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Abstract. Many deployed traffic incident detection systems use algo-
rithms that require significant manual tuning. We seek machine learn-
ing incident detection solutions that reduce the need for manual adjust-
ments by taking advantage of massive databases of traffic sensor network
measurements. First, we show that a rather straightforward supervised
learner based on the SVM model outperforms a fixed detection model
used by state-of-the-art traffic incident detectors. Second, we seek further
improvements of learning performance by correcting misaligned incident
times in the training data. The misalignment is due to an imperfect inci-
dent logging procedure. We propose a label realignment model based on
a dynamic Bayesian network to re-estimate the correct position (time)
of the incident in the data. Training on the automatically realigned data
consistently leads to improved detection performance in the low false
positive region.

1 Introduction

The cost of highway accidents is significantly reduced by prompt emergency
response. With real-time traffic flow data, automated incident detection systems
promise to detect accidents earlier than human operators. Earlier response and
accident impact mitigation lead to significant savings of money and life.

The most widely deployed traffic incident detection models are fixed-structure
models that combine and threshold a set of signals such as volumes, speed and
speed derivatives [1]. Tuning of these thresholds requires extensive involvement
of traffic experts. What is worse, as the settings extracted for one site typically
do not transfer to a new site, the tuning costs are multiplied by the number of
sites in the network. Transferability of detection algorithms is a central concern
in automatic incident detection [2]. We investigate how machine learning can
help design transferable detection algorithms.

Machine learning approaches to automatic incident detection are made pos-
sible by the wealth of data collected by networks of traffic sensors installed
nowadays on many highways. Models that can be automatically tuned from
data could reduce or eliminate costly recalibrations and improve performance
[3–6]. We experiment with SVM-based detection and show it easily outperforms
the optimally calibrated standard model (California 2).



However, the learning framework can be further improved. In particular, the
labels for incident data are imperfect; the initial time of incidents is logged with
a variable delay. Consequently, the incident label may be misaligned with the
onset of the observed changes in traffic flow caused by the incident. Training a
learner with such badly aligned data yields a suboptimal detector.

We approach the alignment problem using machine learning methods as well.
We propose a new dynamic Bayesian network [7] that models the misalignment
problem probabilistically with respect to traffic flow quantities and the label po-
sition. We train the model on the manually realigned data from a single highway
segment. Once learned, the model can be transferred to other highway segments
to correct the incident labeling. The realignment model generates new incident
labels in temporal data that are then used to train a supervised classifier such
as a SVM to obtain the detection algorithm. This approach allows us to learn,
with a limited amount of human effort, a more reliable detection model. We
demonstrate the improvement in detector quality on traffic flow and incident
data collected in the Pittsburgh highway network.

2 The Data and Detection Task

In this section, we look at the available data and define the incident detection
task together with the relevant performance metrics.

2.1 Traffic and Incident Data

The data are collected by a network of sensors that use a number of physical
principles to detect passing vehicles. Three traffic quantities are normally ob-
served and aggregated over a time period: the average speed, volume (number
of passing vehicles) and occupancy (the percentage of road taken up by cars).
Incidents that the metropolitan Traffic Management Center (TMC) was aware
of are noted in the data: their approximate location, time of accident and time
of clearing by emergency responders (Figure 1). Short free-text accident descrip-
tions are also available.

The detection task is to continuously observe the data stream and raise an
alarm when the readings indicate an incident1. An incident restricts the capacity
of the roadway by blocking one or more lanes, forcing drivers to slow down to
navigate around it. This will result at a temporary drop in the number and
density of vehicles passing the downstream sensor. Upstream of the accident, a
jam forms. When the tail end of the jam approaches the nearest sensor, it will
cause a drop in measured speed and and increase in vehicle density. The time
when the sensors detect the anomaly depends on the utilization of the highway,
distance to the sensors and severity of the incident.

1 The term incident includes vehicular accidents as well as unscheduled emergency
roadwork, debris on the road and many other hazards. Most incidents are accidents
and we will use the terms interchangeably.
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Fig. 1. A section of the raw data. The red (solid), green (solid with markers) and
blue (dotted) lines represent average occupancy, average speed and total volume, re-
spectively. Time is on the horizontal axis. The vertical (orange) stripes represent the
reported accidents durations. A thin grey vertical line is drawn at midnight of each
day. The numbers at the bottom encode accident time as recorded by TMC. Some acci-
dents square with congestions perfectly (912:640 – September 12th, 6:40am), some are
slightly shifted (912:1545) and some even have no observable effect on traffic (911:1810).
The incident at 912:640 is mostly obscured by morning peak traffic – compare to the
morning traffic on the previous day.

2.2 Performance Metrics

A false alarm occurs when the system raises an alarm, but no accident is present.
The false alarm rate (FAR) is the number of false alarms divided by the num-
ber of detector invocations. The detection rate (DR) is the number of correctly
detected incidents divided by the number of incidents that actually occurred.
Receiver operating characteristic (ROC) curves [8] are the standard metric de-
signed to quantify detection of one-off binary events. Because accidents affect
the traffic for a longer span of time and the detections are not equally valuable
around the beginning and the end of the span, we instead prefer the activity mon-
itor operating characteristic (AMOC) curve as the primary performance metric.
AMOC curves are used for evaluation of rare event detection performance, such
as detection of disease outbreaks [9]. AMOC curves relate false alarm rate (FAR)
to time-to-detection (TTD). TTD is defined here as the difference between the
time of the start of the first data interval that was labeled as “accident” and
the reported incident time. Note that this number can be negative because of
the delayed incident recording. As we cannot guarantee to detect all accidents,
we introduce a two-hour time-to-detection limit for accidents that remain unde-
tected. When a scalar metric is desired, we compare detectors on AUC1%, the
area under the curve restricted to the (0, 0.01) sub-interval of FAR. This is a
better indicator of detector performance in the usable low-false-positive region
than the area under the entire curve.

The target performance at which a system is considered useful depends chiefly
on its users. A study [5] surveying traffic managers found that they would seri-
ously consider using an algorithm that achieves a DR over 88% and FAR under



2%. For any rare event detection system, a low FAR is absolutely essential. A
system with a high FAR subjects its users to “alarm fatigue”, causing them to
ignore it.

3 The Detection Models

In this section, we present the detection models that operate on the original data
supplied by the TMC.

3.1 The California 2 Model

“California #2” is a popular model against which new detection algorithms
are often compared and runs in most deployed incident detection systems [2].
California #2 (abbreviated CA2) is a fixed-structure model that proceeds as
follows:

– Let Occ(sup) denote occupancy at the upstream sensor sup and Occ(sdown)
the same at the downstream sensor. If Occ(sup)−Occ(sdown) > T1, proceed
to the next step.

– If (Occ(sup) − Occ(sdown))/Occ(sup) > T2, proceed to the next step. The
rationale behind this step is while a capacity-reducing accident will always
produce large absolute differences in occupancy, these may also be produced
under almost stalled traffic conditions.

– If (Occ(sup)−Occ(sdown))/Occ(sdown) > T3, wait until the next reading. If
T3 is still exceeded, flag an alarm. The wait is introduced to cut down on
false alarms.

Thresholds T1, T2, T3 need to be calibrated manually for each sensor site. With-
out access to an expert, but with plenty of data, we resorted to an exhaustive
parameter grid-search as described in Section 5.

3.2 Model Learning and Features

The CA2 algorithm uses a surprisingly limited set of features. Could a better
detection performance be achieved if the detector took advantage of multiple
features? And which features? Clearly, the readings at the upstream sensor sup

and the downstream sensor sdown at the time of detection should be included.
Sharp changes in traffic flow may also indicate an accident. Therefore, we include
features computed as differences and proportions of the traffic variates to their
previous value. Finally, unlike a benign congestion, an accident should cause
radically different flow characteristics at the upstream and downstream sensors.
This motivates the inclusion of features that correlate the measurements spa-
tially, as differences and proportions of the respective measurements at upstream
and downstream sensors.
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Fig. 2. Performance of the SVM model, for different feature sets. The features are:
(a) All readings for the sensor. (b) California 2 features (the occupancy ratios). (c)
All of current and previous step measurements. (d) All current measurements together
with differences and proportions of the corresponding readings at the upstream and
downstream sensors. For drawing the curves, the intercept of the SVM hyperplane
is varied in the (-1,1) range, giving a lower bound on the true performance [10]. For
each value of the detection threshold, we compute the average FAR and TTD over 10
train/test splits and draw the graph point as well as both of the corresponding error
bars. The area under the portion of the curve up to 1% FAR is reported as AUC1.

3.3 SVM Detector

Having defined the potentially informative features, we pick a learner from the
palette of learning tools. We had two reasons for choosing the SVM model [11].
First, in preliminary experiments it outperformed logistic regression and several
variations of dynamic Bayesian network detectors [12]. Second, the SVM is fairly
robust to irrelevant features, allowing us to include features that are weakly
informative individually, but perhaps become strong predictors in aggregate.
The SVM was learned in the straightforward way. Datapoints falling into the
intervals labeled as “incident” in the data were assigned class 1, the remaining
datapoints class −1. Misclassification cost was selected as to balance for unequal
class sizes: if there are N instances of class 1 and M instance of class −1, then
the misclassification of “−1” as “1” costs N/M and 1 vice versa.

The performance of the SVM detector using different feature sets can be seen
in the curves and the associated AUC1% values in Figure 2. It appears that for
our data, the direct sensor readings (speed, volume, occupancy) provide most
of the detection leverage. Addition of the spatial difference (and proportion)
features affects the performance minimally. The temporal difference features do
bring a small improvement, albeit one that fails to confirm the perception of
temporal difference as an important feature [1]. This could be in part explained
by the fact that our data are 5 minute averages and the sharp temporal effects
important for detection are somewhat averaged out. A detector using the fea-
tures of the CA2 algorithm is included for comparison. The results confirm our



intuition: the SVM detectors using multiple features outperform that using only
CA2 features (the comparison to CA2 itself follows later).

3.4 Persistence Checks

False alarm rate can be traded for detection time with the alarm signal post-
processing technique known as persistence check. k-persistence check requires
that the alarm condition persist for k additional time periods before the alarm
is raised. Note that CA2 already has a built-in 1-persistence check in its last step.
We experimented with the optimal (in the sense of minimizing AUC1%) choice
of k for the SVM detector with the basic measurement features (on the training
site data). Best performance is attained at k = 1 and all SVM experiments are
therefore conducted using that persistence value.

4 Label Realignment Model

Our objective is to detect the accident as soon as its impact manifests in sensor
readings. This time will always lag the time the accident actually happened.
The lag amount depends, among other factors, on the capacity utilization of
the roadway and the relative position of the sensor and accident locations. The
time that the incident is reported to the TMC and logged in the database may
precede or follow the time of manifestation. Differences between these times lead
to label misalignment.

There are two things that the detector can latch onto; the short period when
the accident’s impact builds up (e.g. speed falls) around the sensor, and the
longer steady state condition with lowered speeds or jammed traffic. To opti-
mize detection time, we should focus the detector at the transient period. The
transient period is very short and any misalignment will cause the accident start
label to fall outside of it. It is therefore crucial for supervised learning that the
label is precisely aligned with the observed impact of the accident. The end-
of-incident labels are less important: by the time the incident is cleared, the
emergency response has already taken place. We do not attempt to align inci-
dent clearing times.

By definition, misalignment can only occur in positive instances, i.e. those
sequences that contain an incident. We need a method to correct the alignment
of incident labels in the training set so that the learned model accuracy may
improve.

4.1 A Model of Incident Sequences

Consider a single positive sequence S of traffic feature vectors. An incident start
label r denotes the point in sequence S where the single incident is reported
to occur. The label realignment task is to output the label ` pointing where
the incident truly began to manifest in S. For label realignment, we model the
sequence of feature vectors with a special dynamic Bayesian network model,
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Fig. 3. Two slices of the temporal probabilistic model for realignment. As usual, shaded
nodes represent observed random variables; unshaded nodes correspond to latent vari-
ables. There are a total of L slices; the superscript (k) denotes the variable’s instanti-
ation in the k-the time slice.

shown in Figure 3. In the model, A represents the true accident time and takes
on a value from {1, . . . , L}, where L is the sequence length. Each impact variable
I(k) is a binary indicator of incident impacting the traffic flow at time k. Each I is
a part of the intra-slice Bayesian network that models the interaction between the
traffic measurement features F1, . . . , Fn. We place no restrictions on the within-
slice network in general. In order to keep the model presentation simple, we do
not draw arrows between the features in subsequent slices. However, features
may depend on values at other nearby timepoints; for instance the “occupancy
derivative” F (t) = Occ(t)−Occ(t− 1) depends on the previous measurement.

The variables A and I(k) have a special relationship, expressed in their prob-
ability distributions. First, we express the lack of prior knowledge about A by
defining the prior P (A) to be the uniform distribution on the set {1, . . . , L}. Sec-
ond, the conditional distribution is also fixed, expressing that once an incident
starts impacting traffic, it continues to do so:

P (I(k) = 1|A = k′, I(k−1) = 1) = 1
P (I(k) = 1|A = k′, I(k−1) = 0) = 1 if k = k′,

0 otherwise. (1)

We can afford this simplification because we only want to model the accident
onset and disregard the accident clearing event.

The report time R depends on the true accident time and is assumed to
obey a conditional Gaussian distribution: P (R|A = k) ∼ N(k +µ, σ2), with µ, σ
identical for all k. Equivalently, the amount of misalignment has a stationary
Gaussian distribution: R−A ∼ N(µ, σ2).



4.2 Inference for Realignment

We perform inference in this model in its unrolled form. Basic variable elimi-
nation is the best suited inference method for the realignment model. It deals
well with the unusual distributions and is also efficient for this model, because
the special form of the inter-slice probability distribution simplifies the inference
task – there are only L indicator sequences with p(I1, . . . , IL) > 0 to sum over.

Using the probability distribution p defined by the above model, the label
alignment task can be formulated as a posterior mode problem. Given that the
data places the incident start label at r, we reassign the label to `, so that

` = argmax
k

p(A = k|R = r,F(1), . . . ,F(L)), (2)

where F(t) = (F (t)
1 , . . . , F

(t)
n ) is the t-th observation vector.

4.3 Learning and Transfer to New Locations

Now, we must parameterize a separate model for each sensor pair defining a
highway segment (site). Let A denote the single calibration (training) site and
let Bj , j = 1, . . . , S be the test sites. While one could learn the model in a
fully unsupervised manner with the EM algorithm [13], there is little guarantee
that the learning would converge to the intended interpretation. Instead, we first
learn pA, the sequence model for A, from manually aligned data. Manual align-
ment gives us a fully observed dataset XA = (FA, RA, IA, AA) and maximum
likelihood learning becomes trivial:

ΘA
ML = argmax

Θ
p(XA|Θ) (3)

Then, inference in the model parameterized with ΘA
ML can be applied to

realign the labels for the B-sites where the manual annotation is unavailable.
Of course, accident impact at each site Bj differs from that of the site A. The
resulting labeling will be imperfect, but it still provides a good initial estimate.
The EM-algorithm for estimation of ΘBj can proceed from there with a smaller
risk of converging to an undesirable local optimum. Additionally, the sufficient
statistics obtained in the estimation of ΘA are stored and used to define the
conjugate prior over ΘBj . Thus the resulting parameterization of a testing site
model is a maximum a posteriori (MAP) estimate:

Θ
Bj

MAP = argmax
Θ

p(XBj |Θ)p(Θ|ΘA
ML). (4)

In the EM algorithm that estimates Θ
Bj

MAP , the expectation step corresponds
to inference of the unobserved labels ABj and IBj . The maximization step re-
estimates the parameters of the conditional distributions p(R|A) and p(Fi|I). We
consider the EM converged if the labeling (the posterior modes, see Equation 2)
does not change in two consecutive iterations. For our dataset, the EM always
converges in less than 5 iterations.



Site STrain STest1 STest2 STest3

# incidents 145 100 97 92

Table 1. Sites included in the evaluation, with number of incidents.

5 Experimental Evaluation

In this section we describe the experimental setup and report the results. All
statistics reported are averages and standard deviations across 10 cross-validation
splits, even where error bars were dropped for sake of readability. Error bars in
all graphs represent one standard deviation.

5.1 Evaluation Framework

We evaluated our model on four sites with the highest numbers of accident
reports in the area. The incident reports at STrain were manually aligned to the
incident manifestations in the data. The manual realignment was also aided by
the free-text incident descriptions from the TMC database.

We evaluate the models under the cross-validation framework. The dataset
consists of three long sequences per sensor, one for each of the three traffic
variates. We divide the data into train/test splits by incidents, making sure an
entire incident sequence makes it into one and only one of the sets. To create the
training set, we first select Itrain “incident” sequences of preset length L so that
the reported time of the incident falls in the middle of the incident sequence.
In the rare case that more than one incident should occur in or in the vicinity
of a sequence, we exclude such sequence from the data. C “control” sequences
without an incident are selected so that no incident is recorded within additional
L/2 datapoints before and after the control sequence. This safeguards against
the imprecise accident recording. By choosing Itrain and C, the class prior in
the training set can be biased towards incident occurrences. The testing set
consists of the Itest = Iall − Itrain incident sequences that were not selected for
the training set. Additional sequences without accidents are added so that the
testing set has class prior equal to that in the entire dataset.

To obtain the experimental statistics, we use 10 different train/test splits
using the above method, with Itrain : Itest ≈ 70 : 30, sequence length L = 100
and C = 50 for training. For testing, instead of choosing a fixed C, we make
sure the proportion of positive (incident) instances approximates the proportion
observed in the entire dataset.

In each cross-validation fold, the positive training sequences are realigned and
the quality of the detection is evaluated on the testing set, using the original inci-
dent labeling. While testing on the original labeling will result in a measurement
that is somewhat off, the skew will be consistent across detectors and relative
comparisons remain valid. If we evaluated on the realigned data, we would run
the risk of having both the realignment algorithm and the detector make the
same mistake in lockstep, losing touch with the data.



Site
Detector STrain STest1 STest2 STest3

CA2 0.838 0.451 1.177 1.180

SVM/orig 0.682 0.179 0.807 0.474

SVM/realign 0.547 0.149 0.763 0.389

Table 2. Summary of the AUC1% performance statistics for the three detection algo-
rithms and four evaluation sites. Some sites are more amenable to automatic detection,
but consistent improvement is noted from CA2 to SVM on original data to SVM on
realigned data.

5.2 Detection and Alignment Model Specifics

To represent incident impact on traffic, we use a Naive Bayes intra-slice model
with binary indicator I and two features, F1: the difference in occupancy at
the upstream sensor in the previous and following interval and F2: the same
difference in speed. Both features are assumed to follow a conditional Gaussian
distribution.

The CA2 algorithm is normally tuned by experts who choose the three thresh-
olds. Since we did not have services of an expert, we found the parameterization
by an exhaustive procedure trying all possible settings of the three parameters
on a discrete grid covering a wide range of parameter values. The “best per-
formance” for the purpose of parameterization was defined as the best DR at
a fixed FAR of 1%. This was an extremely time-consuming procedure that is
impractical for a metropolitan network with hundreds of sensors, not to mention
uninteresting from the learning perspective.

5.3 Experimental Results

The root of the mean squared difference between the hand-labeled incident man-
ifestations and the recorded events is approximately 8.5 intervals. After auto-
matically re-aligning the recorded events with the incidents, the RMS difference
decreases to approximately 2.2 intervals. The decrease in training error affirms
that the model indeed picks up the accident effect.

The average amount of misalignment at the training site is only 2.2 minutes
(incidents are on average logged 2.2 minutes after they become observable in
data), but with a standard deviation of more than 43 minutes. This is a serious
amount of misalignment, it implies that the label position is on average off by 8
or 9 time steps.

The quality of the resulting labels is most relevantly measured by the im-
provement in the AUC1% performance metric of a classifier learned on the re-
aligned data. The AUC1% values for the three methods (CA2, SVM, SVM after
relabeling) are summarized in Table 2. The standard deviation of TTD and
FAR obtained together with the 10-fold cross-validated averages are represented
by the vertical and horizontal bars, respectively, around each operating point
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Fig. 4. Train site A with human-labeled data. Detection performance of (a) California
2 (b) SVM learned on original labeling, (c) SVM learned on the relabeled data.

on the curves in Figure 4. The table shows that the SVM detector learned on
the original data consistently improves over the CA2 method for every testing
site. Similarly, the SVM detector learned on the label-realigned data realizes an
improvement over the original SVM detector. The absolute performance varies
significantly between testing sites as it depends on a number of site specifics: the
distance between the accident site and the upstream sensor, volume of traffic,
the presence of a shoulder lane where the vehicles may be removed from the flow
of traffic, etc.

6 Conclusions

Learning is a viable approach to construction of incident detection algorithms.
It easily leads to detectors that outperform traditional hand-crafted detectors.
With sufficient data now available, it can do away with the problem of manual
tuning and re-tuning of the detectors to adapt to new deployment locations and
changing traffic patterns.

However, the data obtained from such complex systems is inherently noisy.
We proposed an algorithm that deals successfully with noise in event label timing
and demonstrated that it improves the data quality to allow more successful
learning of incident detectors. Of course, a number of specific questions about
our approach remain open. One could devise finer incident models and offset
distributions; relax the assumption of independence of time-to-recording and
incident impact severity – a more severe accident is perhaps more easily noticed.
Explicitly modeling time-of-day and the expected traffic pattern looks especially
promising as it permits the definition of an “unexpected” congestion, presumably
more indicative of an accident.

While the realignment algorithm was motivated by and presented in context
of incident detection, it is generally applicable to situations where events are
marked noisily in data streams. For instance, similar uncertainty in labeling
alignment accompanies detection of intonation events in speech recognition [14].
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