for a patient being alive and su�ering from coronary artery disease of certain severity� because
the conditional distribution can nicely decouple along di�erent levels of detail�
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Figure ���� Ischemic heart disease� transition and observation model�
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Representing additional relations and constraints

Ordinary Bayesian networks can represent conditional or marginal independences that hold
between variables� However� there are other relations that often hold and can be useful for
both making the probabilistic model more compact and for planning� These may include
partial conditional independence �the independence relation does not hold for all possible values
of conditioning variables but for a subset of values� or various deterministic relations and
constraints �some value assignments are impossible because values of two or more variables are
incompatible��
For the IHD problem we focused on the problem of modeling additional deterministic con�

straints� Constraints are expressed by means of rules that restrict some combinations of the
variable values� For example the variable history PTCA in the transition model can change
from false to true only when action PTCA has been chosen in the previous step� Similarly� the
same variable once it is true remains true forever� The deterministic constrains are represented
by a set of rules� such as�

Rule � If �PAST �history�PTCA true��
then �history�PTCA true�

Deterministic constraints can be useful in speeding up probabilistic computation and so we
used them heavily to construct compiled POMDP model� which we discuss later�

���� Initial state model

Once the transition and observation model is dened� we can expand the above belief network
model as many time steps as needed� This allows us to compute various probabilistic queries
with regard to variables over di�erent time instances� However� before we can answer such
queries we need to know prior probabilities for the initial process state variables� that is priors
for the process state variables at time t � ��
For our IHD model and related computations� it is neccessary to compute initial probablities

for all hidden process state variables �namely coronary artery disease� ischemia�� All other
process state variables are assumed to be observable and are therefore directly available� The
set of initial probabilities can be computed using the prior model in gure ���� The prior model
overlaps with the transition and observation model and adds a new variable of prior coronary
artery disease that in�uences the hidden variable coronary artery disease and models explicitly
the prior knowledge about the distibution of coronary disease severities� The distribution can
be either provided directly or computed using additional context information not explicitly
considered in the transition and observation model� The context variables� such as age� sex� or
smoking history are used to estimate prior distributions more accurately�
Once the prior model is dened we can compute the initial probability of a patient having

coronary artery disease and ischemia of various severities� based on initial ndings� observations
and relevant prior information� This in turn allows us to compute and answer other probablistic
queries� and to predict the next patient state for a specic intervention�
In the current version of the IHD model we assume that the probability distribution for the

prior coronary artery disease variable is given directly and no context information is assumed�
However this is relatively easy to change and one can use some simple model to compute new
priors� e�g� a logistic regression model from �Anderson et al� ����
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Figure ���� Ischemic heart disease� prior model�

Inconsistency of prior and transition models

The prior model makes it possible to compute the probability distribution for hidden states
given all current observations as well as all prior information� In principle one could apply
the same prior model to determine the probability distribution for the next state� However
this approach di�ers signicantly from what we do when we update the current state using the
transition model�
Changing models in this way introduces the tricky issue of model consistency� Assume a

patient with specic context information and an initial set of observations is given no treatment
and at the follow�up visit the patient has the same set of observations and context� Naturally if
we use the same prior model we will get the same answer for all hidden variables� However if we
use the prior model for the initial state and the transition model subsequently for the following
steps� the resulting probability distribution will usually di�er� This causes us to question the
consistency of these two approaches and whether our belief about the patient�s state should be
the same in both the initial state and at the next sequential state�
The answer is straightforward� Using the prior model sequentially over and over again

ignores the information obtained in previous steps that consist of a history of observations and
actions �or complete information state�� A better approach employs the transition model and
takes into account all available information� Thus information available initially is considered
di�erent from information used later and so� we do not get the same answer for initial and
sequential sitations despite the fact that all context and current information may be the same�
This also means that no consistency enforcement between the prior and transition models should
be done�
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���� Cost model

The cost model in a POMDP describes payo�s associated with possible state transitions� For
example in managing ischemic heart disease we associate the highest cost with transitions to
the dead state� smaller but still substantial cost with occurrences of MI� and severe chest pain�
In a POMDP costs and rewards are associated with possible transitions and di�erent costs

can be dened for every transition between any two states and an action� However� it is often
reasonable to assume the cost model has more structure� In the IHD problem we propose a
cost model that consists of two components�

� a cost associated only with the resulting state� This cost is independent of the initial
state as well as any action performed in that state� for example there is a cost associated
with a live patient that is su�ering from severe chest pain and has experienced an acute
MI�

� a cost associated with an action� regardless of initial and resulting states� For example
there is a cost associated with performing coronary bypass surgery that includes the
economic cost� patient�s su�ering� discomfort� and so forth�

In such a case the transition cost from state s to state s� given action a can be expressed as�

��s� a� s�� � ��s��  ��a�

The cost associated with a state that results from a transition can be further broken down
into component state variable costs using an assumption of cost independence� A cost associated
with a compound state of being alive� having an acute MI� su�ering from severe chest pain and
having moderate coronary artery disease� can be expressed using a cost model that adds up
cost contributions from severe chest pain� acute MI� moderate coronary artery disease and the
other state variables� This can be determined as follows�

��s� �
X
i

��si��

where si is the state variable assignment to variable i�
The fact that the cost model decomposes into atomic costs associated with state variables

and actions signicantly reduces the number of parameters we need to dene� This in turn
simplies the stage of building a POMDP model in which quantitative cost estimates need to
be found and assesed� Once these estimates are collected we use a transition model to compute
the expected one step cost associated with action a and a state conguration s as�

��s� a� �
X
s�

p�s�js� a���s� a� s�� � ��a�  
X
s�

p�s�js� a���s��

��� Discretizing time

The POMDP framework� like many other frameworks� models continuous time through dis�
cretization� In the IHD problem it is assumed that every action is associated with a xed time
duration and that any change in state occurs between the discretized time points� The chosen
duration of transitions strongly in�uences transition probabilities� For example� the probability
that a patient will die as a consequence of not treating severe coronary obstruction is higher
for a one year period than for a three month period�
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In our IHD model we assume that transitions associated with invasive actions occur within
a day� and transitions associated with non�invasive actions �such as no�action and medication
treatment� are within � months� These durations are also re�ected in the transition probabilities
representing rates of state variable changes�

���� Modeling the objective function

The treatment objective is to nd the action or the sequence of actions that minimize the
expected cost with regard to the chosen decision model� The typical decision models one
can use in the IHD case include both the nite horizon criterion in which one optimizes the
treatment with regard to the next n time steps� and the innite discounted horizon criterion
which combines costs over an innite number of time steps� with heavier discounting on the
more distant future�
In our work we use the innite discounted horizon model� This allows us to express longer

term goals and not restrict the decision horizon to a nite number of steps� An interesting
feature of this model is that we use discounting �� � ����� only for long�term actions �no�action
and medication�� All other short�term actions are undiscounted and their costs are added fully
within the model� Using two di�erent discounts accounts for di�erent action durations�
The important issue from the point of view of action selection is that the information�state

at any point in time can be su�ciently modeled by a belief state that assigns a probability to
every possible process state� The importance of this stems from the fact that the solution in
this case is known to satisfy some nice properties� namely the value function is piecewise linear
and concave� This knowledge allowed us to use better exact and approximation methods�

	�� Acquisition of model parameters

One of the important problems associated with the ischemic heart disease model is to obtain
a set of appropriate model parameters� The parameters dene either probabilities or costs
associated with state outcomes and actions� In general these can be obtained by�

� acquiring them directly from the domain expert or from the literature�

� infering them from the available data�

� or by using the combination of these two methods�

Although there are some studies with possibly useful datasets we were not able to obtain
them for various proprietary and technical reasons� This left us with the choice of dening the
parameters by hand using the published results or utilizing the experience of a cardiologist�
We primarily relied on Wong �Wong et al� ��� that summarizes various studies in the area of
chronic ischemic heart disease and compares outcomes for various interventions� In addition�
one of our collegues� Dr� Hamish Fraser� helped us to interpret some of the available data�

���� Acquisition of transition and observation probabilities

To populate probabilistic transition and observation models we had to acquire parameters for all
conditional distributions dened by parents�child variable combinations in the Bayesian network
in gure ���� The total number of parameters one has to dene for the model is 		�	 �recall
that some parameters can be infered because probability of all possible instances should sum
to 	�� This is signicantly less compared to the case with �at state and observation spaces and

	�	



complete transition and observation matrices with 		
��
� parameters �the number assumes
that the process state space and the observation space are separate�� Note that the number
of parameters can be decreased by taking into account further structural features �e�g� partial
conditional independencies��
The conditional probabilities for transitions can be obtained or infered from the results of

clinical studies� For example the probability of the patient staying alive or dying as a result
of a surgical intervention can be estimated from mortality rates for a specic treatment and
specic patient condition� Similarly one can obtain numbers for other parameters� For example�
numbers re�ecting the rate of change of the coronary disease under di�erent interventions
can be obtained from the published success rates of revascularization for PTCA and CABG�
Unfortunately� in many cases the results of studies are presented independently for one or a few
conditioning variables� leaving open the problem of how to deal with various combinations� In
such cases we either assumed independence� when it seemed reasonable� or adjusted probabilities
by consulting Dr� Fraser� In general the process of dening probability parameters turned out
to be very tedious and time consuming� We believe that the availability of datasets would
simplify the acquisition process and would lead to more accurate parameter estimates�
Table ��	 shows the parameters of the local probability table used to dene the distribution

of the coronary artery disease in the IHD model� The parameters represent transition rates
for a � month period for no�action and medication choices� The parameters for other actions
re�ect the success rate of coronary artery disease repair� The probablity parameters shown
were obtained and modied for our model based on results and success rates published in
�Wong et al� ���� The model at this stage does not distinguish between left main stem and
multiple vessel coronary artery disease and combines them into the severe coronary artery
disease category� This leads to similar success rates for CABG and PTCA procedures for
severe coronary artery disease�

���� Acquiring cost model parameters

While probabilities can in principle be learned from an available dataset� costs re�ect a combi�
nation of preferences of a physician� patient etc� This makes them more subjective and usually
not mineable in the datasets� In order to acquire costs for the ischemic heart disease model we
have designed an acquistion method based on the cost distribution model� The method can be
applied directly to the hierarchically structured state variable set in the IHD model�
The main idea of the approach is to describe the distribution of costs among hierarchically

structured components of the IHD model �like state variables� state variable values and actions��
The cost model uses a local weighting scheme that describes the amount of cost a lower level
component acquires from the higher level component� The cost associated with a lower level
component is computed as�

Costi � wiCost�

where Cost represents a cost quantity to be distributed and wi is a weight associated with a
lower level component that satises � � wi � 	 and that describes a share of the cost inherited
by the component� There are two types of local models� that either restrict or do not restrict
values of the component weights wi�

� and model� where weights associated with lower level components �corresponding to the
same higher level component� are complementary and must satisfy�

P
iwi � 	� where i

ranges over all lower level components�

� xor model� where weights associated with lower level components are unrestricted and
components are treated independently�
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action history of previous coronary coronary artery disease
procedures artery disease normal mild�moderate severe

no action PTCA normal �	�� �	��� �	���
any CABG mild�moderate �	��� �	�� �	���

severe �	� �	��� �	
CABG normal �	�� �	��� �	���
no PTCA mild�moderate �	��� �	�� �	��


severe �	� �	��� �	
no CABG normal �	 �	���� �	����
no PTCA mild�moderate �	���� �	� �	�


severe �	� �	��
 �	�
medication PTCA normal �	�� �	��� �	���

any CABG mild�moderate �	��� �	�� �	���
severe �	� �	��� �	

CABG normal �	�� �	��� �	���
no PTCA mild�moderate �	��� �	�� �	��


severe �	� �	��� �	
no CABG normal �	 �	���� �	����
no PTCA mild�moderate �	���� �	� �	�


severe �	� �	��
 �	�
angiogram � normal � � �

mild�moderate � � �
severe � � �

stress test � normal � � �
mild�moderate � � �
severe � � �

PTCA � normal � � �
mild�moderate �	�� �	�� �
severe �	�� �	�� �	��

CABG � normal �	 �	�� �	��
mild�moderate �	�
 �	�
 �	��
severe �	�� �	�� �	�

Table ��	� Local probability table for the severity of the coronary artery disease� given the
action� history of previous procedures and severity of the coronary artery disease in the previous
time step� The transition probabilities for long�term actions �no�action� medication� are dened
for a � month period�
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Figure ���� Model used for the acqusition of costs for the ischemic heart disease model� Links
with arcs represent the and cost distribution model� links without arcs represent the xor model�
Numbers represent weights assigned to the lower level components�

A graph representing a part of the cost distribution model for the IHD problem is shown in
gure ���� The and model is represented by a parent�children combinations with an arc on the
outgoing links and is used to distribute costs among complementary components� For example
status alive is elaborated as lower level components chest pain� acute�MI� history�CABG� and
so on� that are complementary and each is assigned a portion of the cost accounted for by
status alive� On the other hand the xor model is represented by a parent�children subgraph
without an arc and is used to distribute costs to components that are exclusive� For example�
the patient�s status can be either dead or alive and the cost model denes how much of the
overall cost assigned to the patient state is accounted for by each alternative�
The advantage of the cost denition model is that it requires the physician to dene only

local cost distributions �weights�� This simplies signicantly the whole acquisition process�
For example we can ask the expert to quantify the cost associated with di�erent severities of
chest pain on scale ��� 	� �or any scale as we can always renormalize the input�� or ask the expert
to quantify the importance of chest pain� acute MI� decreased ventricular function and so on
with regard to the cost� The numbers shown in graph ��� corresponds to the weights we use
for the IHD problem�
Once the cost distribution model is completely dened� we can compute the cost associated

with a specic low level component� This is done by multiplying weights associated with the
links one needs to traverse to get from the root of the distibution structure to the particular
leaf node� For example� the cost for the severe chest pain is computed as�

Costchest�pain�severe � Costinitial �wstatus � walive � wchest�pain �wchest�pain�severe

where Costinitial is the cost we expect to distribute and the ws stand for weights associated
with di�erent links� The Costinitial value was set to 	�� cost units for the IHD problem�
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	�� Finding control policy for the IHD domain

���� Representing information state

For the standard POMDP models� the information state space corresponds to the belief space
that assigns the probability to every possible process state� However� this assumes that the
process state is always hidden �partially observable�� Contrary to this� the proposed IHD
model uses process states that are heterogeneous and can have both perfectly and partially
observable components �state variables�� In fact the presence of perfectly observable process
state variables simplies the problem� as one can directly incorporate the observed state variable
values into the information state� This reduces the size of the information belief space one needs
to represent as it is dened only over all possible combinations of hidden variable values� Thus
an information state for the factored state model with both perfectly and partially observable
process variables can be represented using�

� a set of observable process state variable values�

� a belief over the combination of all hidden variable values�

The information state for the IHD problem consists of an assignment of values to observable
process state variables� for example status alive� acute�MI true� history�CABG false� history�
PTCA false� and a belief over all possible combinations of values for ischemia and coronary
artery disease� Note that the information state for the case when the patient is dead is described
only as status dead�
The information state space for the IHD model can be represented using a tree structure in

gure ���� Internal nodes correspond to observable variables� subtrees of an internal node to
assignments of values to the associated observable variable and leaf nodes to belief space over
hidden variable values� Then� every branch of the tree represents one possible assignement of
values to observable variables� Note the asymmetry due to hierarchical state variable space�

Savings from the additional structure

The information state space for the structured IHD model uses 	� possible combinations of
observable variable values� one for status dead and 	� for the alive state �four binary variables��
All status alive combinations require an additional ��dimensional belief space �all possible com�
binations of values for coronary artery disease and ischemia variables��
The proposed factored and hierarchically structured IHD model reduces the complexity of

the information state one needs to work with� To illustrate this� let us assume a �at process state
space� Such a space does not allow to combine observable and hidden components and consists
of 	�� states �this gure counts only state variable combinations that are possible�� As states
are now assumed to be hidden� the information state space corresponds to a 	���dimensional
belief space� The incorporation of observable variables thus reduces the complexity of the high
dimensional belief state space to a set of belief spaces of small dimension� The overall number
of observations is 		�� �all possible combinations of observable variable values� and it is same
for both cases�
The above analysis illustrates savings from the model factorization and combination of

observable and hidden process state variables� However� there are also savings that can be
attributed to a hierarchy of state variables� Assume we use the �at state variable space� that
is values for every state variable can be combined without restrictions� This would lead to the
information state space with �
 combinations of observable variable values� compared to the
hierarchical state variable space that allows only 	� di�erent combinations�
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Figure ���� Information state space for the IHD problem represented by a tree structure�
Internal nodes correspond to process state observables and leaf nodes to beliefs over all possible
assignments to hidden process state variables�

���� Compilation of the model

Although the graphical model represenation in gure ��� allows us to represent the IHD model
more compactly� it is not always useful when certain queries need to be computed repeatedly�
Thus� instead of working with the original model we have decided to compile the model so
that repeated queries can be obtained fast� The compiled model is represented as a decision
tree with internal nodes corresponding to observable state variables or actions and leaf nodes
containing conditional probability distributions over hidden variables� The constructed tree is
optimized also by pruning branches corresponding to � probability situations� Such a decision
tree model is then used to compute all probabilistic queries neccessary for the planning and
control tasks�

���� Solving control problem

The objective of the control problem is to nd the optimal policy over the information space�
As this problem is often hard to compute one can turn to approximations that can produce
good solutions with less computation� These were presented in previous chapters and can be
modied and reimplemented to handle a hybrid two�component information state space�
From the methods we have implemented and tested on maze and the Shuttle docking prob�

lems we have reimplemented four value function approximation methods� MDP�based approxi�
mation� blind�policy method� the incremental linear vector method and the fast informed bound
method� Incremental linear vector method and fast informed bound methods were also among
the top three performers on the test problem set from the previous chapter�
New versions of approximationmethods use compiled transition and observation models and
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work with value functions that are dened over the hybrid information space� A value function
consists of discrete and belief space components and can be represented using the same tree
structure as shown in gure ���� The value function for each belief space component �one for
each combination of the observable state variable values� is represented by a piecewise linear
and concave function �concaveness is due to minimization�� In other words the value functions
consist of a set of piecewise linear and concave value functions �dened over belief spaces� that
cover all possible combinations of observable process state variable values�
All methods described and tested for the standard POMDP can be modied with more or

less e�ort to handle new information state space� To illustrate the idea of such modications
the new version of the incremental linear vector method will be presented and described next�

Incremental linear vector method

The incremental linear vector method from section ����
 can be reimplemented for the new
information state space using the following update procedure�

Incremental linear vector update �bV � k�
for every combination o of observable process state variable values

do if no hidden variables are associated with o in the information state space

then update value function bV for o using standard value function value update�
else let Bo be a belief space associated with observable component o and

"o be a set of linear vectors dening bV for Bo�
select �k dim�Bo�� belief points G from Bo�
for every belief point b � G

compute new linear vector �b for b using Sondik�s update�

add �b to "o in bV �
return bV �
Assuming that we want to solve the cost minimization problem� the procedure takes an

upper bound value function bV dened over the hybrid information state space and parameter k
that allows us to vary the number of belief points to be updated with Sondik�s method in every
component belief space� The procedure returns a new improved upper bound value function
and thus can be repeatedly applied to tighten the upper bound�
We assume that dim�Bo� denes the dimension of the belief space Bo corresponding to the

combination of observable process state variable values o� Then the number of belief points
from Bo updated by the above procedure is kdim�Bo�� Of course� other strategies to control
the number of belief points updated in every belief space are possible as well�
Belief points to be updated can be selected using arbitrary point selection strategies� simi�

larly to the standard POMDP case� Note that when a combination of observables o does not
permit any hidden variables �e�g� for the status dead� the value function is updated for a given
combination of process state observables o directly and only once�

Solutions used for testing the model

For the testing �see next section� we used solutions obtained by the incremental linear vector
method and the fast informed bound method� The incremental linear vector method used 	�
incremental linear vector updates �see above procedure� with parameter k � 
� A set of belief
points updated in every belief space consisted of all critical points and the rest of points was
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selected randomly� The computation took about �� minutes on SPARC�	� in Lucid Common
Lisp� The solution for the fast informed bound method was obtained in about � minutes�

	�� Evaluating the model

In our work we constructed a prototype IHD model of signicant complexity� Interestingly�
despite model simplications and the need to estimate a large number of parameters we were
able to achieve the behavior that was for many cases clinically reasonable and justiable� This
is very promising for the future work and further extension and renement of the model�

���� Testing obtained policy for the patient follow�up case

The construction of complex models is usually not a one shot activity and requires few itera�
tions to clear various bugs and bad parameter assignments� However� we were surprised that
we were able to acquire many clinically accurate recommendations for the approximate solution
practically from the beginning� Thus� after a few iterations we were able to observe the rea�
sonable decision behavior of the model in many instances for both initial and patient follow�up
situations�
Table ��
 illustrates a sequence of recommendations obtained for a single patient case �in�

cluding follow�ups�� The value function used to compute recommendations has been obtained
by the incremental linear vector method �see previous section�� For every stage� the table shows
a list of actions� ordered with regard to the obtained cost score� The top �lowest cost� action is
executed at each step� The second score represents a lower bound on the optimal expected cost
computed by the fast informed bound method� Interestingly� if we use the second score as a
basis for the recommendation the choices will be exactly the same� This is enouraging because
these are methods that achieved the best control performance in the experiments presented in
the previous chapter�

���� Alternative decision choices

More important than the simple ordering of actions based on absolute values is often a relative
comparison of alternatives with regard to the leading choice� These di�erences turned out to
be relatively small for the evaluated patient case� with the exception of both PTCA choices�
However� comparing all candidate choices� it is clear that choices with similar scores are often
not very far apart in terms of costs or similar e�ects� Thus� the action list does not look bad
from the point of relative scores� The only action that is clearly suboptimal is the coronary
bypass surgery �CABG��

Sensitivity of the model to parameter choices

The comparison of relative scores and small score di�erences between actions also opens the
question of model sensitivity to parameter changes� It is clear that for some of the instances
one should be able to cause the change of leading actions relatively easily by changing some
of the cost or probabilistic parameters� Thus the model and policy for the tested region are
sensitive to these parameters�
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step current actions used cost score cost score
patient status �upper bound� �lower bound�

� chest pain� mild�moderate stress�test 
��	

 
��	��
rest EKG ischemia� negative no action 
��	�
 
�	�

decreased ventr	 func	� false medication 
��	�� 
��	�
acute MI� false PTCA 
��	�� 
�
	��
coronary artery visual� not available angiogram 

	
 
��	��
stress test results� not available CABG ��	� �
�	��
history CABG� false
history PTCA� false

� chest pain� mild�moderate PTCA 
�	�� 
�
	��
rest EKG ischemia� negative stress test ���	� 
��	��
decreased ventr	 func	� false no action �
�	
 
��	
�
acute MI� false medication �

	�
 
�	�

coronary artery visual� not�available angiogram �
�	� 
��	�
stress test results� positive CABG ���	�� ���	��
history CABG� false
history PTCA� false


 chest pain� no chest pain no action 
�	�� 

�	
�
rest EKG ischemia� negative medication 
��	�
 

�	��
decreased ventr	 func	� false stress test 
��	�� 

	��
acute MI� false angiogram 
��	�� 
�	��
coronary artery visual� normal PTCA 
��	� 
��	
�
stress test results� not available CABG ���	�� ���	
�
history CABG� false
history PTCA� true

� chest pain� mild�moderate medication ���	�� ���	��
rest EKG ischemia� negative no action ��
	�� ��	��
decreased ventr	 func	� false PTCA ���	�� �
	��
acute MI� true angiogram ���	�
 ���	�

coronary artery visual� not available stress�test ��	�� ���	


stress test results� not available CABG ���	�� ���	��
history CABG� false
history PTCA� true

� chest pain� mild�moderate PTCA ���	�� ���	�
rest EKG ischemia� negative medication ���	�� ���	��
decreased ventr	 func	� true no action ���	�� ���	��
acute MI� false stress�test ���	�
 ���	��
coronary artery visual� not available angiogram ��	�� ���	��
stress test results� not available CABG ���	� ���	��
history CABG� false
history PTCA� true

Table ��
� Patient case with followup� Recommendations are based on the value function
approximation computed by the incremental linear vector method �upper bound�� The lower
bound cost score is obtained using the fast informed bound method�
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���� Problems with the current model

The constructed ischemic heart disease model and computed policy solution demonstrated that
they can be a source of clinically acceptable decisions for many situations� However� there were
also situations in which decisions proposed seem to be unreasonable and did not match the
standard clinical practice� These are mostly due to�

� model simplications�

� subjective parameter estimates�

Model simplications

An example of the situation when model is not su�cient is the following scenario�

� The patient presents with a mild�moderate chest pain� No other tests are positive� The
recommended action is a stress test that is expected to produce more information about
the underlying status of patient�s coronary arteries�

� Unfortunately one of the outcomes of the stress test is non diagnostic� This corresponds
to the situation when the patient fails the test due to his�her poor physical condition �the
achieved level of exercise is not su�cient to make the positive or negative conclusion��
Assuming that the patient failed the test the belief about the underlying coronary artery
disease and ischemia level will not change very much�

� The action chosen is stress test again�

This is clearly an example of a case in which the model is oversimplied� as it is very likely
that the patient will fail the test again� The problem is that the model does not represent and
di�erentiate between circumstances when patient is more likely to pass or fail the test� The
decision to recommend stress test again is based on the available stochastic model that models
di�erent test outcomes randomly with higher probability being assigned �based on population
study� to the diagnostic outcome� Thus the repeated decision choice simply re�ects the fact
that it is worthwhile to �ip the coin with larger probability of successful outcome again�
The simplest x to the above problem is to add a new state variable physical state that

would represent the physical state of the patient� The patient with a poor physical state is then
likely to fail the stress test� The failure of the test in the rst trial will lead to the assessment
of the patient�s poor physical state and prevents the stress test from being selected again in the
next step�
Many current model simplications could be xed by adding new state variables and thus

using more detailed process states� Unfortunately such changes make the model more complex
and harder to solve� Therefore one needs to carefully decide how to rene the model and what
details to elaborate more� It is also likely that in order to maintain practical solvability of
the problem larger model renements that represent more of the domain detail will require
new approximation techniques �e�g� based on abstractions� and�or further exploitation of the
underlying structure� We believe that with the current techniques we will be able to handle rea�
sonably well the model with two or three additional observable state variables �binary variables�
or one hidden process state variable �with two or three values��

Subjective parameter estimates

The other problem that complicates the matter in the ischemic heart disease domain is the
problem of subjective cost estimates� that re�ect the preferences of the physician and the
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patient� In many cases it is really hard to say how to penalize e�g� death and how this
compares to the heart attack in terms of the cost score� This uncertainty in preferences can
lead to situations where cost quantities assigned to some scenario� although reasonable and
justiable on paper� do not lead to decisions seen in practice� This documents how hard it is
to assign subjective preferences correctly�
On the other hand this may also mean that people in their decisions may be driven by

observing specic patterns and applying learned �associated� actions rather than evaluating
possible choices and their consequences appropriately� This can even lead to situations in
which suboptimal decisions are considered to be standard� The use of decision analytic models
and techniques that are based on well dened clinical studies could help us to acquire new
insights and could potentially lead to change in standards�

	�	 Summary

POMDPs provide a suitable modelling framework for representing and solving complex treat�
ment planning and decision problems in medicine� However� the application of the framework
to medical or other real world applications also carries additional challenges one does not have
to consider while solving toy world planning and control problems� These are related to�

� the representation of the model structure�

� the acquisition of model parameters �probabilities and costs�

� handling actions with di�erent time durations�

Contributions

The major contribution of our work is in extending basic POMDP framework to model and
exploit additional domain structure� The main new ideas include�

� combination of MDP and POMDP models �process state is described using both perfectly
and partially observable components��

� hierarchical state variables space �cuts down the size of the process state space by exclud�
ing redundant or impossible state variable value combinations�

These extensions allow us to reduce the complexity of the information state space we use in
computing the control task� The reductions are achieved by using a simpler two�component
information state that consists of an assignment of values to observable process state variables
and a belief over all possible assignments to hidden state variables� The information states can
be heterogeneous� that is the size and the content of the information state can vary�
Other new ideas presented in this chapter include�

� Hierarchical Bayesian belief networks for representing transition and observation models�
These capture more of the structure of the model� reduce the number of parameters the
model uses and thus simplify their denition�

� Factored cost model that divides a cost into components� a cost associated with an action
and a cost associated with state variable values that result from the action� Such a model
requires fewer parameters to be dened� The denition of cost parameters was further
simplied using the proposed cost distribution model�
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� Actions of di�erent durations with di�erent discount factors�

� Compilation of the transition and observation model that speeds up probabilistic queries
and eliminates zero probability transitions�

Using all new features discussed above we were able to dene an IHD model of signicant
complexity and compute value function approximations for the treatment policy problem in
reasonable time� These functions were in turn used to obtain treatment choices for di�erent
patient scenarios and follow�up situations� Although the model used needs to be further im�
proved and rened� it demonstrated the capability to compute clinically correct choices in many
situations� This helped us establish the link between models of system �disease� dynamics and
goal preferences� and clinically correct decisions�
The current IHDmodel needs to be improved and rened in many places� It is also likely that

in order to maintain practical solvability of the problem larger model changes and renements
that represent more of the domain detail will require alternative approximation techniques �e�g�
based on model reductions� and�or further exploitation of the underlying structure�
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Chapter �

Conclusion

The POMDP framework is suitable for modelling dynamic decision or control proceses with
stochastic behavior and with partial �imperfect� information about the underlying process state�
The framework o�ers increased expressivity compared to the MDP that assumes perfect observ�
ability of the process state� Thus the main distinguishing features of the POMDP framework
are� process states are observed indirectly through a set of observations� and observations can
be conditioned on investigative actions�

��� Solving the POMDP problem

The price paid for the increased modelling power of POMDP framework is high� and causes the
signicant increase in the computational complexity of exact algorithms producing optimal or
near optimal solutions� This makes the framework and associated algorithms often practically
applicable only in domains with a relatively small number of states� actions and observations�

����� POMDP exact methods

The partial observability hits policy problems� that require one to nd the control for all pos�
sible information state especially hard� Problem solving methods are based on the dynamic
programming or value iteration but are subject to the exponential growth of the value function
description� Moreover existing algorithms are ine�cient also with regard to the computation
of the value function update� This causes only problems of small complexity� that include not
more than 	� states� to be practically solvable� Moreover all of the known optimization algo�
rithms exploit the feature of piecewise linearity and convexness of the value function that holds
only for belief space POMDPs and thus we do not know how to compute exactly the policy
problem for more complex POMDP models� e�g� with delayed observations�
Relatively faster� but still subject to the exponential growth are algorithms that generate

optimal or near�optimal response for the current information state in the forward fashion us�
ing decision trees� As the decision tree needed to make the decision can grow large �innite
for innite horizon problems� �intelligent� methods that attempt to build �expand� the tree
gradually and prune suboptimal branches whenever possible can be designed� The pruning can
be performed based on value function bounds� The advantage of the decision tree method is
that it can be applied also for nding the best action not only for belief space POMDPs but
also for POMDPs with delayed observations� Incremental forward methods for nding optimal

	��



or near�optimal decisions can be turned into anytime procedures generating control responses
that improve gradually over time�

����� POMDP approximations

The natural solution for the problem of computational complexity is to trade o� the solution ac�
curacy for the speed� This leads to methods that try to come up with a good solution e�ciently�
Most of the approximationmethods are based on the approximation of value functions or model
reduction techniques� Possible value function approximation methods are� the MDP based ap�
proximation� blind policies� fast informed bound update� grid�based interpolation�extrapolation�
grid�based linear vector method� curve tting� On the other hand model reduction techniques
are based mostly on the feature�based approaches that reduce the information�state MDP cor�
responding to the POMDP�
Although there is a relatively large spectrum of approximation methods that alllow us to

solve the optimization problem e�ciently� there is not a very good understanding of what makes
various approximation methods better or helps us determine what methods are more promising
and what are inferior� This is caused to a great extent by the lack of larger scale experimental
studies that would give us a ground for the larger evaluation and comparison�

����� Extensions of the POMDP framework

The main advantage of the POMDP framework over alternatives is in its capability to model
stochastic partially observable control processes� However this does not mean that we will be
able to capture all features of real�world domains using the basic POMDP formalism� In fact�
dealing with real world domains� one can often take advantage of additional problem structure
that is not expressed in the basic POMDP model and use it to speed�up the problem�solving
routines� Thus� the exploitation of the additional problem structure o�ers another solution
for the problem of computational complexity of the exact POMDP methods� For example�
dynamic processes are not often completely hidden and what occurs is usually a combination
of perfectly and partially observable state components� Then a framework that combines and
exploits advanatges of both MDPs and POMDPs o�ers better solution� This was shown for
example on the ischemic heart disease problem in the previous chapter�

��� Contributions

Our research work has focused on the following goals�

� the design of new exact and approximation methods�

� the comparison� test and analysis of value function approximation methods�

� extensions of the basic POMDP framework� exploitation of the additional problem struc�
ture�

Although the main contributions of our work fall into the above categories� we believe that
the text as a whole can serve as a good reference for people exploring the area of planning
under uncertainty� Also the work describes some of the new and promising ideas we were not
able to pursue or describe in depth due to time constraints� and thus it provides a source for
interesting research topics� In the following we will summarize the contributions of the thesis
along the outlined main objectives�
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����� Exact POMDP methods

Belief space POMDPs

The standard POMDP model assumes that observations always depend on the actual process
states and previous actions� Such a model can be converted to information�state MDP with
su�cient information states that correspond to belief states� and with value functions that
have been shown to be piecewise linear and convex �Smallwood� Sondik ���� However� there are
other models �e�g� model with backward triggered observations or combination of backward
and forward triggered observations� that can be converted to information�state MDPs with
belief states� We have shown that the Sondik�s result of piecewise linearity and convexness not
only applies to the standard model but can be extended to the set of belief space POMDPs�
This allows us to use exact algorithms developed for the standard model for any belief space
POMDP�

Gauss�Seidel speedup of value iteration

Probably the most important contribution of our work for exact methods is the idea of Gauss�
Seidel speedups of the value iteration algorithm for the belief space POMDPs and innite
discounted horizon problems� The method uses lower bound piecewise linear value functions and
improves value function incrementally by computing and adding new linear vectors obtained
for points of the belief space to the previous solution� Every new linear vector obtained is
immediately used to compute further updates� The main advantage of the incremental scheme
is that it avoids the recomputation of the complete value function from scratch�

Speedups of exact updates

Another interesting part� is the work on the improvement of exact Monahan�s algorithm using
incremental schemes that enable us to interleave the construction and test phases of the useful
linear vector set and employ an early pruning of redundant partially built linear vectors� This
topic has been investigated recently by �Cassandra et al� ���� However� the methods developed
there can be applied to build action�value functions �Q�functions� and do not allow one to do
early pruning accross actions� We have suggested an extension that makes it possible to apply
the idea of early pruning across actions as well� The extension is based on computing bounds�

Forward decision methods

Most of the attention of researchers in the area has been devoted to the problem of nding the
optimal policy� However� in many cases a far simpler decision problem that tries to select a
control response for a single initial state can be su�cient for implementing the control agent�
Such problems can be solved in the forward fashion by a process that incrementally expands the
decision tree� In our work we have proposed� designed and implemented various incremental
algorithms for solving such problems� breadth rst� bound span heuristic� randomized heuristic�
and linear space� These methods reduce the growth of the decision tree via pruning based on
value function bounds�
In general the quality of bounds computed by the incremental forward algorithms depend

both on the depth of the decision tree and on the quality of value function bounds used at the
leaves of the tree� Thus one can tighten the bounds by either further expansion of the tree or
by the improvement of bounds used at leaves� We have suggested a new decision method that
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combines advantages of both forward decision methods and bound improvement steps using a
metalevel decision procedure�

����� POMDP approximation methods

The fact that POMDP problems cannot be solved e�ciently naturally leads to the usage of
various approximation methods� that trade o� precision for speed� Although many of the
approximation methods have been known for some time� it is still possible to nd new ones or
suggest promising modications of the existing ones� In our work we have suggested a few of
these�

Fast informed bound

The fast informed bound method is a newly�designed method� that uses an e�cient update
scheme and upper bounds the exact update rule� The rule approximates a value function
using piecewise linear and convex approximation with at most jAj linear vectors� The main
advantages of the method are its simplicity �it updates linear vectors directly�� bound property
and convergence� This is unlike the Q�function least square t method that also uses jAj linear
vectors� but must update the value function at some number of sample belief points rst� it
does not bound the exact update� and it is not guaranteed to converge�

Variable grid point interpolation scheme

One of the existing methods for approximating value functions uses a grid of points� their values
and the interpolation�extrapolation rule for approximating values at nongrid points� Interesting
interpolation�extrapolation rules are based on point interpolation techniques� These lead to
solutions that guarantee the upper bound as well as convergence for the belief state MDPs�
The main problem with point interpolation rules is the selection of grid points relevant for
interpolation� The techniques used to deal with this are based on regular grids that uniquely
partition a belief space� In our work we propose a simple and e�cient point interpolation scheme
that can use aribtrary �variable� grids and preserves the upper bound property� This �exibility
makes it possible to combine the method with various grid selection strategies� including various
heuristics�
In connection with a new point interpolation method we have also proposed a new heuristic

approach for constructing grids� The method uses a stochastic simulation idea to nd grid points
that are likely to maximize the improvement of the upper bound� Versions of the same method
can also be applied together with other grid�based interpolation�extrapolation strategies� e�g�
the nearest neighbor approach�

Incremental linear vector method

Yet another method for the value function approximation uses the renement of the exact
point�based linear vector updates to grids� The method computes a lower bound value function
update� but does not guarantee the convergence� In our work we have proposed a new incre�
mental linear vector method that updates linear vectors for a set of grid points and guarantees
the convergence� The method starts from the initial piecewise linear and convex lower bound
and gradually adds new linear vectors found for the grid points to the original function� The
methods avoids costly rebuilding of the complete value function for every update and can be
used to speed up the exact value iteration �see above��
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����� Comparison and tests of approximations methods

There is a spectrum of approximations methods researchers have developed over the years�
However� these were very often left uncompared and there is a lack of understanding of how
various methods compare to each other and�or how various modications can help to improve
the basic methods� The methods can be compared theoretically and one can in many instances
show that some value function method gives a better bound result than the other method�
or that the method converges for the innite discounted horizon case� However� it is very
hard to say in general what the impact is of various heuristic improvements or how various
approximation methods will perform with regard to control� These properties often need to be
explored experimentally� and the lack of experimental studies that compare performances of a
large number methods does not help in further endeavour�

Experimental study

New and existing value function approximationmethods were tested and their results were com�
pared using a set of three di�erent innite discounted horizon problems of various complexities�
The experiments covered a large spectrum of possible value function approximation methods
and their modications that ranged from simple MDP�based approximations to least square t
methods and heuristic grid�based linear vector methods� The results thus provide the ground
for their comparison and evaluation�
The experiments were conducted to explore the quality of value function bounds that are

guaranteed by some of the methods� and the quality of control� where methods were judged
solely based on the control performance on test problems� The results conrmed that for the
purpose of control the best performance was achieved by methods that tend to approximate
better the shape of the optimal value function� The best methods update value function deriva�
tives and attempt to preserve the shape of the functions over many updates� Contrary to this�
methods that used value functions that deviated from the piecewise linear and convex shape�
like the grid�based nearest neighbour method� achieved inferior results and thus their usage is
not warranted for the belief space POMDPs�

����� Extensions of the basic POMDP framework

The basic POMDP framework can be extended in many ways to better t the features of the
real world domains� For example the basic framework can be extended to deal with observation
delays that are very important in modelling time critical control problems� Unfortunately in
this case the original POMDP does not reduce to the belief state MDP and thus it remains
closed to various exact and approximation methods that assume belief information states�
Although in some cases the extensions can make the control problem more complex� the

basic framework can be modied and extended to take advantage of the additional problem
structure and to use it to improve the problem solving routines� We have explored these ideas
in connection with the POMDP application to the management of a patient with ischemic heart
disease �IHD�� The work on the IHD model lead to many new and very interesting extensions
of the basic framework and we plan to explore them further in the future�

Combining MDPs and POMDPs using factored models

The basic POMDP framework assumes that process states are always hidden and information
about the state can be acquired only through observations� However this is not always true� and
one often works with process states that consist of both observable and hidden components� In
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order to deal with this issue we propose to represent the POMDP model in the factored form
with process states and observations represented using a set of state variables� Such variables
can then be modelled as either observable or hidden� Moreover� probabilistic relations �tran�
sition and observation probabilities� can be expressed with regard to variables using graphical
models and thus take advantage of independencies �conditional or unconditional� that hold
among them� The factored model representation e�ectively allows us to combine MDP and
POMDP formalisms into one frame work� and take advantage of both of them�
The factored model� with both observable and hidden process states� can be converted into

the information space MDP� with information states that are composed of two components�
a set of value assignements to observable state variables� and a belief state over all possible
combinations of hidden state variable values� The usage and idea of two component information
states that combine MDP and POMDPs frameworks is new and it has not been reported in the
literature�

Heterogeneous information space

Although factored models can help to simplify the information state description� the information
space they dene can include information states that cannot occur in practice �contradictory
variable value combinations� etc��� In order to reduce the complexity of the information state
as much as possible� we have proposed the hierarchical version of the factored model in which
some of the state variable values describe higher level concepts �abstractions� and subsume sets
of other lower level state variables� The structuring allows one to describe possible states using
descriptions of di�erent complexity and size� Moreover the idea of hierarchical subsumption
can be used to simplify the denition of the probabilistic relations by exploiting independencies
that emerge on di�erent levels of abstraction� With a hierarchical model� information states can
be described using varying size components and thus information state space is heterogeneous�
The idea of hierachical state spaces is also new and has not been used in the POMDP literature�

Other model improvements and extensions

Factored and hierarchically structured transition and observation models allow us to reduce the
number of parameters dening the POMDP model� This is very important for the process of
acquisition of the parameters both from the human expert or from the avaliable datasets using
machine learning techniques� Similarly we proposed and used the factored cost model that is
easy to dene and uses small number of parameters�
Other model extensions and improvements we have proposed and used in our work include�

handling actions with di�erent time durations using di�erent discount factors and compilation of
the transition and observation models� The purpose of compilation was to acquire a model that
would allow us to compute relevant probabilistic queries faster� To do this we have converted the
model to the decision tree structure with internal nodes corresponding to observable variables
and leaves corresponding to probabilities over hidden variables� Such a decision structure was
further optimized by excluding zero probability contingencies�

����� Application of the POMDP framework

The newly extended POMDP framework has been applied to the problem of management of
patients with chronic ischemic heart disease� The parameters of the underlying model were
acquired based on published study results and subjective estimates� The model and solutions
have been tested on few inital and follow�up scenarios� Despite some of the deciencies �mostly
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due to the model simplications� we were able to observe reasonable therapeutical choices in
many instances and these were in concordance with clinical practice�
The acquired result is important both from the perspective of the application area� and

the framework� In the rst case it gives us hope that we might be able to solve and analyse
complex medical decision problems� In the second case it represents an example of a real�world
application domain and thus helps to prove the relevance and place of the methodology in
solving real�world problems�

��� Challenges and further research directions

There are many interesting problems that are crucial for further developments in POMDPs
and their applications� Two of the most important are related to applications of the POMDP
framework to large size domains and to learning of POMDP models from temporal datasets�

����� Attacking large problem domains

Despite e�cient value function approximations� the standard POMDP framework �with hidden
process states� is still suitable to handle problems of relatively small size �our best guess on
the size of the problems would be around 	�� states� but this can also vary with applications
and their specicities�� The problem of having large process states can be resolved when the
underlying process state space consists of both observable and hidden components� Then new
ideas and techniques developed in Chapter � that combine MDPs and POMDPs frameworks
and use two component information states can be applied� However these techniques does not
help to reduce the complexity introduced by hidden components �e�g� one still needs to work
with belief states over all possible combinations of hidden variable values�� Thus solutions for
reducing the complexity associated with hidden process states are of our main interest�

Limitations of factored POMDPs

One of the approaches suggested for dealing with large models in the fully observable MDP
framework was to rely more on the structure of the model� The approach works with a factored
MDP model that captures independencies and regularities that hold among model components
�represented using graphical models� and use these directly to nd optimal or approximate
solutions� Unfortunately� the planning methods that exploit factored models and underlying
structural dependencies work ne for the MDP case mostly thanks to perfect observability� This
is because all process state variables� once observed� make all past and future states independent
of each other� Contrary to this in the POMDP case one works with information states� that are
hard to break along the factored components� This is illustrated in the following� Assuming
that all state variable values at current time are given �MDP case�� all future instances of state
variables �and their values� become independent of past state variables instances and their
values� In graphical models language all future state variable values are d�separated from past
state variables� However� not knowing values of the current state variables with certainty� future
and past state variables are not independent of each other� Then for example� two observation
variables in the future can become dependent� whenever both of them share a common hidden
state variable in the past� Or in other words two observation variables that are d�separated by
some hidden state variables of the Markov chain in the past can be dependent�
The major consequence of this is that the Markov property of information state process

can be violated when one would use �factored� information states that are blindly related to
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the underlying factored state representation� Of course� one can always apply the idea to the
observable component of the process state whenever two component information states are used�

Model reduction techniques

The approach well suited for attacking large size POMDPs is based on model reduction tech�
niques� We described it in section ��	� but we did not explore it to the depth� The model reduc�
tion methods can target either information state MDPs or directly original POMDP models�
The main idea is to merge states� observations or actions to aggregate entities and work with
such aggregates� The typical representatives of such an approach are various feature extraction
mappings �Tsitsiklis� Van Roy ���� or methods that work with truncated information histories
�White� Scherer ���� In the ideal case one would like to have techniques that can automati�
cally select components of the model that can be aggregated and in�uence the solution to the
smallest extent�
Open and challenging problems related to the model reduction idea include�

� techniques for nding appropriate aggregation methods �or feature extraction mappings�
with the smallest e�ect on the resulting approximate control�

� the exploration of relations between reductions of the original POMDP model and an
associated information�state MDP�

� the trado� between model approximation and value function approximation approachess�

Speeding up high dimensional belief state updates

There are other approaches that can be used to speedup computations for the large POMDP
problems� The fact that one needs to work with POMDPs with a large number of partially
observable states causes a signicant slow down of information state updates� This is also
because one needs to work with high dimensional belief states that need to be updated of�
ten� One approach aimed to reduce the computational and space complexity associated with
belief state updates is based on the idea of stochastic simulation �see �Schachter� Peot ���
�Kanazawa et al� ����� The idea of the method is� assuming that one knows the current be�
lief state then the next belief state approximation under action a and observation o can be
computed using the following steps�

	� select k random world states based on the current belief state distribution�


� simulate the transition for the selected state� action a and observation o via Monte Carlo
method�

�� merge simulated results �from frequency count� and produce a new belief state�

The approximation of a belief state update is suitable when there is a small number of
regions with higher probability �weight�� Then one can approximate the probability distribution
over belief space by considering and remembering only higher probability regions� There are
other options for making the simulation work� In the outlined approach one needs to compute
P �s�js� o� a� for all possible s� rst� then to select next state via Monte Carlo simulation and
after that to compute frequencies for all outcomes� However it is possible also to use the fact
that P �s�js� o� a� � P �s�js� a�P �ojs�� a�� Then one can select s� from P �s�ja� s� by the simulation�
give it weight of P �ojs�� a�� and sum all results for the same s� to acquire the overall weight for
s� �after normalization��

	��



����� Learning in partially observable stochastic control domains

Most of the discussion related to the control in partially observable stochastic domains assumed
that a POMDP model was always available� so the control agent or compiler could use it to
compute the optimal or approximate control� This completely ignores problems associated with
the acquisition of POMDP models� that can turn out to be hard task itself� For example the
assignment of rewards or other parameters of the model must be done consistently and re�ect
intended preferences and�or objective frequencies� Therefore the possibility of learning under�
lying controller knowledge directly from observed control sequences and�or temporal datasets
is often of high importance� In the following we will brie�y go over the main ideas one can
pursue to achieve these objectives� However there are still many opened problems that need to
be investigated�
The basic learning scenario in the control domain is that the learner observes sequences

of control actions� observations and reinforcements� Reinforcements represent either costs or
rewards and quantify the goodness of the transitions that occurred with regard to the control
goal� The learner can either be combined with the controller with the capability to perform
actions or it may be only a passive observer� Using active learning can often lead to shorter
learning times due to the fact that the controller can explore those control sequences it considers
more relevant� On the other hand passive learning assumes that the learner is given information
about a control case without any active intervention� which can be crucial in some domains like
medicine�
In general� depending on what we want to learn� we can speak about two main learning

approaches in control domains �

� learning of POMDP models

� learning of control policies

Learning of the model

The rst approach is trying to learn the underlying domain model from observed data and
reinforcements� Such a model is then used to compute the optimal or approximate control
in the obvious way� Learning of the model can consist of learning the complete model �both
structure and parameters� or learning model parameters only� The problem of learning model
parameters is far easier and methods for learning parameters of probabilistic networks with
hidden variables� like EM �Rabiner� Juang ��� �Spiegelhalter et al� ����Lauritzen ��� or gradient
descent methods �Russell et al� ���� can be applied�
The agent with a built�in parameter learning mechanism can be the basis of an adaptive

control agent that adapts its behavior with regard to specicities of the control cases that have
been solved� The adaptation of the model parameters can be important� e�g�� when there is a
natural variation in cases the control agent repeatedly solves� and when one can incorporate in
the model initially only population estimates�
The learning of a complete POMDP model is a far harder task� as one is supposed to go be�

yond learning of parameter values and also derive the underlying hidden structure� The learning
of POMDP models has not been explored to a su�cient depth so far and much work need to
be done here� Two approaches published are the predictive distinction approach �Chrisman �
�
and the utile distinction approach �McCallum ���� Both of these operate under various simpli�
fying assumptions �restricted value function form� and gradually increase the number of states
needed to t the observed control data�
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Learning of control policies

The second approach is based on the assumption that one can build a good controller without
the detailed underlying model by building control policies directly based on action�observation
sequences� This is in many respects related to the approach of feature�based approximation
with truncated histories �Platzman ��� �White� Scherer ���� Control policies that use truncated
histories can be learned� e�g�� using reinforcement learning techniques �see� e�g�� �Watkins ����
�Barto et al� �	�� �Hauskrecht ���� �Kaelbling et al� ����� The problems with this are that the
number of items in the history is not known in advance� and that not all observations and actions
are equally relevant to control� An approach that attempts to dynamically identify the relevant
history items to be used in the control policy denition was presented in �McCallum ����

	�




Appendix A

Test problems

A�� Maze�� problem

Problem� innite discounted horizon
Optimization� MAX
Discount� ���

States correspond to rooms in the maze� They are numbered from � to 	� �see gure A�	��

Actions� numbered from � to ��

� move north� � move west�
	 move south� � make observation �north�south��

 move east� � make observation �east�west��

Observations� numbered from � to ��

� no�observation �unknown�� � both north and south walls�
	 no wall� � east wall�

 north wall� � west wall�
� south wall� � both east and west walls�

Moves Sensors

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Figure A�	� Maze
� robot navigation problem�
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Transition model �action� previous state� next state�
Action� �
���� ���� � � � ��� � � � � � � � � � � � � � �

���� ��� ���� � � � � � � � � � � � � � � � � �

� ���� ��� ���� � � � � � � � � � � � � � � � �

� � ���� � ���� � � � ��� � � � � � � � � � � �

� � � ���� ���� � � � � � � � � � � � � � � �
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