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ABSTRACT

Motivation: The "reproducibility” of mass-spectrometry proteomic
profiling has become an intensely controversial topic. The mere men-
tion of concern over the "reproducibility” of data generated from any
particular platform can lead to the anxiety over the generalizability
of its results and its role in the future of discovery proteomics. In
this study, we examine the reproducibility of proteomic profiles gene-
rated by surface-enhanced laser desorption/ionization time-of-flight
mass spectrometry (SELDI-TOF-MS) across multiple data-generation
sessions. We analyze the problem in terms of the reproducibility of
signals, reproducibility of discriminative features, and reproducibility
of multivariate classification models on profiles for serum samples
from early lung cancer and healthy control subjects.

Results: Proteomic profiles in individual data-generation sessions
experience within-session variability. We show that combining data
from multiple sessions introduces additional (inter-session) noise.
While additional noise can affect the discriminative analysis, we show
that its average effect on profiles in our study is relatively small.
Moreover, for the purposes of prediction on future (previously unseen)
data, classifiers trained on multi-session data are able to adapt to
inter-session noise and improve their classification accuracy.
Contact: pelikan@cs.pitt.edu,milos@cs.pitt.edu

1 INTRODUCTION

Predictive modeling relies on the detection of potential bio-
markers which may explain disease through previously understudied
combinations of reproducible molecular measurements. The repro-
ducibility of these surrogate biomarker patterns often comes into
question; a pattern is not guaranteed to be replicated exactly within
the same or other data generation session, or at a different labora-
tory. This results from the intrinsic variation introduced into the data
by factors including, but not limited to, the biological nature of the
samples and limitations of the MS technology.

Typical proteomic profiling studies attempted to minimize the
effect of this variation by generating data in a single session. These
data sets were produced in the ‘ideal’ environment where only a
single instrument in a single laboratory produces all of the available
data at the same time. As a result, potential factors of inter-session
and inter-site biases were ignored. Despite encouraging classifica-
tion results on these data sets, skepticism arose as to whether spectra
generated during multiple sessions separated by variable intervals of
time, or by a different laboratory, will be useful for predictive mode-
ling applications. Promising inter-site reproducibility results were
reported by (Zhanet al., 2004; Semmest al,, 2005). Inter-session
reproducibility, however, remains a relatively open area of research.

The aim of our paper is to study the inter-session reprodu-
cibility of proteomic profiles generated by the same instrument
over the course of 18 months. Inter-session reproducibility is the
key to generalizability of classification results to any future sam-

Mass spectrometry (MS) proteomic profiling has shown potential tople analysis. Our study relies on proteomic profiles generated
quickly and effectively screen patients for disease. This is done byy surface-enhanced laser desorption/ionization time-of-flight mass
producing protein expression profiles from patients’ tissue, bloodspectrometry (SELDI-TOF-MS) of serum samples from early-stage
urine, saliva or other biofluid. Statistical machine learning techni-lung cancer patients and healthy control subjects. The samples for
ques are applied to the resulting complex protein expression profileg6 patients were repeatedly reanalyzed in four different sessions
in a process called predictive modeling. In typical case/control comover the course of 18 months. Four groups of spectra generated
parative studies, example profiles generated from biospecimens aluring these sessions were the basis of this analysis.
diseased patients and healthy subjects are shown to the model inin a clinical setting, samples are obtained sequentially rather than
the training phase. New profiles from the screened subjects areollectively, and any models developed should be applicable to
evaluated by the model in the testing phase. samples produced in the future. Thus, a realistic model builds upon
Earlier MS proteomic profiling studies stimulated significant profiles from multiple data-generation sessions and is applied to data
enthusiasm (Petricoiat al,, 2002), discussion (Diamandis, 2003), generated in new sessions. The study of such multi-session models
and controversy (Ransohoff, 2005) in the general scientific comand their characteristics is thus at the heart of this investigation.
munity and among proteomics researchers. Potential confounding We show that the performance of classification models built
and bias in study design and analysis in initial studies (Baggerlyon profiles from multiple sessions is lower on average than the
et al, 2004), were recognized early on and have been addressed pierformance of the models built from single-session profiles. This
subsequent research (See Griztlal. (2005) for an overview).
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inter-session noise and possible biases appear to influence the pradisplicate in a blinded layout of combined case/control samples, together
les both on the level of individual peak signals as well as multivariatewith a standard pooled serum sample (one spot on each ProtefA@inipy
biomarker panels. However, the average effect of the inter-sessiofr quality assurance/control purposes).

noise (in our study) appears to be relatively low. Moreover, models

which are trained on data from multiple sessions can adapt to thig-3 Preparation and loading of ProteinChig® arrays

noise and improve their performance. This supports the notion thator pre-activation of the IMAC3 ProteinCH# arrays were assembled into
samples need not be run all at once, but rather may be collected ahe Ciphergen Bioproces$dr holding up to 12 chips, which allows for app-

an as—produced basis. lying larger volumes of liquid to each array spot. The IMAC3 Protein€hip
Arrays were initially loaded with 5@l of 100 MM CuSQ on each spot of
2 MATERIALS AND METHODS the array. The chips were shaken on a TOMY MT-360 Micro Tube Mixer

(Tomy Seiko Co., Ltd.), set at speed Form 20, Amplitude 7 for 5 minutes.
The samples analyzed in this work consist of 21 lung cancer and 25 contr@ach array spot was then rinsed with 200HPLC grade water, and aspi-
sera belonging to a larger pool of samples collected for the the Universityated. Fifty.l of 100 mM sodium acetate pH 4.5 were added to each array
of Pittsburgh Cancer Institute (UPCI) lung cancer study (see below). Thespot, and the chips shaken 5 minutes. The chips were rinsed with HPLC
samples were originally selected to support a concurrent inter-site validatiograde water, and then equilibrated twice for 5 minutes with208f PBS in
study. The samples were analyzed by SELDI-TOF-MS instrumentation atach well. Equilibration buffers were aspirated prior to application of;1100
four time periodgJune 2003, February 2004, November 2004 and Januaryf the denatured serum/urea mixture into each well of the Bioproc8ssor
2005), which we refer to agessionsThe sample selection process was simi- great care was taken to ensure no bubbles remained at the bottoms of the
lar to a prior inter-site validation study for prostate cancer (Senehed, wells, occluding contact with the ProteinCBipsurface. Serum mixtures
2005). The selection occurred in February 2004 and was restricted to samprere incubated with the ProteinCRipArrays for 30 minutes at room tem-
les that were available in June 2003 and that had a sufficient number gferature with shaking. The serum/urea mixtures were then discarded and
aliquots remaining for later analyses. Hence the sample is not representativiee PBS washing step repeated twice, followed by 2 final rinses with HPLC
of population proportions of the parent UPCI study described below. water. The chips were removed from the BioproceBsaand air-dried at
.. . least 10 minutes but as long as overnight. The chips were stored in the dark at
2.1 UPCI Iung cancer clinical populatlon room temperature until SELDI-TOF-MS analysis. Immediately prior to ana-
The parent study consisted of 115 newly diagnosed resectable non-smayisis, 1.0ul of a half-saturated solution of the energy absorbing molecule
cell lung cancer (NSCLC) cases from the UPCI Lung Cancer SpecializedEAM) sinapinic acid (Ciphergen Biosystems, Inc.) in 50% (v/v) acetoni-
Program of Research Excellence (SPORE) project and from 106 healthyyile, 0.5% trifluoroacetic acid was applied onto each spot of the array twice,
controls matched by age, gender, smoking status and pack-year history. Thetting the surface air dry 5 minutes between each EAM application. All
NSCLC cases were distributed among patients as follows: age (40-49 4%hips spotted were read, as much as possible, in an uninterrupted run using
50-59 18%, 60-69 34%, 70-79 36%, 80-89 8%); gender (men 59%, womethe Ciphergen ChipRead@rAutoLoade® device.
41%); smoking status (active smokers 40%, ex-smokers 49%, never smokers
11%); pack-year history<(30 23%, 30-59 29%;>60 37%); histopatho- 2.4 SELDI-TOF mass spectrometry analysis

i 0, i 0,

logy (adenocarcinoma 54%, squamous cell carcinoma 32%, other/unknow?he reacted ProteinCHib Arrays were analyzed using the PBSIic

14%); and stage (1A 21%, 1B 23%, IIA 4%, 1B 15%, IlIA 21%, I1IB 7%, IV - . . :
%) ge ( 0 0 g > y ’ ChipReadé? instrument (Ciphergen Biosystems, Inc., Fremont, CA). The

9%). All case and control sera were collected and processed per a standaf: ) )
dized protocol developed by the UPCI Lung Cancer SPORE. The samp|:§ELD|'TOF'MS spectra were collected by the accumulation and averaging

were processed, divided into equal aliquots and storedsaeC within 1 of 192 laser shots from 16 positions across the diameter of the ProtefiChip

hour of collection in glass Vacutairf@rtubes (BD Medical, Franklin Lakes, Array spot_, with warming shots not |ngluded. A Iasc_er |ntenS|Fy of 1.7.5_180
was used in a positive ion mode, ensuring that transient shot intensities were

NJ). Only a subset of these samples are used in the reproducibility analys . ) o .
pursued in this work and thus do not reflect the above population proportion%be'c’w saturation of the detector, with a detector sensitivity setting of 6, a

We note that the exact clinical population characteristics are less relevant geus lag time of 900 ns, employing mass de_ﬂecnon at_ 1000 9?“0”5- The
the study of inter-session reproducibility protein masses were calibrated externally using the 7-in-1 purified peptide

molecular mass standard (Ciphergen Biosystems, Inc.).

2.2 Preparation of serum for SELDI analysis During each session, each sample was processed in duplicate, and each
. ) . air of replicates was averaged prior to further data pre-processing to create

Afresh set of allquot_s was used ff’r each data production session. The prot "mean profile for that pair. This resulted in a dataset of 184 spectra, with

cols for the preparation and loading of serum samples for SELDI-TOF-MS

. i ; ) . - each of the 46 samples’ profiles being produced once per session. These four
analysis are specific for the ProtelnC@l_p’\rrays (Ciphergen Biosystems, datasets are the basis of our analysis.
Inc., Fremont, CA). Fully automated BioMek20®(rotocols for proces-
sing of IMAC3 ProteinChif® Arrays are presently being utilized in the .
UPCI Clinical Proteomics Facility directed by Dr. Bigbee. Protocols for 2.5 SELDI-TOF-MS data preprocessing
automated processing of these Protein@hirrays, as well as performing  Profile preprocessing aims to remove systematic noise and biases in the
mass spectrometry and preprocessing of the spectral data for analysis, hadata while preserving the useful information content carried by the profiles.
been derived and optimized from protocols implemented and validated iypical MS profile pre-processing steps include: quality control, baseline
accord with an NCI EDRN validation study assessing the reproducibility ofcorrection, variance stabilization, normalization, alignment and smoothing.
the SELDI-TOF-MS platform (Semme=t al,, 2005). Serum samples were Profile preprocessing was performed using the Proteomics Data Analysis
denatured prior to processing on ProteinGhigrrays. Twentyul aliquots Package (PDAP), a collection of data analysis and visualization routines
of serum were added into one well of a 96-well polystyrene microtiter plate,supporting the multivariate analysis of proteomic spectra and related bio-
with 30 ul of 8 M urea/1% CHAPS in PBS. The serum-urea mixture was vor- marker discovery. PDAP has been developed at the Department of Computer
texed for 30 minutes at°C. One hundreg:l of 1M urea / 0.125% CHAPS  Science, University of Pittsburgh. Results and methods developed within
was then added to the serum/urea mixture and briefly mixed, followed by #DAP have been described in detail in three recent publications (Pelikan
1:5 dilution of the serum/urea mixture with PBS. One hunglrkaf the final et al, 2004; Hauskrechgt al,, 2005, 2007).
diluted serum/urea mixture was then applied to one spot of a Protei®Chip ~ As each session of data was produced, case and control profiles were
Array, prepared as described below. Each serum sample was processedpre-processed together, but separately from spectra produced during other
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sessions. Preprocessing through PDAP consisted of cube-root variance sta-
bilization, baseline correction, intensity correction based on total ion current
(TIC) in the range of 1.5 to 20 kDa, smoothing with Gaussian kernels, and
profile alignment based on the mean spectra. No spectra failed to meet our
quality control requirement that the TIC be within 2 standard deviations of
the mean TIC across all spectra in a session.

~
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2.6 Reproducibility analysis

Session 3
N

Our experimental process evaluated the variability and reproducibility expe- Z 7600 7800 Eoan\z?:o 8400 $sseo so00 5300 940
rienced by producing proteomic data in multiple sample-analysis and data-
generation sessions separated by a large amount of time. Our analysis o . : .
is divided into three steps which address the problem of inter-session 700 7800 8000 B0 e omtony L 200 %4%0
reproducibility at different levels.

Session 4
-

e We first examined the differences in signals from the same sample

across multiple sessions. We defined a signal difference score to meg-'g' 1. MS profiles for a single sample across 4 different sessions. Changes

sure the discrepancies between signals from the same sample. We askd'§ apparent in relative intensities of peaks.

if the signal difference score for profiles from the same sample is signi-
ficantly better than profiles from other samples. This would indicate
that identical samples processed in multiple sessions experience moEore measures the sum of areas between all possible superimposed pairs of
similarity to themselves than to other samples in the session, supporting spectra; smaller values indicate better similarity.
the usage of profiles from multiple session for analysis purposes. We used the above signal difference metric first, to evaluate the similarity

e Second, we asked whether discriminative information is affected byof spectral measurements from the same sample across multiple sessions and
inter-session noise. We analyze this issue on the peak signal and muthen, to determine that the differences from random collections of spectra
tivariate levels, using differential expression and classifier accuracyfrom other patients are very different, and thus profiles that originate from
metrics, respectively. The effect of intersession noise on these statistid§ie same sample are hard to confuse with other profiles.
is determined by comparing them on single-session and randomized A random permutation test (Good, 1994) was used to test the differences
multi-session data sets. and their significance. We first estimated a distribution of signal difference

e Finally, we studied the predictive performance of multivariate models S¢0T€S for randomly 9“’“9?" spegtra. Nk grgupings were generate_d by
on future sessions. We asked by how much the performance of Class_huffllngthe sample identities assigned to spectrain eagh session. The signal

ifference score was recalculated for each random profile grouping, and the

sification models deteriorates on future sessions with respect to theﬁj ) . T . .
‘ideal’ single-session performance. We also asked if performance of Jprocess was repeated 1000 times to estimate the distribution of signal diffe-

multivariate model on future sessions can be improved if the model jgence scores for rgndomly grouped spectra. Next, the signal difference score
trained on mixed-session data. The idea here is that if intersession varia(Qr profiles belonging to the correct samples was calculated. If the score is
bility exists, it can be learned through multi-session data, potentiallystatistically significan‘tly different V\{ith respect to the estimated distribgti_on,
leading to to accuracy gains over models trained on single sessions. we have greater confidence that signals from the same sample are similar to
. ) o o each other beyond random effects. This increases our confidence that profiles
In the following we outline specific methods to test these objectives. generated from multiple sessions are potentially useful for analysis.

2.6.1 Reproducibility of profile signals No two MS profiles are - L . i )
exactly the same. Profiles may differ due to instrument noise, differences?.'ts'2 Reproducibility of discriminatory signalsEvaluating profile

in sample preparation procedures, etc. Differences in profiles for the Samsmilgr_ity across sessi(_)ns helps assure us of the basic consistency (repro-

sample are visible even if two profile replicates are generated in the samg.umb'“ty) Of. Spem.r a with respect .to samplgs they represent. Howeyer, the

session, and even if they are placed on the same chip. The intra-session pgn_‘f_erences in profiles acros§ multlpl_e sesswn; are apparent (see Figure 1).
' [ﬂ“IIS leads to a concern that information potentially useful for disease detec-

file variation is well known and existing methods are robust enough to COp%ion UrDoses mav be lost or at least significantly compromised if data from
with it. The differences in profiles for the same sample across multiple data purp Y 9 Y P

) ) . . multiple sessions were used in the analysis. To assess the effect of the poten-
generation session are much less understood. The differences in the samﬁl P Y p

- . . . . . zﬁ information loss we compare data mixed from multiple sessions to data
preparation at different times or instrument settings may effect the resultin R ) s
) - L . : - enerated from individual sessions and their discriminatory power.
profiles and contribute to possible inter-session biases and variability.

Figure 1 displays four MS profiles from the same sample that were gene- The information that helps us discriminate between healthy (case) and

rated in four different sessons. Although the shape of the profile may Iookdlse.ased (control) prOf'.IeS can be dra}wn from a single feature (peak) of .the
rofile, or from a combination of multiple features. We measure the quality

similar, differences in relative intensities of peaks are apparent. Are thesBIO'e: O from a( ) . .
P PP f discriminative information for a single feature (peak) bydtfferential

differences significant? Are these variations too strong to overcome so tha ) o . . )
) . _expression scoreThe score quantifies the difference observed in a profile

the profiles from the same sample are useless and easy to confuse with pro- o . -
ature between case and control groups. Many criteria exist for measuring

files generated for other samples? To answer these questions we need - . )
> generated. : P . d . ifferential expression (Hauskrecét al,, 2007). In this paper, we use the
define a similarity (or distance) metric that helps us assess the differences

f . () — (=)
among profiles. We would like MS profiles from the same sample to differ Fisher-like score, computed §&5—t—|, whereu ando represent the
less across sessions than profiles from other samples. To achieve this ga@mple mean and variance of the feature, respectively. Thesigasd(-)
we measure the similarity among a $tof k spectra using the average denote case and control samples, respectively.

Euclidean distancé g between all pairs of spectra: Testing peaks’ discriminatory information loso determine if the dif-
ferential expression information is lost across multiple sessions we assumed
1 d that feature’s differential expression follows a distribution across sessions.
dp(S) = k(k—1) Z Z(pl —a)® @ The distribution can be empirically estimated by randomly choosing each

2 Visp<ask sample’s spectrum from its replicate set. We generate 1000 randomized data-

wherep andq represent a pair of spectra from the subséi ofplicate spec-  sets and calculate a feature’s differential expression score under each dataset
tra generated from the same sample source. Intuitively, the signal difference recover its empirical distribution.
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If the profiles generated in a single session retain more discriminatorysession and trained on the profiles from the remaining three (training) ses-
information, we expect their differential scores to be higher on average thasions and by comparing them to the ‘ideal’ model trained and tested on the
the mixed-session distribution. We can test this by comparing the differencegrofiles from the same session.
between the mean score for the mixed-session distribution and the score for We perform this analysis as follows. A target (test) session is chosen from
the single session. We have four different sessions per sample and multiptee available four sessions. The remaining three sessions are used to train
spectra peaks. We use 100 peak regions, evaluate their single-session scaag$uture) predictive model. Next, samples are divided via the random sub-
and compare their peak scores to the distributions generated for mixed sesampling approach to training and testing samples, such that 30% of the
sion data. This process generates a distribution of score differences. If theamples are in the test sample set. The remaining samples are represented in
single session spectra are ‘better’ we expect them to differ on average frorhe training sample set. Next, we generate 1000 multi-session training data-
0. This difference and its significance can be assessed using the standaselts by assigning each patient in the training sample set a profile from one
one-sided hypothesis testing framework. of its training sessions and learn the models for each dataset. The models

Testing multivariate information losShe reproducibility of differential  are tested on the test session samples and their accuracies define the dis-
information in individual features may be indicative of the reproducibi- tribution of (future) test accuracy scores for mixed-session data. The mean
lity of discriminative information given by combinations of these features. of the distribution is then compared to the accuracy achieved by the model
However, this is not guaranteed. Are the feature combinations differentiytrained on the same session as the test session. To provide additional ass-
represented across sessions? If we mix data from different sessions, whatusance we repeat everything using 30 different train-test sample splits and
the effect on the discriminative pattern and the resulting predictive modelaverage the results. This will let us compare the average future performance
To answer these questions, we determine if the performance of a predictivef mixed-session models to the ‘ideal’ model for one test session. The global
model deteriorates on data mixed from several sessions, as opposed to datrformance can be assessed by averaging the results for four test sessions.
from the same data-generation session. In our first comparison of (a) models trained on profiles from the three

Performance of a predictive model is typically measured using accuracyraining sessions, versus (b) an ‘ideal’ model trained on profiles from the
(percentage of correct predictions), sensitivity and specificity, or area undesame session as the testing set, we expect the ‘ideal’ models to outperform
the ROC curve statistics. In this work, we evaluate predictive models usinghe multi-session-trained models. Inter-session variability is not present in
their test set accuracy. Similarly, there are many classification models onthe ideal model and is therefore expected to cause a loss of performance. Our
may try to learn multivariate patterns. We use the linear Support Vectosecond aim is to compare models from group (a) versus (c) models trained
Machine model (Vapnik, 1995) to learn the relationship between diagnostion profiles from a single session other than the target session. The objective
features and state of disease. This method has been used in previous studef determine if predictive models trained on multi-session data can learn
(Pelikanet al, 2004; Hauskrechet al, 2005, 2007) and is favored for its  to adapt to inter-session noise and hence improve their performance when
‘regularized’ feature selection. compared to models learned on single sessions.

To assess the reproducibility of multivariate classification patterns across We repeat the setup in the previous experiment to estimate the distribu-
sessions, we generate 1000 random datasets such that each patient (samf) of accuracy scores for the 1000 models trained on multi-session data.
receives one of the profiles from its replicate set. Our goal is to analyze difAccuracy scores are also obtained from models trained on one of the three
ferences in the performance of classifiers on: (a) models trained and testesingle sessions. The difference between the mean accuracy of the multi-
on profiles from multiple sessions, versus (b) models trained and tested asession models and single-session models are kept for a total of 3 differences.
profiles from the same session. To measure test accuracies of models we fifhis process is repeated 40 times for each of the four target sessions. We
decide which patients (samples) will be used for training and testing purporepeat the hypothesis test to determine if the mean of these differences dif-
ses. Forty-six patients (samples) are split via random subsampling (Efrorfers significantly from 0. In the case where multi-session models have the
1987) so that 30% of the samples are in the test set. The spectra obtainedme generalization performance as single-session models, the mean of this
for the remaining samples are used to train the predictive model. The split idistribution should not differ significantly from 0.
always the same for both single-session and multi-session models. Test set
accuracies of 1000 random models define a distribution of accuracy scores
for multi-session data. This distribution can be compared to accuracy result8  APPLICATION TO LUNG CANCER SERUM
for models trained and tested on four single sessions. However, four single MASS SPECTRA
sessions entries are not sufficient to make any strong conclusion. In additio . A
there is a chance a single train and test split may be biased. To eliminate the%el Signal reproducibility
problems, we repeat the analysis for multiple (30) train—test splits. This let4\e first examined whether proteomic spectra are reproducible
us calculate 120 accuracy scores for single session models (30 per one segross multiple sessions. We used the random regrouping test des-
sion) and compare them to respective accuracy-score distributions defined B¥ihed in Section 2.6.1 to evaluate whether the signals from the
1000 multl-sgssmn datasets. To assess the benefit gr loss resulting from ”§ﬁme sample were more similar than signals from randomly chosen
e o e eSgle Sels. Since We expect o fnd diferences beteen case and
benefit or loss, we average the results over four different sessions. control samples, this score was evaluated separately on respective

subgroups of case and control spectra.
2.6.3 Effect of multi-session data on generalization performance The histogram in figure 2 (left) indicates the average signal diffe-
of predictive models In the ‘ideal’ analytical setup for proteomic pro- rence score (over all 59910 intensity measurements of the profiles)
filing studies, a predictive model is trained and evaluated on data from theor the 21 cancer patients across all 4 sessions. A distribution of
same session. It experiences only within-session noise and does not accoytiog averages of 21 signal difference scores for randomly selec-
for potentlal |nter-s_eSS|on noise, shou_ld it be r_ejused for fu_ture prediction OEed quadruplets of spectra is plotted as a reference. The score for
profiles. However, in the practical setting of clinical screening, new sample%he replicate spectra falls outside of the score distribution for ran-
may be processed on-the-fly, each at a different time and therefore experien- P P . .

aomly grouped spectra. The same behavior occurs with the control

cing unanticipated amounts of inter-session variability. Concerns about thi o .
inter-session reproducibility is related primarily to concerns over generali-S@Mples. Furthermore, we can assess the reproducibility of signal

zability of predictive models that are extracted from past data sessions tgiﬁ.erence 0Vera.5”.‘a” region OT the prpfile. The right panel of figure
profiles obtained in the future. We will analyze this aspect of the problem by2 displays the distribution of signal difference scores for the peak
learning predictive models that are tested on profiles from one target (testegion at 8228 Da. The peak is less different among profiles from
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Fig. 2. Distributions of signal difference scores for random groupings of profiles for case samples. The left panel displays signal difference scores taken ov
the entire range of the signal (59910 features), while the right panel displays signal difference for a single feature at 8228 Da. The signal difference score f
the true replicate spectra is plotted as a dot along the x-axis. The signal difference among the true replicates is much less than any observed signal differe
among randomly grouped profiles. This shows that the observed greater similarity between a sample’s true replicates is less likely to be due to random effe

the same sample than from profiles randomly assigned to a sam- We expect this negative result to affect the performance (accu-
ple. There is a statistically significant difference between the signatacy) of predictive models trained on multi-session data. The
difference scores obtained from true and random replicates, at botfuestion is how big the effect really is. Earlier research studies
the global and local (peak) signal level. This assures us that profilesonsidered it most ideal to learn from and evaluate their predictive
from the same sample do not exhibit so much difference that theynodels on data from a single session. We therefore compare the dif-
can be easily confused with profiles from a different sample. Thisferences in accuracy between models trained on multi-session data
encouraging result shows the reproducibility of proteomic profilesversus models trained on single-session data.
at the signal level. Following the methods in section 2.6.2, we analyzed the accuracy
of multi-session models versus single-session predictive models.
Figure 3 (right) displays the distribution of differences between
3.2 Reproducibility of discriminative signals mean accuracies of multi-session and single-session predictive

We use the randomization framework from section 2.6.2 to determc’dels' If better accuracies are achieved by predictive models for

mine whether differential expression scores obtained from mixe(fl_nglt_e-sessmn data, we would expect to see the me_an_of t_h|s dis-
session data differ on average from the differential expression minea_'buuon to be below 0. IndeEd’ the mean .Of the distribution of
from single session datasets. These differences may assess ngirxer:cgs \(;VZ&O'(;);.(S_? Whlu.:h once again |nc_i|ct?lt_esaloss t::at ca;]n
benefit or loss due to mixed-session analysis. € explained by additional inter-session variability. To confirm the
Figure 3 (left) displays the empirical distribution of differential difference we used a repeated resampling experiment proposed by

) o 0 ! .
expression scores for multi-session data of one prominent peak ihladeau and Bengio (2003), estimating the 95% confidence inter

the spectra. The distribution was obtained from 1000 random data\{al ar_ound the mean of d|fferen<_:es to b6202.67 + 0'0.00.1'. This
periment confirmed that this difference is indeed significant.

sets such that each patient was randomly assigned a profile froﬁf(o th is about a 2.7% d . h .
one of the four sessions. The four marks indicate the differential - 2 erade, there IS about a .77 drop In accuracy when using

. . T L : multi-session data, demonstrating a relatively small (average) loss
expression scores obtained for profiles in four individual sessions. ' g y ( ge)

We next determined the significance of these differences. T(?f rt_eprodumb_lllty of multivariate discriminative p"’?“e.ms across
ultiple sessions. One should understand that this is an average

determine the amount of noise experienced over a range of fedy

tures, we similarly analyzed the top 100 differentially expresseqassessmem; the performance of an individual classifier may vary

. . ' from session to session and also depends on how profiles from mul-
peak regions in the profiles. The mean was calculated for every fea- P P

ture’s differential expression score distribution, as well as the scortl,\Iple Sessions are m'X_Ed'_ On average, these mixed session models
of the feature in the four single sessions. These four scores Wer%erform very well, achieving4.27 - 2.15% accuracy.

subtracted from the mean and kept for each feature, resulting in a L

distribution of 400 differences. Figure 3 (middle) displays this dis-3-3 Generalization performance

tribution. If single session scores were biased (that is, better scordsnally, we want to determine the effect the multi-session training
are produced by the single session analysis) we would expect thas on predictive models which must generalize well to future,
see the mean of this distribution to differ significantly from 0. In unseen profiles and sessions. The previous result demonstrates that
other words, we would expect to reject (at some significance level)ntersession noise exists, but does not seem to greatly affect the
the null hypothesis: the mean of differences>s0. Indeed, the performance of predictive models on average. However, the ana-
mean of the distribution of differences wa€).0351, giving ap- lysis used each session and did not try to assess the performance
value of5.588 x 102 for the one-sided-test, which leads to the on future sessions. We use the methods in section 2.6.3 to analyze
rejection of the null hypothesis. Hence the amount of differentialwhether training predictive models on multi-session data generali-
expression in single sessions appears to be better on average thareas well to profiles in future sessions and compare the performance
mixed-sessions. This shows that inter-session variability affects thef these models to ‘ideal’ predictive models trained and tested on
measured differential information. single session data.
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Fig. 3. Left panel: Distribution of differential expression scores under random regroupings of profiles for the peak region at 12.938 kDa. The differential
expression score for the peak in each of the 4 individual sessions is plotted as a dot along the x-axis. Middle panel: distribution of differences between the
mean of mixed-session Fisher score distributions and single session Fisher scores for 100 peak regions. The distribution has a mean of -0.0351 and p-valu
of 5.588 x 108 for the null hypothesis: the mean is equal to 0. Right panel: distribution of differences between the mean accuracies of models trained on
multi-session data and accuracies of models trained on single-session data. The mean of this distribution falls below 0 ( = -0.0267), indicating an on-average
benefit of training from single-session data.

Figure 4 (left) displays a distribution of accuracy differences bet-multiple (four) data-generation sessions. Such studies are critical for
ween the average of 1000 predictive models built from randomthe acceptability of the MS profiling technology in clinical settings.
multi-session training data and models trained on data that came Through our experiments, we try to understand the global impact
from the session on which the model was tested. The mean ahade by including data from multiple sessions on the accompany-
the distribution is—0.0231 which quantifies an overall average ing analysis for the profiles. Since profile reproducibility is naturally
generalization accuracy loss one may expect to see by training thenperfect, we expect some amount of inter-session variability to
model on the mixed session data as opposed to the accuracy ekist. Different sessions will yield different results, and the best
the ‘ideal’ model. We analyzed the difference using an additionalchoice of sessions to use is unclear. However, through averaging,
resampling test (Nadeau and Bengio, 2003) to compute the 95%ve can quantify the effect of inter-session variability on our analysis
confidence interval of the mean. The result of the mean fallingand determine whether data from multiple sessions is useful.
within —0.0286 £+ 0.0001 confirmed the difference is statistically  First, our experiments show that the similarity among profiles for
significantly different. However, in terms of absolute numbers thethe samples reprocessed during different time periods is greater than
accuracy loss with respect to the ideal model is not bad. that due to random chance. Second, we show that the discriminative

In a practical setting such as clinical screening, the traininginformation in profile peaks obtained from any single session is on
data will certainly not come from the same session as the testingverage higher than the information mined from multi-session data.
session. This eliminates the possibility of having an ‘ideal’ pre-Third, we reinforce this result by performing multivariate classifica-
dictive model. We repeated the previous experiment by examinindgion analysis and by showing that classifiers tested on single-session
the differences between the multi-session models and models traftata are better on average if they are trained on data generated from
ned on profiles from a single session other than the target sessiothe same session as opposed to classifiers trained on multi-session
This differs from the previous experiment since the single-sessiomata. However, our experiments showed no drastic loss of per-
models lose the advantage of the ‘ideal’ environment. Inter-sessioformance from training predictive models with multi-session data.
noise must now be accommodated by both the multi-session aninally, we show that training classifiers on data from multiple ses-
single-session-trained models. sions generalizes at minimal accuracy loss (about 2.86% loss with

Figure 4 (right) displays a distribution of accuracy differencesrespect to the ideal classifier) to profiles generated in future sessions.
between the average of 1000 predictive models trained on multi- The samples selected for this study showed more robust differen-
session data and models trained on the remaining single sessiontl features in their February 2004 spectra. This selection was made
The mean and 95% confidence interval of this distribution fallsto achieve the goals of a concurrent inter-site validation study. We
above 0 £ 0.0289 £ 0.0001), indicating a benefit of training on note that this selection may lead to an improved classification per-
multi-session data. The confidence interval is again computed usinfprmance on the February 2004 spectra; data from other sessions
the repeated resampling test (Nadeau and Bengio, 2003), whichre unaffected. Thus, average accuracy differences between sin-
confirmed the difference to be statistically significantly different. gle and multi session classifiers reported in the paper may become
This result illustrates how training on multi-session data can allowbiased towards single session classifiers as compared to those expec-
the model to adapt to inter-session noise. The better a predictivied under a fully random sample selection process. This does not
model can adapt to inter-session noise, the more reproducible theffect our conclusions about effects of intersession variability (Sec-
performance will be on future data. tions 3.2 and 3.3), since promising differences reported in the paper

would, under this bias, be obtained under less favorable settings.

The intersession reproducibility of profiles, both within and
4 DISCUSSION across ses;ions,_ can be influenced py many factors. E)_(perimental
conditions involving sample preparation and preprocessing should
The objective of our paper was to investigate effects of inter-sessiofemain as consistent as possible. A careful study design free of con-

variability of MS proteomic profiling data for serum samples obtai- founding and standardized protocols for sample processing can help
ned for early lung cancer patients and healthy control subjects over
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Fig. 4. Left panel: distribution of accuracy differences between predictive models trained on multi-session data and models ideally trained on data from th
same single session as the target test session. The mean below 0 (= -0.0286) indicates an advantage of the ideally trained single-session models. Right p
distribution of accuracy differences between the same predictive models trained on multi-session data and models trained on single-session data from sess
other than the target testing set. The mean above 0 (= 0.0289) indicates an advantage of training on multi-session data. This illustrates the ability of predict
models trained on multi-session data to adapt to inter-session noise.
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