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ABSTRACT
Motivation: The ”reproducibility” of mass-spectrometry proteomic
profiling has become an intensely controversial topic. The mere men-
tion of concern over the ”reproducibility” of data generated from any
particular platform can lead to the anxiety over the generalizability
of its results and its role in the future of discovery proteomics. In
this study, we examine the reproducibility of proteomic profiles gene-
rated by surface-enhanced laser desorption/ionization time-of-flight
mass spectrometry (SELDI-TOF-MS) across multiple data-generation
sessions. We analyze the problem in terms of the reproducibility of
signals, reproducibility of discriminative features, and reproducibility
of multivariate classification models on profiles for serum samples
from early lung cancer and healthy control subjects.
Results: Proteomic profiles in individual data-generation sessions
experience within-session variability. We show that combining data
from multiple sessions introduces additional (inter-session) noise.
While additional noise can affect the discriminative analysis, we show
that its average effect on profiles in our study is relatively small.
Moreover, for the purposes of prediction on future (previously unseen)
data, classifiers trained on multi-session data are able to adapt to
inter-session noise and improve their classification accuracy.
Contact: pelikan@cs.pitt.edu,milos@cs.pitt.edu

1 INTRODUCTION
Mass spectrometry (MS) proteomic profiling has shown potential to
quickly and effectively screen patients for disease. This is done by
producing protein expression profiles from patients’ tissue, blood,
urine, saliva or other biofluid. Statistical machine learning techni-
ques are applied to the resulting complex protein expression profiles
in a process called predictive modeling. In typical case/control com-
parative studies, example profiles generated from biospecimens of
diseased patients and healthy subjects are shown to the model in
the training phase. New profiles from the screened subjects are
evaluated by the model in the testing phase.

Earlier MS proteomic profiling studies stimulated significant
enthusiasm (Petricoinet al., 2002), discussion (Diamandis, 2003),
and controversy (Ransohoff, 2005) in the general scientific com-
munity and among proteomics researchers. Potential confounding
and bias in study design and analysis in initial studies (Baggerly
et al., 2004), were recognized early on and have been addressed in
subsequent research (See Grizzleet al. (2005) for an overview).

Predictive modeling relies on the detection of potential bio-
markers which may explain disease through previously understudied
combinations of reproducible molecular measurements. The repro-
ducibility of these surrogate biomarker patterns often comes into
question; a pattern is not guaranteed to be replicated exactly within
the same or other data generation session, or at a different labora-
tory. This results from the intrinsic variation introduced into the data
by factors including, but not limited to, the biological nature of the
samples and limitations of the MS technology.

Typical proteomic profiling studies attempted to minimize the
effect of this variation by generating data in a single session. These
data sets were produced in the ‘ideal’ environment where only a
single instrument in a single laboratory produces all of the available
data at the same time. As a result, potential factors of inter-session
and inter-site biases were ignored. Despite encouraging classifica-
tion results on these data sets, skepticism arose as to whether spectra
generated during multiple sessions separated by variable intervals of
time, or by a different laboratory, will be useful for predictive mode-
ling applications. Promising inter-site reproducibility results were
reported by (Zhanget al., 2004; Semmeset al., 2005). Inter-session
reproducibility, however, remains a relatively open area of research.

The aim of our paper is to study the inter-session reprodu-
cibility of proteomic profiles generated by the same instrument
over the course of 18 months. Inter-session reproducibility is the
key to generalizability of classification results to any future sam-
ple analysis. Our study relies on proteomic profiles generated
by surface-enhanced laser desorption/ionization time-of-flight mass
spectrometry (SELDI-TOF-MS) of serum samples from early-stage
lung cancer patients and healthy control subjects. The samples for
46 patients were repeatedly reanalyzed in four different sessions
over the course of 18 months. Four groups of spectra generated
during these sessions were the basis of this analysis.

In a clinical setting, samples are obtained sequentially rather than
collectively, and any models developed should be applicable to
samples produced in the future. Thus, a realistic model builds upon
profiles from multiple data-generation sessions and is applied to data
generated in new sessions. The study of such multi-session models
and their characteristics is thus at the heart of this investigation.

We show that the performance of classification models built
on profiles from multiple sessions is lower on average than the
performance of the models built from single-session profiles. This
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inter-session noise and possible biases appear to influence the profi-
les both on the level of individual peak signals as well as multivariate
biomarker panels. However, the average effect of the inter-session
noise (in our study) appears to be relatively low. Moreover, models
which are trained on data from multiple sessions can adapt to this
noise and improve their performance. This supports the notion that
samples need not be run all at once, but rather may be collected on
an as–produced basis.

2 MATERIALS AND METHODS
The samples analyzed in this work consist of 21 lung cancer and 25 control
sera belonging to a larger pool of samples collected for the the University
of Pittsburgh Cancer Institute (UPCI) lung cancer study (see below). The
samples were originally selected to support a concurrent inter-site validation
study. The samples were analyzed by SELDI-TOF-MS instrumentation at
four time periods(June 2003, February 2004, November 2004 and January
2005), which we refer to assessions. The sample selection process was simi-
lar to a prior inter-site validation study for prostate cancer (Semmeset al.,
2005). The selection occurred in February 2004 and was restricted to samp-
les that were available in June 2003 and that had a sufficient number of
aliquots remaining for later analyses. Hence the sample is not representative
of population proportions of the parent UPCI study described below.

2.1 UPCI lung cancer clinical population
The parent study consisted of 115 newly diagnosed resectable non-small
cell lung cancer (NSCLC) cases from the UPCI Lung Cancer Specialized
Program of Research Excellence (SPORE) project and from 106 healthy
controls matched by age, gender, smoking status and pack-year history. The
NSCLC cases were distributed among patients as follows: age (40-49 4%,
50-59 18%, 60-69 34%, 70-79 36%, 80-89 8%); gender (men 59%, women
41%); smoking status (active smokers 40%, ex-smokers 49%, never smokers
11%); pack-year history (<30 23%, 30-59 29%,>60 37%); histopatho-
logy (adenocarcinoma 54%, squamous cell carcinoma 32%, other/unknown
14%); and stage (IA 21%, IB 23%, IIA 4%, IIB 15%, IIIA 21%, IIIB 7%, IV
9%). All case and control sera were collected and processed per a standar-
dized protocol developed by the UPCI Lung Cancer SPORE. The samples
were processed, divided into equal aliquots and stored at−80◦C within 1
hour of collection in glass Vacutainerr tubes (BD Medical, Franklin Lakes,
NJ). Only a subset of these samples are used in the reproducibility analysis
pursued in this work and thus do not reflect the above population proportions.
We note that the exact clinical population characteristics are less relevant to
the study of inter-session reproducibility.

2.2 Preparation of serum for SELDI analysis
A fresh set of aliquots was used for each data production session. The proto-
cols for the preparation and loading of serum samples for SELDI-TOF-MS
analysis are specific for the ProteinChipr Arrays (Ciphergen Biosystems,
Inc., Fremont, CA). Fully automated BioMek2000r protocols for proces-
sing of IMAC3 ProteinChipr Arrays are presently being utilized in the
UPCI Clinical Proteomics Facility directed by Dr. Bigbee. Protocols for
automated processing of these ProteinChipr Arrays, as well as performing
mass spectrometry and preprocessing of the spectral data for analysis, have
been derived and optimized from protocols implemented and validated in
accord with an NCI EDRN validation study assessing the reproducibility of
the SELDI-TOF-MS platform (Semmeset al., 2005). Serum samples were
denatured prior to processing on ProteinChipr Arrays. Twentyµl aliquots
of serum were added into one well of a 96-well polystyrene microtiter plate,
with 30µl of 8 M urea/1% CHAPS in PBS. The serum-urea mixture was vor-
texed for 30 minutes at4◦C. One hundredµl of 1M urea / 0.125% CHAPS
was then added to the serum/urea mixture and briefly mixed, followed by a
1:5 dilution of the serum/urea mixture with PBS. One hundredµl of the final
diluted serum/urea mixture was then applied to one spot of a ProteinChipr

Array, prepared as described below. Each serum sample was processed in

duplicate in a blinded layout of combined case/control samples, together
with a standard pooled serum sample (one spot on each ProteinChipr Array
for quality assurance/control purposes).

2.3 Preparation and loading of ProteinChipr arrays
For pre-activation of the IMAC3 ProteinChipr, arrays were assembled into
the Ciphergen Bioprocessorr, holding up to 12 chips, which allows for app-
lying larger volumes of liquid to each array spot. The IMAC3 ProteinChipr

Arrays were initially loaded with 50µl of 100 mM CuSO4 on each spot of
the array. The chips were shaken on a TOMY MT-360 Micro Tube Mixer
(Tomy Seiko Co., Ltd.), set at speed Form 20, Amplitude 7 for 5 minutes.
Each array spot was then rinsed with 200µl HPLC grade water, and aspi-
rated. Fiftyµl of 100 mM sodium acetate pH 4.5 were added to each array
spot, and the chips shaken 5 minutes. The chips were rinsed with HPLC
grade water, and then equilibrated twice for 5 minutes with 200µl of PBS in
each well. Equilibration buffers were aspirated prior to application of 100µl
of the denatured serum/urea mixture into each well of the Bioprocessorr;
great care was taken to ensure no bubbles remained at the bottoms of the
wells, occluding contact with the ProteinChipr surface. Serum mixtures
were incubated with the ProteinChipr Arrays for 30 minutes at room tem-
perature with shaking. The serum/urea mixtures were then discarded and
the PBS washing step repeated twice, followed by 2 final rinses with HPLC
water. The chips were removed from the Bioprocessorr, and air-dried at
least 10 minutes but as long as overnight. The chips were stored in the dark at
room temperature until SELDI-TOF-MS analysis. Immediately prior to ana-
lysis, 1.0µl of a half-saturated solution of the energy absorbing molecule
(EAM) sinapinic acid (Ciphergen Biosystems, Inc.) in 50% (v/v) acetoni-
trile, 0.5% trifluoroacetic acid was applied onto each spot of the array twice,
letting the surface air dry 5 minutes between each EAM application. All
chips spotted were read, as much as possible, in an uninterrupted run using
the Ciphergen ChipReaderr AutoLoaderr device.

2.4 SELDI-TOF mass spectrometry analysis
The reacted ProteinChipr Arrays were analyzed using the PBSIIc
ChipReaderr instrument (Ciphergen Biosystems, Inc., Fremont, CA). The
SELDI-TOF-MS spectra were collected by the accumulation and averaging
of 192 laser shots from 16 positions across the diameter of the ProteinChipr

Array spot, with warming shots not included. A laser intensity of 175-180
was used in a positive ion mode, ensuring that transient shot intensities were
below saturation of the detector, with a detector sensitivity setting of 6, a
focus lag time of 900 ns, employing mass deflection at 1000 Daltons. The
protein masses were calibrated externally using the 7-in-1 purified peptide
molecular mass standard (Ciphergen Biosystems, Inc.).

During each session, each sample was processed in duplicate, and each
pair of replicates was averaged prior to further data pre-processing to create
a mean profile for that pair. This resulted in a dataset of 184 spectra, with
each of the 46 samples’ profiles being produced once per session. These four
datasets are the basis of our analysis.

2.5 SELDI-TOF-MS data preprocessing
Profile preprocessing aims to remove systematic noise and biases in the
data while preserving the useful information content carried by the profiles.
Typical MS profile pre-processing steps include: quality control, baseline
correction, variance stabilization, normalization, alignment and smoothing.
Profile preprocessing was performed using the Proteomics Data Analysis
Package (PDAP), a collection of data analysis and visualization routines
supporting the multivariate analysis of proteomic spectra and related bio-
marker discovery. PDAP has been developed at the Department of Computer
Science, University of Pittsburgh. Results and methods developed within
PDAP have been described in detail in three recent publications (Pelikan
et al., 2004; Hauskrechtet al., 2005, 2007).

As each session of data was produced, case and control profiles were
pre-processed together, but separately from spectra produced during other
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sessions. Preprocessing through PDAP consisted of cube-root variance sta-
bilization, baseline correction, intensity correction based on total ion current
(TIC) in the range of 1.5 to 20 kDa, smoothing with Gaussian kernels, and
profile alignment based on the mean spectra. No spectra failed to meet our
quality control requirement that the TIC be within 2 standard deviations of
the mean TIC across all spectra in a session.

2.6 Reproducibility analysis
Our experimental process evaluated the variability and reproducibility expe-
rienced by producing proteomic data in multiple sample-analysis and data-
generation sessions separated by a large amount of time. Our analysis
is divided into three steps which address the problem of inter-session
reproducibility at different levels.

• We first examined the differences in signals from the same sample
across multiple sessions. We defined a signal difference score to mea-
sure the discrepancies between signals from the same sample. We asked
if the signal difference score for profiles from the same sample is signi-
ficantly better than profiles from other samples. This would indicate
that identical samples processed in multiple sessions experience more
similarity to themselves than to other samples in the session, supporting
the usage of profiles from multiple session for analysis purposes.

• Second, we asked whether discriminative information is affected by
inter-session noise. We analyze this issue on the peak signal and mul-
tivariate levels, using differential expression and classifier accuracy
metrics, respectively. The effect of intersession noise on these statistics
is determined by comparing them on single-session and randomized
multi-session data sets.

• Finally, we studied the predictive performance of multivariate models
on future sessions. We asked by how much the performance of clas-
sification models deteriorates on future sessions with respect to their
‘ideal’ single-session performance. We also asked if performance of a
multivariate model on future sessions can be improved if the model is
trained on mixed-session data. The idea here is that if intersession varia-
bility exists, it can be learned through multi-session data, potentially
leading to to accuracy gains over models trained on single sessions.

In the following we outline specific methods to test these objectives.

2.6.1 Reproducibility of profile signals No two MS profiles are
exactly the same. Profiles may differ due to instrument noise, differences
in sample preparation procedures, etc. Differences in profiles for the same
sample are visible even if two profile replicates are generated in the same
session, and even if they are placed on the same chip. The intra-session pro-
file variation is well known and existing methods are robust enough to cope
with it. The differences in profiles for the same sample across multiple data
generation session are much less understood. The differences in the sample
preparation at different times or instrument settings may effect the resulting
profiles and contribute to possible inter-session biases and variability.

Figure 1 displays four MS profiles from the same sample that were gene-
rated in four different sessons. Although the shape of the profile may look
similar, differences in relative intensities of peaks are apparent. Are these
differences significant? Are these variations too strong to overcome so that
the profiles from the same sample are useless and easy to confuse with pro-
files generated for other samples? To answer these questions we need to
define a similarity (or distance) metric that helps us assess the differences
among profiles. We would like MS profiles from the same sample to differ
less across sessions than profiles from other samples. To achieve this goal
we measure the similarity among a setS of k spectra using the average
Euclidean distancedE between all pairs of spectra:

dE(S) =
1

k(k−1)
2

X
∀1≤p<q≤k

vuut dX
i=1

(pi − qi)2 (1)

wherep andq represent a pair of spectra from the subset ofk replicate spec-
tra generated from the same sample source. Intuitively, the signal difference
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Fig. 1. MS profiles for a single sample across 4 different sessions. Changes
are apparent in relative intensities of peaks.

score measures the sum of areas between all possible superimposed pairs of
k spectra; smaller values indicate better similarity.

We used the above signal difference metric first, to evaluate the similarity
of spectral measurements from the same sample across multiple sessions and
then, to determine that the differences from random collections of spectra
from other patients are very different, and thus profiles that originate from
the same sample are hard to confuse with other profiles.

A random permutation test (Good, 1994) was used to test the differences
and their significance. We first estimated a distribution of signal difference
scores for randomly grouped spectra. Random groupings were generated by
shuffling the sample identities assigned to spectra in each session. The signal
difference score was recalculated for each random profile grouping, and the
process was repeated 1000 times to estimate the distribution of signal diffe-
rence scores for randomly grouped spectra. Next, the signal difference score
for profiles belonging to the correct samples was calculated. If the score is
statistically significantly different with respect to the estimated distribution,
we have greater confidence that signals from the same sample are similar to
each other beyond random effects. This increases our confidence that profiles
generated from multiple sessions are potentially useful for analysis.

2.6.2 Reproducibility of discriminatory signalsEvaluating profile
similarity across sessions helps assure us of the basic consistency (repro-
ducibility) of spectra with respect to samples they represent. However, the
differences in profiles across multiple sessions are apparent (see Figure 1).
This leads to a concern that information potentially useful for disease detec-
tion purposes may be lost or at least significantly compromised if data from
multiple sessions were used in the analysis. To assess the effect of the poten-
tial information loss we compare data mixed from multiple sessions to data
generated from individual sessions and their discriminatory power.

The information that helps us discriminate between healthy (case) and
diseased (control) profiles can be drawn from a single feature (peak) of the
profile, or from a combination of multiple features. We measure the quality
of discriminative information for a single feature (peak) by itsdifferential
expression score. The score quantifies the difference observed in a profile
feature between case and control groups. Many criteria exist for measuring
differential expression (Hauskrechtet al., 2007). In this paper, we use the

Fisher-like score, computed as|µ(+)−µ(−)

σ(+)+σ(−) |, whereµ andσ represent the

sample mean and variance of the feature, respectively. The signs(+) and(−)

denote case and control samples, respectively.
Testing peaks’ discriminatory information loss:To determine if the dif-

ferential expression information is lost across multiple sessions we assumed
that feature’s differential expression follows a distribution across sessions.
The distribution can be empirically estimated by randomly choosing each
sample’s spectrum from its replicate set. We generate 1000 randomized data-
sets and calculate a feature’s differential expression score under each dataset
to recover its empirical distribution.
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If the profiles generated in a single session retain more discriminatory
information, we expect their differential scores to be higher on average than
the mixed-session distribution. We can test this by comparing the differences
between the mean score for the mixed-session distribution and the score for
the single session. We have four different sessions per sample and multiple
spectra peaks. We use 100 peak regions, evaluate their single-session scores
and compare their peak scores to the distributions generated for mixed ses-
sion data. This process generates a distribution of score differences. If the
single session spectra are ‘better’ we expect them to differ on average from
0. This difference and its significance can be assessed using the standard
one-sided hypothesis testing framework.

Testing multivariate information loss:The reproducibility of differential
information in individual features may be indicative of the reproducibi-
lity of discriminative information given by combinations of these features.
However, this is not guaranteed. Are the feature combinations differently
represented across sessions? If we mix data from different sessions, what is
the effect on the discriminative pattern and the resulting predictive model?
To answer these questions, we determine if the performance of a predictive
model deteriorates on data mixed from several sessions, as opposed to data
from the same data-generation session.

Performance of a predictive model is typically measured using accuracy
(percentage of correct predictions), sensitivity and specificity, or area under
the ROC curve statistics. In this work, we evaluate predictive models using
their test set accuracy. Similarly, there are many classification models one
may try to learn multivariate patterns. We use the linear Support Vector
Machine model (Vapnik, 1995) to learn the relationship between diagnostic
features and state of disease. This method has been used in previous studies
(Pelikanet al., 2004; Hauskrechtet al., 2005, 2007) and is favored for its
’regularized’ feature selection.

To assess the reproducibility of multivariate classification patterns across
sessions, we generate 1000 random datasets such that each patient (sample)
receives one of the profiles from its replicate set. Our goal is to analyze dif-
ferences in the performance of classifiers on: (a) models trained and tested
on profiles from multiple sessions, versus (b) models trained and tested on
profiles from the same session. To measure test accuracies of models we first
decide which patients (samples) will be used for training and testing purpo-
ses. Forty-six patients (samples) are split via random subsampling (Efron,
1987) so that 30% of the samples are in the test set. The spectra obtained
for the remaining samples are used to train the predictive model. The split is
always the same for both single-session and multi-session models. Test set
accuracies of 1000 random models define a distribution of accuracy scores
for multi-session data. This distribution can be compared to accuracy results
for models trained and tested on four single sessions. However, four single
sessions entries are not sufficient to make any strong conclusion. In addition,
there is a chance a single train and test split may be biased. To eliminate these
problems, we repeat the analysis for multiple (30) train–test splits. This lets
us calculate 120 accuracy scores for single session models (30 per one ses-
sion) and compare them to respective accuracy-score distributions defined by
1000 multi-session datasets. To assess the benefit or loss resulting from use
of multi-session data, we compare the mean of their accuracy-score distri-
bution to accuracies achieved by single-session models. To assess the global
benefit or loss, we average the results over four different sessions.

2.6.3 Effect of multi-session data on generalization performance
of predictive models In the ‘ideal’ analytical setup for proteomic pro-
filing studies, a predictive model is trained and evaluated on data from the
same session. It experiences only within-session noise and does not account
for potential inter-session noise, should it be re-used for future prediction of
profiles. However, in the practical setting of clinical screening, new samples
may be processed on-the-fly, each at a different time and therefore experien-
cing unanticipated amounts of inter-session variability. Concerns about this
inter-session reproducibility is related primarily to concerns over generali-
zability of predictive models that are extracted from past data sessions to
profiles obtained in the future. We will analyze this aspect of the problem by
learning predictive models that are tested on profiles from one target (test)

session and trained on the profiles from the remaining three (training) ses-
sions and by comparing them to the ‘ideal’ model trained and tested on the
profiles from the same session.

We perform this analysis as follows. A target (test) session is chosen from
the available four sessions. The remaining three sessions are used to train
a (future) predictive model. Next, samples are divided via the random sub-
sampling approach to training and testing samples, such that 30% of the
samples are in the test sample set. The remaining samples are represented in
the training sample set. Next, we generate 1000 multi-session training data-
sets by assigning each patient in the training sample set a profile from one
of its training sessions and learn the models for each dataset. The models
are tested on the test session samples and their accuracies define the dis-
tribution of (future) test accuracy scores for mixed-session data. The mean
of the distribution is then compared to the accuracy achieved by the model
trained on the same session as the test session. To provide additional ass-
urance we repeat everything using 30 different train-test sample splits and
average the results. This will let us compare the average future performance
of mixed-session models to the ‘ideal’ model for one test session. The global
performance can be assessed by averaging the results for four test sessions.

In our first comparison of (a) models trained on profiles from the three
training sessions, versus (b) an ‘ideal’ model trained on profiles from the
same session as the testing set, we expect the ‘ideal’ models to outperform
the multi-session-trained models. Inter-session variability is not present in
the ideal model and is therefore expected to cause a loss of performance. Our
second aim is to compare models from group (a) versus (c) models trained
on profiles from a single session other than the target session. The objective
is to determine if predictive models trained on multi-session data can learn
to adapt to inter-session noise and hence improve their performance when
compared to models learned on single sessions.

We repeat the setup in the previous experiment to estimate the distribu-
tion of accuracy scores for the 1000 models trained on multi-session data.
Accuracy scores are also obtained from models trained on one of the three
single sessions. The difference between the mean accuracy of the multi-
session models and single-session models are kept for a total of 3 differences.
This process is repeated 40 times for each of the four target sessions. We
repeat the hypothesis test to determine if the mean of these differences dif-
fers significantly from 0. In the case where multi-session models have the
same generalization performance as single-session models, the mean of this
distribution should not differ significantly from 0.

3 APPLICATION TO LUNG CANCER SERUM
MASS SPECTRA

3.1 Signal reproducibility
We first examined whether proteomic spectra are reproducible
across multiple sessions. We used the random regrouping test des-
cribed in Section 2.6.1 to evaluate whether the signals from the
same sample were more similar than signals from randomly chosen
sample sets. Since we expect to find differences between case and
control samples, this score was evaluated separately on respective
subgroups of case and control spectra.

The histogram in figure 2 (left) indicates the average signal diffe-
rence score (over all 59910 intensity measurements of the profiles)
for the 21 cancer patients across all 4 sessions. A distribution of
1000 averages of 21 signal difference scores for randomly selec-
ted quadruplets of spectra is plotted as a reference. The score for
the replicate spectra falls outside of the score distribution for ran-
domly grouped spectra. The same behavior occurs with the control
samples. Furthermore, we can assess the reproducibility of signal
difference over a small region of the profile. The right panel of figure
2 displays the distribution of signal difference scores for the peak
region at 8228 Da. The peak is less different among profiles from

4



Inter-session Reproducibility of Mass Spectrometry Data

9 9.5 10 10.5 11 11.5 12 12.5 13
0

20

40

60

80

100

120

140
Case Samples

Signal Difference Score

# 
of

 o
cc

ur
re

nc
es

True replicate
difference score

0.018 0.02 0.022 0.024 0.026 0.028 0.03
0

20

40

60

80

100

120

140
Case Samples

Signal Difference Score

# 
of

 o
cc

ur
re

nc
es

True replicate
difference score

Fig. 2. Distributions of signal difference scores for random groupings of profiles for case samples. The left panel displays signal difference scores taken over
the entire range of the signal (59910 features), while the right panel displays signal difference for a single feature at 8228 Da. The signal difference score for
the true replicate spectra is plotted as a dot along the x-axis. The signal difference among the true replicates is much less than any observed signal difference
among randomly grouped profiles. This shows that the observed greater similarity between a sample’s true replicates is less likely to be due to random effects.

the same sample than from profiles randomly assigned to a sam-
ple. There is a statistically significant difference between the signal
difference scores obtained from true and random replicates, at both
the global and local (peak) signal level. This assures us that profiles
from the same sample do not exhibit so much difference that they
can be easily confused with profiles from a different sample. This
encouraging result shows the reproducibility of proteomic profiles
at the signal level.

3.2 Reproducibility of discriminative signals
We use the randomization framework from section 2.6.2 to deter-
mine whether differential expression scores obtained from mixed
session data differ on average from the differential expression mined
from single session datasets. These differences may assess the
benefit or loss due to mixed-session analysis.

Figure 3 (left) displays the empirical distribution of differential
expression scores for multi-session data of one prominent peak in
the spectra. The distribution was obtained from 1000 random data-
sets such that each patient was randomly assigned a profile from
one of the four sessions. The four marks indicate the differential
expression scores obtained for profiles in four individual sessions.

We next determined the significance of these differences. To
determine the amount of noise experienced over a range of fea-
tures, we similarly analyzed the top 100 differentially expressed
peak regions in the profiles. The mean was calculated for every fea-
ture’s differential expression score distribution, as well as the score
of the feature in the four single sessions. These four scores were
subtracted from the mean and kept for each feature, resulting in a
distribution of 400 differences. Figure 3 (middle) displays this dis-
tribution. If single session scores were biased (that is, better scores
are produced by the single session analysis) we would expect to
see the mean of this distribution to differ significantly from 0. In
other words, we would expect to reject (at some significance level)
the null hypothesis: the mean of differences is≥ 0. Indeed, the
mean of the distribution of differences was−0.0351, giving a p-
value of5.588 × 10−8 for the one-sidedt-test, which leads to the
rejection of the null hypothesis. Hence the amount of differential
expression in single sessions appears to be better on average than in
mixed-sessions. This shows that inter-session variability affects the
measured differential information.

We expect this negative result to affect the performance (accu-
racy) of predictive models trained on multi-session data. The
question is how big the effect really is. Earlier research studies
considered it most ideal to learn from and evaluate their predictive
models on data from a single session. We therefore compare the dif-
ferences in accuracy between models trained on multi-session data
versus models trained on single-session data.

Following the methods in section 2.6.2, we analyzed the accuracy
of multi-session models versus single-session predictive models.
Figure 3 (right) displays the distribution of differences between
mean accuracies of multi-session and single-session predictive
models. If better accuracies are achieved by predictive models for
single-session data, we would expect to see the mean of this dis-
tribution to be below 0. Indeed, the mean of the distribution of
differences was−0.0267 which once again indicates a loss that can
be explained by additional inter-session variability. To confirm the
difference we used a repeated resampling experiment proposed by
Nadeau and Bengio (2003), estimating the 95% confidence inter-
val around the mean of differences to be−0.0267 ± 0.0001. This
experiment confirmed that this difference is indeed significant.

On average, there is about a 2.7% drop in accuracy when using
multi-session data, demonstrating a relatively small (average) loss
of reproducibility of multivariate discriminative patterns across
multiple sessions. One should understand that this is an average
assessment; the performance of an individual classifier may vary
from session to session and also depends on how profiles from mul-
tiple sessions are mixed. On average, these mixed session models
perform very well, achieving84.27± 2.15% accuracy.

3.3 Generalization performance
Finally, we want to determine the effect the multi-session training
has on predictive models which must generalize well to future,
unseen profiles and sessions. The previous result demonstrates that
intersession noise exists, but does not seem to greatly affect the
performance of predictive models on average. However, the ana-
lysis used each session and did not try to assess the performance
on future sessions. We use the methods in section 2.6.3 to analyze
whether training predictive models on multi-session data generali-
zes well to profiles in future sessions and compare the performance
of these models to ‘ideal’ predictive models trained and tested on
single session data.
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Fig. 3. Left panel: Distribution of differential expression scores under random regroupings of profiles for the peak region at 12.938 kDa. The differential
expression score for the peak in each of the 4 individual sessions is plotted as a dot along the x-axis. Middle panel: distribution of differences between the
mean of mixed-session Fisher score distributions and single session Fisher scores for 100 peak regions. The distribution has a mean of -0.0351 and p-value
of 5.588 × 10−8 for the null hypothesis: the mean is equal to 0. Right panel: distribution of differences between the mean accuracies of models trained on
multi-session data and accuracies of models trained on single-session data. The mean of this distribution falls below 0 ( = -0.0267), indicating an on-average
benefit of training from single-session data.

Figure 4 (left) displays a distribution of accuracy differences bet-
ween the average of 1000 predictive models built from random
multi-session training data and models trained on data that came
from the session on which the model was tested. The mean of
the distribution is−0.0231 which quantifies an overall average
generalization accuracy loss one may expect to see by training the
model on the mixed session data as opposed to the accuracy of
the ‘ideal’ model. We analyzed the difference using an additional
resampling test (Nadeau and Bengio, 2003) to compute the 95%
confidence interval of the mean. The result of the mean falling
within −0.0286 ± 0.0001 confirmed the difference is statistically
significantly different. However, in terms of absolute numbers the
accuracy loss with respect to the ideal model is not bad.

In a practical setting such as clinical screening, the training
data will certainly not come from the same session as the testing
session. This eliminates the possibility of having an ‘ideal’ pre-
dictive model. We repeated the previous experiment by examining
the differences between the multi-session models and models trai-
ned on profiles from a single session other than the target session.
This differs from the previous experiment since the single-session
models lose the advantage of the ‘ideal’ environment. Inter-session
noise must now be accommodated by both the multi-session and
single-session-trained models.

Figure 4 (right) displays a distribution of accuracy differences
between the average of 1000 predictive models trained on multi-
session data and models trained on the remaining single sessions.
The mean and 95% confidence interval of this distribution falls
above 0 (= 0.0289 ± 0.0001), indicating a benefit of training on
multi-session data. The confidence interval is again computed using
the repeated resampling test (Nadeau and Bengio, 2003), which
confirmed the difference to be statistically significantly different.
This result illustrates how training on multi-session data can allow
the model to adapt to inter-session noise. The better a predictive
model can adapt to inter-session noise, the more reproducible the
performance will be on future data.

4 DISCUSSION
The objective of our paper was to investigate effects of inter-session
variability of MS proteomic profiling data for serum samples obtai-
ned for early lung cancer patients and healthy control subjects over

multiple (four) data-generation sessions. Such studies are critical for
the acceptability of the MS profiling technology in clinical settings.

Through our experiments, we try to understand the global impact
made by including data from multiple sessions on the accompany-
ing analysis for the profiles. Since profile reproducibility is naturally
imperfect, we expect some amount of inter-session variability to
exist. Different sessions will yield different results, and the best
choice of sessions to use is unclear. However, through averaging,
we can quantify the effect of inter-session variability on our analysis
and determine whether data from multiple sessions is useful.

First, our experiments show that the similarity among profiles for
the samples reprocessed during different time periods is greater than
that due to random chance. Second, we show that the discriminative
information in profile peaks obtained from any single session is on
average higher than the information mined from multi-session data.
Third, we reinforce this result by performing multivariate classifica-
tion analysis and by showing that classifiers tested on single-session
data are better on average if they are trained on data generated from
the same session as opposed to classifiers trained on multi-session
data. However, our experiments showed no drastic loss of per-
formance from training predictive models with multi-session data.
Finally, we show that training classifiers on data from multiple ses-
sions generalizes at minimal accuracy loss (about 2.86% loss with
respect to the ideal classifier) to profiles generated in future sessions.

The samples selected for this study showed more robust differen-
tial features in their February 2004 spectra. This selection was made
to achieve the goals of a concurrent inter-site validation study. We
note that this selection may lead to an improved classification per-
formance on the February 2004 spectra; data from other sessions
are unaffected. Thus, average accuracy differences between sin-
gle and multi session classifiers reported in the paper may become
biased towards single session classifiers as compared to those expec-
ted under a fully random sample selection process. This does not
affect our conclusions about effects of intersession variability (Sec-
tions 3.2 and 3.3), since promising differences reported in the paper
would, under this bias, be obtained under less favorable settings.

The intersession reproducibility of profiles, both within and
across sessions, can be influenced by many factors. Experimental
conditions involving sample preparation and preprocessing should
remain as consistent as possible. A careful study design free of con-
founding and standardized protocols for sample processing can help
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Fig. 4. Left panel: distribution of accuracy differences between predictive models trained on multi-session data and models ideally trained on data from the
same single session as the target test session. The mean below 0 (= -0.0286) indicates an advantage of the ideally trained single-session models. Right panel:
distribution of accuracy differences between the same predictive models trained on multi-session data and models trained on single-session data from sessions
other than the target testing set. The mean above 0 (= 0.0289) indicates an advantage of training on multi-session data. This illustrates the ability of predictive
models trained on multi-session data to adapt to inter-session noise.

to reduce sources of variability. All data analyzed in this study were
obtained through standardized protocols implemented and validated
in accord with an NCI EDRN validation study assessing the repro-
ducibility of the SELDI-TOF-MS platform (Semmeset al., 2005).
The promising results reported here were achieved thanks to the
strict adherence to these protocols.

Our study was based on serum sample aliquots stored over vary-
ing amounts of time. This raised concerns over possible sample
degradation effects and the reproducibility of the information one
can extract from them (Ranganathanet al., 2006). However, a study
by Grizzleet al.(2005) showed this effect to be relatively small. We
confirmed these results indirectly by observing and measuring only
a small amount of average inter-session variability. Additionally, if
the degradation of samples was significant, one would expect too
see its signs over time. In our case, data generated in February 2004
and January 2005 appear to exhibit stronger discriminative signals
than data from sessions produced in June 2003 and November 2004.
Thus, no immediate temporal relationship between time of proces-
sing and signal strength could be drawn, and observed inter-session
differences are likely due to other causes.

This study aimed to assess the global (average) effects of inter-
session variation on the reproducibility of profiles and their signals.
We did not try to investigate and pinpoint profile regions that appear
to be most vulnerable to inter-session variation. However, the fact
that classifiers trained on multi-session data were able to adapt to
inter-session biases suggest that such regions may exist. Future inve-
stigations of these relations may give additional insight on processes
critical for the application of the MS profiling technology and may
lead to further improvements in its reproducibility.
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