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Abstract

In this work we focus on efficient heuristics for
solving a class of stochastic planning problems
that arise in a variety of business, investment, and
industrial applications. The problem is best de-
scribed in terms of futurbuy andsell contracts.

By buying less reliable, but less expensive, buy
(supply) contracts, a company or a trader can
cover a position of more reliable and more expen-
sive sell contracts. The goal is to maximize the
expected net gain (profit) by constructing a close
to optimum portfolio out of the available buy and
sell contracts. This stochastic planning problem
can be formulated as a two-stage stochastic linear
programming problem with recourse. However,
this formalization leads to solutions that are ex-
ponential in the number of possible failure com-
binations. Thus, this approach is not feasible for
large scale problems. In this work we investi-
gate heuristic approximation techniques alleviat-
ing the efficiency problem. We primarily focus
on the clustering approach and devise heuristics
for finding clusterings leading to good approxi-
mations. We illustrate the quality and feasibility
of the approach through experimental data.
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In this paper we investigate a class of stochastic planning
problems that arise in many business, investment and in-
dustrial applications. We term this problestochastic con-
tract matchingand formulate it in terms of optimizing a
portfolio of future (call) contracts [15] (the same optimiza-
tion problem comes up in a variety of other applications
such as insurance contracts).cAll contract is an option

to buy a given commodity at a given price. A call con-
tract has a default clause specifying the penalty that the
seller of the contract pays if the contract cannot be satis-
fied. In volatile markets of commodities such as energy
(gas, electricity) and communication bandwidth there is a
big price spread between “reliable” contracts with high de-
fault penalties and “less reliable” contracts with relatively
negligible penalties. By buying a collection of less reliable,
but less expensive contracts a trader can cover, at a signif
icant profit, a position of expensive, reliable, contracts that
he had sold to clients.

In our formalization dduycontract is a call contract bought
by the trader (typically a less expensive and less reliable
contract), and &ell contract is a call contract sold by the
trader to a client (typically, a more expensive and more re-
liable contract). Each buy contract can cover one of a set
of sell contracts. The goal is to maximize the expected net
gain (profit) by constructing a close to optimum portfolio
out of the available buy and sell contracts. The gain of
the portfolio is the revenue from selling the “sell” contract
minus the cost of purchasing the “buy” contracts and the
penalties for uncovered sell contracts [8]. (In practice, the
penalty on “reliable” contracts is so high that a trader must

While many practical decision and planning problems carsatisfy all of them, possibly through an expensive “spot”
be modeled and solved as deterministic optimization probmarket).

lems, a significant portion of real world problems is further
complicated by the presence of uncertainty in the prob
lem parameters. In solving such problems one not onl
faces the complexity of the original optimization problem
but also the complexity arising from random fluctuations
of parameters and global criteria summarizing and quanti
fying all possible random behaviors. The challenge here i
to devise methods capable of efficiently solving large scalt?

instances of such problems.

Example: Consider a problem of trading communication

bandwidth through unreliable satellite and/or ground trans-

nitter equipment and its channels. Our goal is to find the

best combination of lease (buy) and sell contracts maximiz-
ing the expected value (profit), by taking into an account a
probability of equipment failures, flexibility of equipment
overage, profits/costs for selling/buying respective con-
racts and penalties for éaching sell contracts.



The stochastic contract matching problem represents a Buy contracts Sell contracts
stochastic planning problem with two decision steps: (1)

5
an allocation problem, deciding which contracts to buy and

sell, and (2) a matching problem, where the decision about 5 4
the best coverage of sell contracts after observing the actual
failure configuration is made. The problem can be formu- 4 3

lated as a two stage stochastic programming problem with
recourse [4, 1]. While there are efficient techniques to solve
the deterministic version of the matching problem [13, 1], 2 () 5
the stochastic version becomes exponential in the number
of randomly fluctuating elements. It is this aspect we ad—F
dress in our work.

igure 1: An example of contract asset matching. Nodes
corresond to different types of contracts. Links represent
There has been extensive research in Al in recent year@ne-to-one matchings between buy and sell assets covered
on solving stochastic planning problems with large ac-by contracts. Numbers reflect the limits for each type of
tion and state spaces and variety of techniques for recontract.

ducing the complexity (typically exponential in the num-

ber of components) of these problems have been prOpOS%%\ch buy contract can cover only one sell contract, exercis-

[3’.7’ 6,5,9,12, 2, 11]. .However, all th_esel works assumqng the contracts is equivalent to a matching of buy and sell
a fixed structure and a fixed parameterization of the planéontracts
ning problem. The unique aspect of our planning problem |

is that the underlying topology characterizing the problemThe objective is to find the optimal position (portfolio) of
can vary and it is itself subject to random changes and fluceontracts (available on the market) while optimizing an ob-
tuations (due to failures). The optimal decisions must acjective function that takes into an account the possibility
count for these effects. of various failures, and subsequent contract breaches. To

- - .. incorpor ncertainty an ible failur
We focus on and propose efficient heuristic approximatio corporate uncertainty and possible failures we focus on

: ) . h | i -
techniques to solve the stochastic matching problem. Ir} eexpected value measymhere we want to find a con

. . ract position leading to the optimal expected profits. Other
particular, we develop a novel clustering approach. The . : : .
: . . . Mmore complex measures, e.g. incorporating different risk
idea of the clustering technique is to reduce the number : )
. . . . ; _preferences of an investor, are possible as well.
of stochastic configurations to be considered in the opti-
mization by aggregating similar configurations. Ideally we
would like to get the smallest possible number of clusters3 Formulating the optimization problem
leading to the best approximation. Computing the opti-
mal clustering is as hard as solving the original problem3.1 Notation
The clustering approach and associated heuristics we pro-
pose are computationally feasible and lead to lower (upper)et ¢ be a number of different buy contracts (with possi-
bound approximations of the optimal solution. The qualitybly different price or buy asset links) amd be the number
and computational efficiency of the approach are demonof contracts of type:. Let £ be a number of sell contract
strated empirically on experimental data. types andn; the number of such contracts of typeBoth
buy and sell contracts have pride’, denotes the price of a
buy contract of type:, R; the price of sell contract of type
i. RS the penalty we have to pay for not satisfying a sell
contracti. (The penalty for not satisfying a buy contract is
We have two sets of contracts for commodities (productsO_) The number of contracts of each type we can hold is re-
services etc.): stricted and satisfie®t < n, < C’forallu=1,2,--- ¢
and0 < m; < Cfforalli=1,2, -, k, whereC denotes
e Buy contracts — a right to one unit of a service or upper limits on the number of buy and sell contracts. En-
commodity. The contract has a prig&, and a known forcing 0 lower bound limits ensures that no short-selling
failure probability. of contracts can occur.

2 The Model

¢ Sell contracts — an obligation to deliver one unit of
a service or commodity. The contract has a piite
and a penalty?* for not satisfying the contract. The decision problem consists of two choices. First we se-
lect a combination of buy and sell contracts. Second, after
In addition, we have a function defining which buy con- observing the actual failure configuration, we decide how
tracts can satisfy a sell contract (Figure 1). Note that sincéo match different buy and sell contracts. Here we focus on

3.2 Deterministic matching problem



the second step and its optimal solution. subject to

b .
Let S = sis2---5, - -5, be an observed failure combi- Cu zmu 2 Oforally;

nation, such that, = 1 if buy contractsu did not fail C# > m; > 0forall i,

ands, = 0 if they failed. Suppose penalties fordaching -

the contract are expressed in terms of negative rewards, thghere Es(Q(n,m, S)) is the expectation of) for differ-
matching problem can be formulated as a linear optimizaent failure combinations. The two-stage problem can be

tion problem: expanded into a linear program of the form:
k d k
- _ b s s
Q(n.m, 5) = max l—ZZjLRf , Vo= me {‘ 2l QiR+ )
J i=1 u=1 o u=l i=1

r k q

subject to constrains: _ Z Z Zji [p(Sv)R§]}

q ) v=11i=1 u=1
mi—» g, > Oforalli, _ _
1 subject to constraints:
ul q
sumu =3 g > Oforallu, mi =3 i, > 0foralli,v;
i=1 = ’
Ji > Oforallu,i.

k
Sy My — ijw > 0 forall u, v;

In this LP, n,, represents the number of buy assets of type
=1

u (@ = {n1,n9,ny, - --ngt), m; the number of sell con-

tracts of typei (m = {mi,ms, -, m;, - -my}), andj Juo > 0forallu, v, i;
is a vector (set) of variableg, representing the number of .
units of asset to be distributed fromto ¢ along connection Cy > ny > 0forall u;

(u, 1) if it exists (the variablg?, can be omitted if the con-
nection is not present). Values nf andm are fixed and
constants and not subject to optimization. The objectivavherev ranges over all possible combinations of failures
functionQ essentially attempts to minimize losses by cov-v = 1,2,--- r; p(S") is a probability of a failure com-
ering sell contracts with highest penalties. There are twdinationv, and all variables in the deterministic matching
sets of constraints. The first set assures that the number sfibproblem are also indexed by

buy assets actually matched does not exceed the nlm]ber/g}:lsimilar LP can be constructed to evaluate a specific buy
sell assets (covered by sell contracts). The second set

constraints assures that we distribute onl ts availab d sell contract position under the assumption of the opti-
on the buy side only assets avallabif, matching. The difference between the evaluation and

optimizationis thah, m are either variables (optimization)
The above matching problem (with fixed supplies and deor fixed values (evaluation). Note, hovewer, that in terms
mands) is a special case of a Hitchcock problem [13]. Anof the number of failure combinations the evaluation task
interesting property of the problem is that for integral con-is comparable to the optimization.

straints, its basic feasible solutions are intedral.

C? > m; >0forall i,

The two-stage problem with a recourse (or its expanded
) o version) offers a special structure allowing more specific
3.3 Contract portfolio optimization optimization techniques to be applied to solve it. The meth-
ods include basic (1-cut) or multicut L-shaped methods
L14] and inner linearization methods. For a survey of appli-
cable techniques see [1]. While basic feasible solutions of
the deterministic matching LP with integral constraints are
integral, the integrality of a two-stage solution remains an
interesting open isstre.

Our ultimate goal is to find the combination of andm;
values leading to the best (maximum) expected profits. Th
problem can be formulated as a two stage linear progral
with recourse (see e.g. [1]):

q
Vo= E ) aS - URZ H imi

11111?}{ s(Q(n,m, 5)) uz_:l " The apparent drawback of solving the contract optimiza-
tion problem is the curse of dimensionality; the complexity

k
+ Z m; (RS + Rf)} of the LP formulation is in the worst case exponential in

- i=1 20ur experiments with two-stage problems always lead to in-
1The existence of an integral solution is a consequence of totakegral solutions. However, we currently do not have a theoretical
unimodularity property of the matrix defining an LP[13]. proof of the property, or a counterexample.



the number of components that can fail ang: 2. Note t tmethod pair\/\gse diverjiﬁed exact

. . . ; contracts greeay greeay
thalt(t.he c#rie of dimensionality affer::ts also th((aj ev?luatl;)n Buy (m) (55000)] (55252)| G5452)
task in which we want to compute the expected value of a | g yy,) (2350) | (2352) | (4345)

fixed set of buy and sell allocations under the optimal after-
failure .matchmg. Th.u§.|t 'S hard.to even evaluate_ a flXEdTabIe 1: Comparision of buy and sell allocations for two
allocation. One possibilityto alleviate this problemis to as- ’ .

. . - reedy methods and the optimal solution.
sure (via various structural restrictions) that the number of
failure combinations is small and polynomial. Then the ex-
act solution can be obtained efficiently. Another possibility

. . - ) . . original linear program. In both cases the solution is expo-
is to apply various heuristics leading to efficient solutions. g brog P

nential in| B;|. Thus assuming thatax; | B?| is small the
local diversification can be performed exactly.
4 Greedy approaches Different buy contracts can be used to cover one or more

One way to solve the contract optimization problem is toseII contracts. To resolve possible conflicts among differ-

o . o nt sell contracts (buy assets are shared) we select greed-
apply greedy heuristics in which the solution is constructe . o ;
) : ) o Ily the sell contract (and its best buy combination) with the
incrementally such that partial matchings with highest ex- - . .
. . highest expected value and allocate the maximum available
pectations are preferred and selected first.

capacity to it. We repeat the allocation process while dy-
namically adjusting capacity constraints and stop when ca-
pacity constraints are saturated or when none of the best

There are various versions of the greedy algorithm. The&ombinations comes with a positive expected value.

simplest algorithm checks expected profits for all possiblerpe new greedy method decreases a chance of not satisfy-
buy-sell matchings, orders the matchings and builds thg SQng a sell contract by using a multiple buy coverage, thus
lution incrementally by selecting.contracts. correspondlnqmpro\,ing on the pairwise greedy method. Unfortunately,
to the best remaining buy-sell pair (according to the ordery; 4156 ignores the possibility of using one buy contract to
ing). The expected profit for matching a pair of contractsyjyersify simultaneously more sell contracts which is one
(u, 7) is: the key features of our problem. Table 1 illustrates the
N pb _ s ps differences among the two greedy methods and the opti-
Vi) = =R+ (1 =p) B+ pult mal solution on the problem from Figure 1 with 5 differ-
where p,, is the failure probability of a buy contraet. ent types of buy contracts and 4 types of sell contracts.
During the solution-building process, the number of buyThe diversified greedy method chooses multiple different
and sell contracts should nevercerd capacity constraints. buy contracts as compared to the pairwise greedy allowing
The process stops when there are no additional pairs satits cover one sell contract with multiple buys. In addition,
fying capacity constraints or when expected profits of re-more sell contracts are sold since positive gains can appear
maining pairs are negative. as a result of diversification and multiple coverage. How-

ever, in the optimal solution a buy contract can be also used

T|r|1e d(;gwbggk (:f ;helr?b(z\éerilvgorgthr?h IS tlhatriltth?noﬁZvré?tto diversify many sell contracts, leading to the increase in
allow diversincation. In other words, the algo the number of sell contracts.

recommends buying two or more buy contracts to cover
one sell contract and this despite the fact that this choice

can increase the overall value of the solution. 5 Approximation based on clustering

4.0.1 Pairwise greedy

4.0.2 Diversified greedy To improve on the two greedy methods we develop an al-

A partial remedy to the above problem is to diversify indi- térnative approach — cluster-based approximation. The idea
vidual sell contracts across different buys. From the view-0f our cluster-based approximation is to: (1) restrict the

point of a sell contractonly, we want to select a subsgt number of failure configurations considered in the opti-

of all buy assets incident oin(denotedBi), Ieading to the mization problem (LP) and (2) approximate the effect of
best value: all other failure combinations only through configurations

in the restricted set. The probability ebch configura-
, _ tion in the restricted set is modified accordingly and covers
V(BL,i)=—| > Ri| + (1 —ps:)R; +ps: R}, all configurations it replaced. A set of failure combina-
u€B; tions substituted by the same representative configuration

. . R is called acluster, the configuration representing a cluster
wherepg: is the probability of all buy contracts ig? fail- is acluster seed

ing. The best subset can be found either through an exhaus-
tive search or by setting up a linear program similar to theThe actual profits for a specific contract position depend on



the number of failures that occurred. In general, more fail-Definition 2 A clustering is defined by a fixed ordering of
ures reduce our ability to satisfy sell contracts and thus tendeed configuration8/’ = {5, 55, ---S,}, such thatS,

to decrease the profits when compared to the situation witks the all-no-fail combinationg, is the all-fail combina-
less failures. By disregarding some of the failure combination, and for all pairsS;, S; s.t. ¢« < j, holds thatS; does
tions and substituting them with combinations with more not failure dominates;. In thelower bound clustering, a
failures one obtains a lower bound estimate of the expectedonfiguration belongs to the first cluster (seed) that failure-
value of a given portfolio of contracts. Thus, clustering fail- dominates it, starting frons;. In theupper bound clus-
ures such that combinations are only replaced with combitering, a configuration belongs to the first cluster that non-
nations with more failures leads to a lower bound approx{ailure dominates it, starting frori, and checking seeds in
imation. Small (polynomial) number of such clusters con-W in the reverse order.

sidered in evaluation (optimization) then leads to a poly-

nomial lower bound solution. Analogously, by substitutings. 2  Computing probabilities of clusters

failure combination with configurations with smaller num-

ber of failures one obtains an efficient upper bound solutiorDnce the clustering is known, the next step is to compute
estimate. This is the key idea of our approach. the probability mass ofach cluster. Here, we assume the

L i h i I lem.
To fully develop the clustering idea we need to: lower bound clustering, the upper bound is a dual problem

LetW = S1, 55, ---S, be an ordered set of seeds defining
1. define a clustering method that for a given set of seedhe clustering and let; denotes dailure overlap operator
failure combinations leads to a lower (upper) boundS’ = S; N Sk, such thatforalk =1, - - - ¢ holds:
estimate of the optimal expected value; '
, { 0 ifsi, =s8=0

2. compute a probability distribution of these clusters; 5 =9 1 otherwise

3. choose (build) a combination of cluster seeds definin

the approximation. %hen the probability of a cluster(dj;) is by the inclusion-

exclusion sum:

5.1 Upper and lower bound clustering i1
p(el(S;)) = p(fds(S;)) — > p(fds(S; Ny Si)) (1)
LetS = s1s5 - - - s, denotes a specific failure combination, i=1
such thats, = 0 if buy contractsu failed ands, = 1 i-2 j-1
otherwise. + Z Z p(de(Sj My S; My Sk)) — ...
i=1 k=i+1

Definition 1 Let S, and .S> be two failure combinations.
We say thats; failure-dominatesS; if s, = 0 whenever fds(S) is a set of all configurations failure-dominated

su = 0 holds. We say thaﬁ% non-failure-dominates:  py 4 configurations and p(fds(S)) its probability mass.
whens, = 1 holds wheneves, = 1. p(fds(S)) equals the marginal probability of all non-failed

It is easy to see that failure and non-failure dominance ar®Uy contracts in the configuration. For independent failures
closely related: a configuratiof failure-dominates3, iff it equals:

B non-failure dominates.
p(fds(5)) = [H(l - pun)] :
To guarantee a lower bound estimate of the expected value

we substitute a specific failure combination only with aherew,, ranges over all buy contracts that did not failed
failure combination that failure-dominates it. Analogously, jn 5.

to obtain an upper bound estimate a failure combination _ .

can be substituted only by a failure combination that non-To obtain the probability of a cluster (d;) for W
failure-dominates it. Other substitutions may violate the(équation 1) we modifyp(fds(.5;)) by substracting the
bounds. To assure the whole configuration space is alwayobability mass already captured by other cluster seeds

covered, our cluster set always includes all-fail and all-no-o1; 52, -, 1. This assures that the probability of any
fail combinations. failure combination is not counted twice.

Un

In essence, a clustering partitions the space of failure cory 5 ¢ Approximations of cluster probabilities
figurations. The number of possible partitionings is expo-

nential. In this work, we develop a special form of cluster- The equation 1 gives us a recipe to compute the probabil-
ings that are defined in terms of the seed set orderings. Thigy distribution of a given set of clusters consistent with
advantage of the clustering is that it reflects the symmetrya lower bound approximation. However, in order to ob-
of failure and non-failure dominance and it can be used tdain efficient approximation this computation must be ef-
obtain both bounds. ficient. Assuming all marginal probabilities are efficiently



computable, the inclusion-exclusion (IE) which requires toTheorem 1 Let S; and S; be two seeds i/’ such that
evaluate all possible configuration overlaps represents the < j. Let V' be the optimal value fodV. If
main difficulty. QY (mW, 0%V S) < Q" (mW,nW S;), then there is

T . n orderingW’ such thatS; preceedss; in this ordering

o resolve this problem we compute upper and lower boun W W

estimates of cluster probabilities using standard approxi‘-"mdv 2 V",

mations of the IE problem. The solutionis to consider onlyProof Let S;; = S; N; S; be a failure overlap of
a limited number of intersections, such that we end withs; and S;. For the orderingV the probability mass
a negative sign correction to assure a lower bound and ef 5;; can belong (may be in part) t§;; it never be-
positive sign to obtain an upper bound. L#tl(S;)) <  longs toS;. Given the fact thainW, n%W are the opti-
p(cl(S;)) be a lower bound probability of a cluste§})  mal allocations for/¥’, such thatQ" (mW oW S;) <
(for W), obtained via IE approximation. As every cluster Q" (mW, nW S;), assigning the probability mass of the
includes at least its seed, its probability mass can be lowesverlap to S; (for the same allocatiom™,n") must

bounded by: lead to a better expected value. Note that the condition
- QY (mW, 0%V S) < Q" (mW,nW ;) implies thats;
P (el(S)) = max[p(S;); (el(S)))], does not failure-dominats; (if it would, the value ofS;

wherep($;) is the joint probability of a configuratiofy; . cannot be larger), thus the new ordering exists and is valid.
To assure that probabilities of all clusters sum to one, we™

add all unaccounted probability mass (can appear due tphe theorem gives rise to a simple but very effective itera-
the approximation of the IE problem) to the cluster seededjve improvement procedure for a set of seed poifitse-

by all-fail combination {, configuration). That is: lect an initial seed ordering, solve the approximation prob-
1 lem, compute? values for every seed, sort them accord-
P(S) =1 Zp/(CI(Sj))~ ing to -values, and solve the problem repeatedly until no

changes in the seed order are observed. Note that sorting
seed points according to their Q-values works also for the
An alternative to inclusion-exclusion approach is to esti-upper bound case. Intuitively, in the upper bound case we
mate cluster probabilities directly using Monte-Carlo tech-want to find the clustering that leads to the smallest (tight-
niques. Note that this approach can be more convenierst) upper bound. As upper bounds use the reverse ordering
also in the case when marginal probabilities needed for If 17, sorting the seeds according to their Q-values guar-
approximations are hard to compute. antees to improve also the upper bound.

j=1

Although the above iterative procedure may not lead to
the globally optimal clustering it always guarantees an im-

The last challenge is to devise techniques for finding a clusProvement and is easy to implement. To search for the
tering leading to a good approximation of the optimal SO_g!obally optimal solutlon,'comblrjatorlal optlmlz'atlontech—
lution. This problem consists of two closely related sub-Nidues such as Metropolis algorithm [10] allowing to scan a
problems: (1) finding the best clustering (the best orderfPace of seed orderings can be combined with the heuristic.

of a fixed set of seed points, and (2) choosing the set of
seed points defining the approximation. In general, it i55
hard to solve any of these from scratch in one-shot. Thus’
instead, we focus on incremental methods improving clus-

: . . : : Our ultimate goal is to approximate the optimal solution.
terings gradually, while exploiting the previously built ap- As itis hard to guess a good set of cluster seeds in one step
proximation. '

we focus on the incremental approach in which we improve
the approximation by gradually refining the cluster set.

5.3 Finding good clusterings

5 Selecting cluster seeds

5.4 Best seed ordering
Intuitively, both cluster probabilities and Q-values of clus-

Let A be a set of seed points. A clustering is defined by arter seeds influence the expectation and thus heuristics
ordering¥ of seed points ind (definition 2) and divides should reflect both. To capture the effect of probabilities
(clusters) the space of all failure configurations. As pointedve use the following heuristic: to add a new seed, we
out earlier, there can be different orderings of elements in  first choose the cluster with the largest probabilistic mass
and in the worst case the number is exponential. In generahot accounted for by the seed configuration itself, and af-
the solutions (allocations ah, n) corresponding to differ- ter that we choose a configuration from within the cluster
ent orderings may be different. However, despite this factrandomly @ccording to the probadlity distribution). Let

it is very often possible to improve the ordering of seedsp(cl(.S;)) be a probability of a cluster defined by a setd

by examining Q-values of a two-stage linear program. Thisor its estimate ang(.S;) the probability of a seed config-
idea is captured in the following theorem. uration itself. Then we define the value of a clustésg)
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Figure 2: Admissible matching for the problem with 6 buy 0 5 10 15 20 25 20
and 4 sell contract types used in experiments. Numbers number of clusters

indicate capacity limits for each contract type.

Figure 3: Average (lower) bound values (over 10 trials) and
different seed selection and clustering methods. Horizontal

f’: HI(CI(Si))i a(dﬁfi)h) _ p(?i)' ;{hehheurislt.ic_seltehcts lines show the optimal expected value and expected values
the c ustgr with the highest vaiue of, thus splitting € for the diversified and pairwise greedy methods.
cluster with the largest potential to improve the approxima-

tion.

To incorporate the effect of Q-values we apply the reorderlinear programming package. In contrast to cluster approx-
ing heuristics (seeds are sorted according to the Q-valuegations the optimal solution was obtained in 352 min-
for the last seeds set) after every step. The objective of is tdtes. Thus, using the combinations of our heuristics we

improve the clustering by considering a newly added seedvere able to obtain approximations very close to the opti-
and its@-value. mal value in a significantly shorter time.

Although cluster-based approximations allow us to grad-
5.6 Experiments ually improve the bound, ultimately, we are interested in

finding the optimal assignment af m. Note that in such a
We have tested the incremental strategy together with thease the optimal allocation may be obtained well before the
two heuristic refinements on a problem with 6 buy sitesvalue of a cluster-based approximation reaches the optimal
and 4 sell sites. Figure 2 shows all admissible matchvalue. Evaluating our experimental results in terms of allo-
ings between buy and sell contracts. Figure 3 plots valcations, we were able to find the optimal allocationin all 10
ues of lower bound approximations obtained by graduallytrials (considering up to 30 clusters) with the combination
increasing the number of clusters. Averages of 10 trialsf two heuristics. Average number of clusters used to reach
are shown for each combination of thetls. As the values the optimal allocation was 22. Other methods missed the
represent lower bounds, a higher value indicates better apptimal allocations at least once. Random selection method
proximation. For comparison, we also plot expected valuesvith no reorder missed it in all trials.
for the optimal allocation and allocations for the diversified
and pairwise greedy methods. The best performance was .
obtained by the combination of the two heuristics - probaf ~Conclusions
bility based seed selection and reclustering (reordering of
seeds) based on Q-values. On the other hand, the worst p&elving stochastic programming problems related to con-
forming method selects new seed configurations uniformlytract matching optimally requires to evaluate explicily ev-
at random, with no reclustering. The other two choicesgery possible combination of random variable values. To
came in between, with probability-based heuristics edgingliminate this dependency we focused on efficient heuristic
the reclustering. approximations, in particular, a new clustering approach.

. L . Our primary contributions in this work include: a seed set
Figure 4 shows the average running times of approxima-

tions for different number of clusters. The only signifi- clustering approach leading to upper and lower bound value

cant difference between the methods we observed is dueestlmates, and heuristics for finding good cluster-based ap-

to reclustering heuristics which reevaluates the cluster SeepdrOX|mat|ons. The ability of our approach to solve suc-

. . cesfully hard contract matching problems was illustrated
order and improves the seed ordering locally (for each clus- .

. S T ~experimentally.
ter size). The two curves shown average the running times

of methods with and without reclustering (reordering of A number of new challenging research issues and questions
seeds). To solve a two stage LP problem we use the VNémerge with our problem and need to be investigated; so-
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Figure 4: Average running times of approximations for dif-

ferent number of clusters.

lutions or insights to some of them may further improve
our current solutions. For example, at present our heuris-

[7]

Richard Dearden and Craig Boutilier. Abstraction and
approximate decision theoretic plannidgtificial In-
telligence 89:219-283, 1997.

[8] Avinash K. Dixit and Robert S. Pindycknvestment

9]

[10]

[11]

tics looks only at estimates of values and does not take any

advantage of allocations obtained through upper and lower
bound clusterings. The interesting question in this respedt1
is whether there is any theory allowing us to detect por-
tions of the optimal solution by examining upper and lower

bound allocations, and whether there is a way to reduce the

complexity of a problem by removing partial allocations

known to be optimal.
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