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Abstract

In this work we focus on efficient heuristics for
solving a class of stochastic planning problems
that arise in a variety of business, investment, and
industrial applications. The problem is best de-
scribed in terms of futurebuyandsell contracts.
By buying less reliable, but less expensive, buy
(supply) contracts, a company or a trader can
cover a position of more reliable and more expen-
sive sell contracts. The goal is to maximize the
expected net gain (profit) by constructing a close
to optimum portfolio out of the available buy and
sell contracts. This stochastic planning problem
can be formulated as a two-stage stochastic linear
programming problem with recourse. However,
this formalization leads to solutions that are ex-
ponential in the number of possible failure com-
binations. Thus, this approach is not feasible for
large scale problems. In this work we investi-
gate heuristic approximation techniques alleviat-
ing the efficiency problem. We primarily focus
on the clustering approach and devise heuristics
for finding clusterings leading to good approxi-
mations. We illustrate the quality and feasibility
of the approach through experimental data.

1 Introduction

While many practical decision and planning problems can
be modeled and solved as deterministic optimization prob-
lems, a significant portion of real world problems is further
complicated by the presence of uncertainty in the prob-
lem parameters. In solving such problems one not only
faces the complexity of the original optimization problem
but also the complexity arising from random fluctuations
of parameters and global criteria summarizing and quanti-
fying all possible random behaviors. The challenge here is
to devise methods capable of efficiently solving large scale
instances of such problems.

In this paper we investigate a class of stochastic planning
problems that arise in many business, investment and in-
dustrial applications. We term this problemstochastic con-
tract matchingand formulate it in terms of optimizing a
portfolio of future (call) contracts [15] (the same optimiza-
tion problem comes up in a variety of other applications
such as insurance contracts). Acall contract is an option
to buy a given commodity at a given price. A call con-
tract has a default clause specifying the penalty that the
seller of the contract pays if the contract cannot be satis-
fied. In volatile markets of commodities such as energy
(gas, electricity) and communication bandwidth there is a
big price spread between “reliable” contracts with high de-
fault penalties and “less reliable” contracts with relatively
negligible penalties. By buying a collection of less reliable,
but less expensive contracts a trader can cover, at a signif-
icant profit, a position of expensive, reliable, contracts that
he had sold to clients.

In our formalization abuycontract is a call contract bought
by the trader (typically a less expensive and less reliable
contract), and asell contract is a call contract sold by the
trader to a client (typically, a more expensive and more re-
liable contract). Each buy contract can cover one of a set
of sell contracts. The goal is to maximize the expected net
gain (profit) by constructing a close to optimum portfolio
out of the available buy and sell contracts. The gain of
the portfolio is the revenue from selling the “sell” contract
minus the cost of purchasing the “buy” contracts and the
penalties for uncovered sell contracts [8]. (In practice, the
penalty on “reliable” contracts is so high that a trader must
satisfy all of them, possibly through an expensive “spot”
market).

Example: Consider a problem of trading communication
bandwidth through unreliable satellite and/or ground trans-
mitter equipment and its channels. Our goal is to find the
best combination of lease (buy) and sell contracts maximiz-
ing the expected value (profit), by taking into an account a
probability of equipment failures, flexibility of equipment
coverage, profits/costs for selling/buying respective con-
tracts and penalties for breaching sell contracts.



The stochastic contract matching problem represents a
stochastic planning problem with two decision steps: (1)
an allocation problem, deciding which contracts to buy and
sell, and (2) a matching problem, where the decision about
the best coverage of sell contracts after observing the actual
failure configuration is made. The problem can be formu-
lated as a two stage stochastic programming problem with
recourse [4, 1]. While there are efficient techniques to solve
the deterministic version of the matching problem [13, 1],
the stochastic version becomes exponential in the number
of randomly fluctuating elements. It is this aspect we ad-
dress in our work.

There has been extensive research in AI in recent years
on solving stochastic planning problems with large ac-
tion and state spaces and variety of techniques for re-
ducing the complexity (typically exponential in the num-
ber of components) of these problems have been proposed
[3, 7, 6, 5, 9, 12, 2, 11]. However, all these works assume
a fixed structure and a fixed parameterization of the plan-
ning problem. The unique aspect of our planning problem
is that the underlying topology characterizing the problem
can vary and it is itself subject to random changes and fluc-
tuations (due to failures). The optimal decisions must ac-
count for these effects.

We focus on and propose efficient heuristic approximation
techniques to solve the stochastic matching problem. In
particular, we develop a novel clustering approach. The
idea of the clustering technique is to reduce the number
of stochastic configurations to be considered in the opti-
mization by aggregating similar configurations. Ideally we
would like to get the smallest possible number of clusters
leading to the best approximation. Computing the opti-
mal clustering is as hard as solving the original problem.
The clustering approach and associated heuristics we pro-
pose are computationally feasible and lead to lower (upper)
bound approximations of the optimal solution. The quality
and computational efficiency of the approach are demon-
strated empirically on experimental data.

2 The Model

We have two sets of contracts for commodities (products,
services etc.):

� Buy contracts — a right to one unit of a service or
commodity. The contract has a priceRb, and a known
failure probability.

� Sell contracts — an obligation to deliver one unit of
a service or commodity. The contract has a priceRs,
and a penalty�Rs for not satisfying the contract.

In addition, we have a function defining which buy con-
tracts can satisfy a sell contract (Figure 1). Note that since
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Figure 1: An example of contract asset matching. Nodes
corresond to different types of contracts. Links represent
one-to-one matchings between buy and sell assets covered
by contracts. Numbers reflect the limits for each type of
contract.

each buy contract can cover only one sell contract, exercis-
ing the contracts is equivalent to a matching of buy and sell
contracts.

The objective is to find the optimal position (portfolio) of
contracts (available on the market) while optimizing an ob-
jective function that takes into an account the possibility
of various failures, and subsequent contract breaches. To
incorporate uncertainty and possible failures we focus on
theexpected value measure, where we want to find a con-
tract position leading to the optimal expected profits. Other
more complex measures, e.g. incorporating different risk
preferences of an investor, are possible as well.

3 Formulating the optimization problem

3.1 Notation

Let q be a number of different buy contracts (with possi-
bly different price or buy asset links) andnu be the number
of contracts of typeu. Let k be a number of sell contract
types andmi the number of such contracts of typei. Both
buy and sell contracts have price;Rb

u denotes the price of a
buy contract of typeu,Rs

i the price of sell contract of type
i. �Rs

i the penalty we have to pay for not satisfying a sell
contracti. (The penalty for not satisfying a buy contract is
0.) The number of contracts of each type we can hold is re-
stricted and satisfies:0 � nu � Cb

u for all u = 1; 2; � � � ; q
and0 � mi � Cs

i for all i = 1; 2; � � �; k, whereC denotes
upper limits on the number of buy and sell contracts. En-
forcing 0 lower bound limits ensures that no short-selling
of contracts can occur.

3.2 Deterministic matching problem

The decision problem consists of two choices. First we se-
lect a combination of buy and sell contracts. Second, after
observing the actual failure configuration, we decide how
to match different buy and sell contracts. Here we focus on



the second step and its optimal solution.

Let S = s1s2 � � �su � � � sq be an observed failure combi-
nation, such thatsu = 1 if buy contractsu did not fail
andsu = 0 if they failed. Suppose penalties for breaching
the contract are expressed in terms of negative rewards, the
matching problem can be formulated as a linear optimiza-
tion problem:

Q(n;m; S) = max
j

"
�

kX
i=1

qX
u=1

jiu
�Rs
i

#
;

subject to constrains:

mi �

qX
u=1

jiu � 0 for all i;

sunu �

kX
i=1

jiu � 0 for all u;

jiu � 0 for all u; i:

In this LP,nu represents the number of buy assets of type
u (n = fn1; n2; nu; � � �nqg), mi the number of sell con-
tracts of typei (m = fm1;m2; � � � ;mi; � � �mkg), and j
is a vector (set) of variablesjiu representing the number of
units of asset to be distributed fromu to i along connection
(u; i) if it exists (the variablejiu can be omitted if the con-
nection is not present). Values ofn, andm are fixed and
constants and not subject to optimization. The objective
functionQ essentially attempts to minimize losses by cov-
ering sell contracts with highest penalties. There are two
sets of constraints. The first set assures that the number of
buy assets actually matched does not exceed the number of
sell assets (covered by sell contracts). The second set of
constraints assures that we distribute only assets available
on the buy side.

The above matching problem (with fixed supplies and de-
mands) is a special case of a Hitchcock problem [13]. An
interesting property of the problem is that for integral con-
straints, its basic feasible solutions are integral.1

3.3 Contract portfolio optimization

Our ultimate goal is to find the combination ofnu andmi

values leading to the best (maximum) expected profits. The
problem can be formulated as a two stage linear program
with recourse (see e.g. [1]):

V = max
n;m

(
ES(Q(n;m; S)) �

qX
u=1

nuR
b
u

+
kX

i=1

mi(R
s
i + �Rs

i )

)
1The existence of an integral solution is a consequenceof total

unimodularity property of the matrix defining an LP[13].

subject to
Cb
u � nu � 0 for all u;

Cs
i � mi � 0 for all i;

whereES(Q(n;m; S)) is the expectation ofQ for differ-
ent failure combinations. The two-stage problem can be
expanded into a linear program of the form:

V = max
n;m;j

(
�

qX
u=1

nuR
b
u +

kX
i=1

mi(R
s
i +

�Rs
i )

�
rX

v=1

kX
i=1

qX
u=1

jiu;v[p(S
v) �Rs

i ]

)

subject to constraints:

mi �

qX
u=1

jiu;v � 0 for all i; v;

svunu �

kX
i=1

jiu;v � 0 for all u; v;

jiu;v � 0 for all u; v; i;

Cb
u � nu � 0 for all u;

Cs
i � mi � 0 for all i;

wherev ranges over all possible combinations of failures
v = 1; 2; � � � ; r; p(Sv) is a probability of a failure com-
binationv, and all variables in the deterministic matching
subproblem are also indexed byv.

A similar LP can be constructed to evaluate a specific buy
and sell contract position under the assumption of the opti-
mal matching. The difference between the evaluation and
optimization is thatn;m are either variables (optimization)
or fixed values (evaluation). Note, hovewer, that in terms
of the number of failure combinations the evaluation task
is comparable to the optimization.

The two-stage problem with a recourse (or its expanded
version) offers a special structure allowing more specific
optimization techniques to be applied to solve it. The meth-
ods include basic (1-cut) or multicut L-shaped methods
[14] and inner linearization methods. For a survey of appli-
cable techniques see [1]. While basic feasible solutions of
the deterministic matching LP with integral constraints are
integral, the integrality of a two-stage solution remains an
interesting open issue.2

The apparent drawback of solving the contract optimiza-
tion problem is the curse of dimensionality; the complexity
of the LP formulation is in the worst case exponential in

2Our experiments with two-stage problems always lead to in-
tegral solutions. However, we currently do not have a theoretical
proof of the property, or a counterexample.



the number of components that can fail andr = 2q. Note
that the curse of dimensionality affects also the evaluation
task in which we want to compute the expected value of a
fixed set of buy and sell allocations under the optimal after-
failure matching. Thus it is hard to even evaluate a fixed
allocation. One possibility to alleviate this problem is to as-
sure (via various structural restrictions) that the number of
failure combinations is small and polynomial. Then the ex-
act solution can be obtained efficiently. Another possibility
is to apply various heuristics leading to efficient solutions.

4 Greedy approaches

One way to solve the contract optimization problem is to
apply greedy heuristics in which the solution is constructed
incrementally such that partial matchings with highest ex-
pectations are preferred and selected first.

4.0.1 Pairwise greedy

There are various versions of the greedy algorithm. The
simplest algorithm checks expected profits for all possible
buy-sell matchings, orders the matchings and builds the so-
lution incrementally by selecting contracts corresponding
to the best remaining buy-sell pair (according to the order-
ing). The expected profit for matching a pair of contracts
(u; i) is:

V (u; i) = �Rb
u + (1� pu)R

s
i + pu �R

s
i

wherepu is the failure probability of a buy contractu.
During the solution-building process, the number of buy
and sell contracts should never exceed capacity constraints.
The process stops when there are no additional pairs satis-
fying capacity constraints or when expected profits of re-
maining pairs are negative.

The drawback of the above algorithm is that it does not
allow diversification. In other words, the algorithm never
recommends buying two or more buy contracts to cover
one sell contract and this despite the fact that this choice
can increase the overall value of the solution.

4.0.2 Diversified greedy

A partial remedy to the above problem is to diversify indi-
vidual sell contracts across different buys. From the view-
point of a sell contracti only, we want to select a subsetBi

z

of all buy assets incident oni (denotedBi), leading to the
best value:

V (Bi
z ; i) = �

24X
u2Bi

z

Rb
u

35+ (1� pBi
z
)Rs

i + pBi
z

�Rs
i ;

wherepBi is the probability of all buy contracts inBi
z fail-

ing. The best subset can be found either through an exhaus-
tive search or by setting up a linear program similar to the

method pairwise diversified exact
contracts greedy greedy
buy (n) (5 5 0 0 0) (5 5 2 5 2) (5 5 4 5 2)
sell(m) (2 3 5 0) (2 3 5 2) (4 3 4 5)

Table 1: Comparision of buy and sell allocations for two
greedy methods and the optimal solution.

original linear program. In both cases the solution is expo-
nential injBij. Thus assuming thatmaxi jBij is small the
local diversification can be performed exactly.

Different buy contracts can be used to cover one or more
sell contracts. To resolve possible conflicts among differ-
ent sell contracts (buy assets are shared) we select greed-
ily the sell contract (and its best buy combination) with the
highest expected value and allocate the maximum available
capacity to it. We repeat the allocation process while dy-
namically adjusting capacity constraints and stop when ca-
pacity constraints are saturated or when none of the best
combinations comes with a positive expected value.

The new greedy method decreases a chance of not satisfy-
ing a sell contract by using a multiple buy coverage, thus
improving on the pairwise greedy method. Unfortunately,
it also ignores the possibility of using one buy contract to
diversify simultaneously more sell contracts which is one
the key features of our problem. Table 1 illustrates the
differences among the two greedy methods and the opti-
mal solution on the problem from Figure 1 with 5 differ-
ent types of buy contracts and 4 types of sell contracts.
The diversified greedy method chooses multiple different
buy contracts as compared to the pairwise greedy allowing
to cover one sell contract with multiple buys. In addition,
more sell contracts are sold since positive gains can appear
as a result of diversification and multiple coverage. How-
ever, in the optimal solution a buy contract can be also used
to diversify many sell contracts, leading to the increase in
the number of sell contracts.

5 Approximation based on clustering

To improve on the two greedy methods we develop an al-
ternative approach – cluster-based approximation. The idea
of our cluster-based approximation is to: (1) restrict the
number of failure configurationsr considered in the opti-
mization problem (LP) and (2) approximate the effect of
all other failure combinations only through configurations
in the restricted set. The probability ofeach configura-
tion in the restricted set is modified accordingly and covers
all configurations it replaced. A set of failure combina-
tions substituted by the same representative configuration
is called acluster; the configuration representing a cluster
is acluster seed.

The actual profits for a specific contract position depend on



the number of failures that occurred. In general, more fail-
ures reduce our ability to satisfy sell contracts and thus tend
to decrease the profits when compared to the situation with
less failures. By disregarding some of the failure combina-
tions and substituting them with combinations with more
failures one obtains a lower bound estimate of the expected
value of a given portfolio of contracts. Thus, clustering fail-
ures such that combinations are only replaced with combi-
nations with more failures leads to a lower bound approx-
imation. Small (polynomial) number of such clusters con-
sidered in evaluation (optimization) then leads to a poly-
nomial lower bound solution. Analogously, by substituting
failure combination with configurations with smaller num-
ber of failures one obtains an efficient upper bound solution
estimate. This is the key idea of our approach.

To fully develop the clustering idea we need to:

1. define a clustering method that for a given set of seed
failure combinations leads to a lower (upper) bound
estimate of the optimal expected value;

2. compute a probability distribution of these clusters;

3. choose (build) a combination of cluster seeds defining
the approximation.

5.1 Upper and lower bound clustering

Let S = s1s2 � � �sq denotes a specific failure combination,
such thatsu = 0 if buy contractsu failed andsu = 1
otherwise.

Definition 1 Let S1 andS2 be two failure combinations.
We say thatS1 failure-dominatesS2 if s1u = 0 whenever
s2u = 0 holds. We say thatS1 non-failure-dominatesS2
whens1u = 1 holds whenevers2u = 1.

It is easy to see that failure and non-failure dominance are
closely related: a configurationA failure-dominatesB, iff
B non-failure dominatesA.

To guarantee a lower bound estimate of the expected value
we substitute a specific failure combination only with a
failure combination that failure-dominates it. Analogously,
to obtain an upper bound estimate a failure combination
can be substituted only by a failure combination that non-
failure-dominates it. Other substitutions may violate the
bounds. To assure the whole configuration space is always
covered, our cluster set always includes all-fail and all-no-
fail combinations.

In essence, a clustering partitions the space of failure con-
figurations. The number of possible partitionings is expo-
nential. In this work, we develop a special form of cluster-
ings that are defined in terms of the seed set orderings. The
advantage of the clustering is that it reflects the symmetry
of failure and non-failure dominance and it can be used to
obtain both bounds.

Definition 2 A clustering is defined by a fixed ordering of
seed configurationsW = fS1; S2; � � �Srg, such thatS1
is the all-no-fail combination,Sr is the all-fail combina-
tion, and for all pairsSi, Sj s.t. i < j, holds thatSi does
not failure dominateSj . In thelower bound clustering, a
configuration belongs to the first cluster (seed) that failure-
dominates it, starting fromS1. In theupper bound clus-
tering, a configuration belongs to the first cluster that non-
failure dominates it, starting fromSr and checking seeds in
W in the reverse order.

5.2 Computing probabilities of clusters

Once the clustering is known, the next step is to compute
the probability mass ofeach cluster. Here, we assume the
lower bound clustering, the upper bound is a dual problem.

LetW = S1; S2; � � �Sr be an ordered set of seeds defining
the clustering and let\f denotes afailure overlap operator,
S0 = Si \f Sk, such that for allu = 1; � � �q holds:

s0u =

�
0 if siu = sku = 0
1 otherwise

Then the probability of a cluster cl(Sj) is by the inclusion-
exclusion sum:

p(cl(Sj)) = p(fds(Sj ))�
j�1X
i=1

p(fds(Sj \f Si)) (1)

+

j�2X
i=1

j�1X
k=i+1

p(fds(Sj \f Si \f Sk))� : : :

fds(S) is a set of all configurations failure-dominated
by a configurationS and p(fds(S)) its probability mass.
p(fds(S)) equals the marginal probability of all non-failed
buy contracts in the configuration. For independent failures
it equals:

p(fds(S)) =

"Y
un

(1� pun)

#
;

whereun ranges over all buy contracts that did not failed
in S.

To obtain the probability of a cluster cl(Sj) for W

(equation 1) we modifyp(fds(Sj)) by substracting the
probability mass already captured by other cluster seeds
S1; S2; � � � ; Sj�1. This assures that the probability of any
failure combination is not counted twice.

5.2.1 Approximations of cluster probabilities

The equation 1 gives us a recipe to compute the probabil-
ity distribution of a given set of clusters consistent with
a lower bound approximation. However, in order to ob-
tain efficient approximation this computation must be ef-
ficient. Assuming all marginal probabilities are efficiently



computable, the inclusion-exclusion (IE) which requires to
evaluate all possible configuration overlaps represents the
main difficulty.

To resolve this problem we compute upper and lower bound
estimates of cluster probabilities using standard approxi-
mations of the IE problem. The solution is to consider only
a limited number of intersections, such that we end with
a negative sign correction to assure a lower bound and a
positive sign to obtain an upper bound. Letbp(cl(Sj)) �
p(cl(Sj)) be a lower bound probability of a cluster cl(Sj)
(for W ), obtained via IE approximation. As every cluster
includes at least its seed, its probability mass can be lower
bounded by:

p0(cl(Sj)) = max[p(Sj); bp(cl(Sj))];

wherep(Sj) is the joint probability of a configurationSj .
To assure that probabilities of all clusters sum to one, we
add all unaccounted probability mass (can appear due to
the approximation of the IE problem) to the cluster seeded
by all-fail combination (Sr configuration). That is:

p0(Sr) = 1�
r�1X
j=1

p0(cl(Sj)):

An alternative to inclusion-exclusion approach is to esti-
mate cluster probabilities directly using Monte-Carlo tech-
niques. Note that this approach can be more convenient
also in the case when marginal probabilities needed for IE
approximations are hard to compute.

5.3 Finding good clusterings

The last challenge is to devise techniques for finding a clus-
tering leading to a good approximation of the optimal so-
lution. This problem consists of two closely related sub-
problems: (1) finding the best clustering (the best order)
of a fixed set of seed points, and (2) choosing the set of
seed points defining the approximation. In general, it is
hard to solve any of these from scratch in one-shot. Thus
instead, we focus on incremental methods improving clus-
terings gradually, while exploiting the previously built ap-
proximation.

5.4 Best seed ordering

LetA be a set of seed points. A clustering is defined by an
orderingW of seed points inA (definition 2) and divides
(clusters) the space of all failure configurations. As pointed
out earlier, there can be different orderings of elements inA

and in the worst case the number is exponential. In general,
the solutions (allocations ofm;n) corresponding to differ-
ent orderings may be different. However, despite this fact,
it is very often possible to improve the ordering of seeds
by examining Q-values of a two-stage linear program. This
idea is captured in the following theorem.

Theorem 1 Let Si and Sj be two seeds inW such that
i < j. Let VW be the optimal value forW . If
QW (mW;nW; Si) < QW (mW;nW; Sj), then there is
an orderingW 0 such thatSj preceedsSi in this ordering
andVW 0

� V W .

Proof Let Sij = Si \f Sj be a failure overlap of
Si and Sj . For the orderingW the probability mass
of Sij can belong (may be in part) toSi; it never be-
longs toSj . Given the fact thatmW;nW are the opti-
mal allocations forW , such thatQW (mW;nW; Si) <

QW (mW;nW; Sj), assigning the probability mass of the
overlap toSj (for the same allocationmW;nW) must
lead to a better expected value. Note that the condition
QW (mW;nW; Si) < QW (mW;nW; Sj) implies thatSj
does not failure-dominateSi (if it would, theQ value ofSj
cannot be larger), thus the new ordering exists and is valid.
2

The theorem gives rise to a simple but very effective itera-
tive improvement procedure for a set of seed pointsA: se-
lect an initial seed ordering, solve the approximation prob-
lem, computeQ values for every seed, sort them accord-
ing toQ-values, and solve the problem repeatedly until no
changes in the seed order are observed. Note that sorting
seed points according to their Q-values works also for the
upper bound case. Intuitively, in the upper bound case we
want to find the clustering that leads to the smallest (tight-
est) upper bound. As upper bounds use the reverse ordering
of W , sorting the seeds according to their Q-values guar-
antees to improve also the upper bound.

Although the above iterative procedure may not lead to
the globally optimal clustering it always guarantees an im-
provement and is easy to implement. To search for the
globally optimal solution, combinatorial optimization tech-
niques such as Metropolis algorithm [10] allowing to scan a
space of seed orderings can be combined with the heuristic.

5.5 Selecting cluster seeds

Our ultimate goal is to approximate the optimal solution.
As it is hard to guess a good set of cluster seeds in one step,
we focus on the incremental approach in which we improve
the approximation by gradually refining the cluster set.

Intuitively, both cluster probabilities and Q-values of clus-
ter seeds influence the expectation and thus heuristics
should reflect both. To capture the effect of probabilities
we use the following heuristic: to add a new seed, we
first choose the cluster with the largest probabilistic mass
not accounted for by the seed configuration itself, and af-
ter that we choose a configuration from within the cluster
randomly (according to the probability distribution). Let
p(cl(Si)) be a probability of a cluster defined by a seedSi
or its estimate andp(Si) the probability of a seed config-
uration itself. Then we define the value of a cluster cl(Si)
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Figure 2: Admissible matching for the problem with 6 buy
and 4 sell contract types used in experiments. Numbers
indicate capacity limits for each contract type.

as: H(cl(Si)) = p(cl(Si)) � p(Si). The heuristic selects
the cluster with the highest value ofH, thus splitting the
cluster with the largest potential to improve the approxima-
tion.

To incorporate the effect of Q-values we apply the reorder-
ing heuristics (seeds are sorted according to the Q-values
for the last seeds set) after every step. The objective of is to
improve the clustering by considering a newly added seed
and itsQ-value.

5.6 Experiments

We have tested the incremental strategy together with the
two heuristic refinements on a problem with 6 buy sites
and 4 sell sites. Figure 2 shows all admissible match-
ings between buy and sell contracts. Figure 3 plots val-
ues of lower bound approximations obtained by gradually
increasing the number of clusters. Averages of 10 trials
are shown for each combination of methods. As the values
represent lower bounds, a higher value indicates better ap-
proximation. For comparison, we also plot expected values
for the optimal allocation and allocations for the diversified
and pairwise greedy methods. The best performance was
obtained by the combination of the two heuristics - proba-
bility based seed selection and reclustering (reordering of
seeds) based on Q-values. On the other hand, the worst per-
forming method selects new seed configurations uniformly
at random, with no reclustering. The other two choices,
came in between, with probability-based heuristics edging
the reclustering.

Figure 4 shows the average running times of approxima-
tions for different number of clusters. The only signifi-
cant difference between the methods we observed is due
to reclustering heuristics which reevaluates the cluster seed
order and improves the seed ordering locally (for each clus-
ter size). The two curves shown average the running times
of methods with and without reclustering (reordering of
seeds). To solve a two stage LP problem we use the VNI
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Figure 3: Average (lower) bound values (over 10 trials) and
different seed selection and clustering methods. Horizontal
lines show the optimal expected value and expected values
for the diversified and pairwise greedy methods.

linear programming package. In contrast to cluster approx-
imations the optimal solution was obtained in 352 min-
utes. Thus, using the combinations of our heuristics we
were able to obtain approximations very close to the opti-
mal value in a significantly shorter time.

Although cluster-based approximations allow us to grad-
ually improve the bound, ultimately, we are interested in
finding the optimal assignment ofn;m. Note that in such a
case the optimal allocation may be obtained well before the
value of a cluster-based approximation reaches the optimal
value. Evaluating our experimental results in terms of allo-
cations, we were able to find the optimal allocation in all 10
trials (considering up to 30 clusters) with the combination
of two heuristics. Average number of clusters used to reach
the optimal allocation was 22. Other methods missed the
optimal allocations at least once. Random selection method
with no reorder missed it in all trials.

6 Conclusions

Solving stochastic programming problems related to con-
tract matching optimally requires to evaluate explicily ev-
ery possible combination of random variable values. To
eliminate this dependency we focused on efficient heuristic
approximations, in particular, a new clustering approach.
Our primary contributions in this work include: a seed set
clustering approach leading to upper and lower bound value
estimates, and heuristics for finding good cluster-based ap-
proximations. The ability of our approach to solve suc-
cesfully hard contract matching problems was illustrated
experimentally.

A number of new challenging research issues and questions
emerge with our problem and need to be investigated; so-
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Figure 4: Average running times of approximations for dif-
ferent number of clusters.

lutions or insights to some of them may further improve
our current solutions. For example, at present our heuris-
tics looks only at estimates of values and does not take any
advantage of allocations obtained through upper and lower
bound clusterings. The interesting question in this respect
is whether there is any theory allowing us to detect por-
tions of the optimal solution by examining upper and lower
bound allocations, and whether there is a way to reduce the
complexity of a problem by removing partial allocations
known to be optimal.
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