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Abstract

Continuous-time semi-Markov processes (SMP) represent a very useful
extension of Markov process models to dynamic systems whose behaviors
are more naturally described in terms of time profiles. The semi-Markov
model, however, comes with a limitation: individual transitions in the model
can occur at different times which means that for a specific time interval
T the system modeled as an SMP can go through exponentially many tran-
sitions. This affects adversely the worst-case performance of Monte Carlo
methods designed to support various inference and decision tasks. In this
work, we propose and analyze modifications of Monte Carlo methods that
rely on simulation trajectories of a limited length V. We prove that for any
practical time models the probability of not reaching the target time 7" by a
trajectory of length /V decays exponentially fast. Using this result we analyze
extensions of some of the Monte Carlo inference methods to semi-Markov
settings and derive sample complexity bounds for additive ¢J estimates of
desired quantities.

1 Introduction

Markov processes (MPs) form the foundations of work on modeling stochastic
dynamic systems in Artificial Intelligence. The Al research has traditionally fo-
cused on discrete-time Markov process models, their efficient representations and



inference solutions. The Markov property enables the time decomposition of the
MP model and the same time-invariant behavior in every transition. This greatly
simplifies the analysis of the model and associated inferences. However, Markov
models are not fit well to represent behaviors that are more naturally described in
terms of time profiles. As has been pointed out by some researchers such processes
are common in many application areas including medicine [12], transportations [2],
robotics [13, 7], and others [5, 3].

Semi-Markov processes (SMPs) [9, 10, 17] alleviate the time-invariance problem
and extend Markov processes to time-dependent transitions. In continuous-time
SMPs state transitions can occur at any time. Similarly to discrete-time Markov
processes, continuous-time SMPs allow us to decompose the process to indepen-
dent time segments bounded by state transitions. However, a complication is that
durations of time segments can vary. As a result, inferences in semi-Markov pro-
cesses must consider cases in which a large number of transitions occurs within
a time segment 7". This problem can affect the worst case performance of Monte
Carlo (MC) methods that perform the inference by simulating many different state
trajectories over a specific time segment.

To address the problem of "long’ trajectories we propose and analyze a simple mod-
ification of Monte Carlo sampling methods for SMPs. The idea of the modification
is to use only trajectories with up to IV transitions, all other (longer) trajectories are
replaced with a random guess. We show that for any practical time density model
(a density model with a finite mean) the probability of generating trajectories of
length more than NV decays exponentially fast. This is the key result that allows us
to modify many Monte Carlo algorithms developed for discrete-time models and
derive sample complexity bounds for additive €4 approximations. We illustrate the
results on the analysis of algorithms for state prediction, but we expect a similar
transfer to apply also to decision-making problems.

In the following we first introduce continuous-time semi-Markov processes and
discuss their compact representations. Next we consider the problem of state pre-
diction and propose a simple Monte Carlo algorithm that works with truncated
state-time trajectories. We prove the key theorem of the paper — the exponential de-
cay theorem for truncated simulation trajectories and illustrate it on semi-Markov
models with Gamma time densities. Finally, we use the theorem to analyze and
derive sample complexity bounds of some MC state-prediction algorithms.



2 Continuous-time Semi-Markov Process

A semi-Markov process (SMP) [9, 10, 1] extends discrete-time Markov process
models to time-dependent stochastic behaviors. A semi-Markov process is like a
Markov process except that transition probabilities depend on the amount of time
elapsed since the last change in the state. The Markov property holds as a con-
sequence of the reset property; once a change occurs (and we know the state) the
future becomes independent of the past.

More formally, a (finite-state) semi-Markov process (SMP) is defined by a tuple
(S, ®, so) where: S is a finite set of states and ® is a stochastic transition model
such that ¢(s’,t|s) represents the probability of a transition (s, s’) occurring in
time interval [0, £]; and sg is the initial state. In most cases, the transition model ¢
of an SMP is not provided directly. Instead, transition probabilities are defined as:
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where P(s'|s) is the probability of a transition (s, s), as used in a Markov process,
and p(t|s, s’) models the distribution of stochastic transition times. A semi-Markov
model approximates the dynamics of a continuous-time system by decomposing
the process along times in which the state change occurs and its time model reflects
the fluctuation of these changes in time.

Compact Parameterizations. In general, a semi-Markov process permits models
of arbitrary complexity. However, for practical purposes we are interested in mod-
els with efficient parameterizations. We focus on two aspects of parameterization:
(1) parameterization of transition time densities p(t|s, s’); (2) parameterizations of
state transitions p(s’[s).

2.1 Compact Parameterizations of Time Densities

Time dependencies in SMPs are modeled through time densities p(t|s, s’) reflect-
ing the fluctuation of transition times during the transition between states s and
s'. Time models are defined over interval [0, oo]. For the sake of representational
efficiency we are interested primarily in densities with compact parameterizations.
A good time density model candidates are: Gamma, lognormal or a Gaussian den-
sity rectified to [0, co] range. Figure 1 gives examples of time models based on
Gamma distribution and its mixtures. Gamma distribution belongs to the family of



Gamma density Mixture of Gammas.

Figure 1: (a) Gamma density for 4 different parameter settings. (b) Mixture of 4
Gammas.

exponential distributions. The density function for Gamma distribution is:

1 ¢
f(tla,b) = T (a) ta-le=4,
where a is a shape and b is a scale parameter and I'(a) is a Gamma function. The
mixture of Gammas model is a convex combination of multiple Gamma models:
p(t|s,s") = K, w;p;(t]s, s'), where 0 < w; < 1 are weight parameters such that
SR w; = 1 and p;(t|s, s') is a Gamma model in the mixture. The advantage of
the mixture model is that it gives us more flexibility in representing more complex

time profiles.

2.2 Factored-state Semi-Markov Models

Much of the recent research work in modeling Markov processes focuses structured
representations based on dynamic belief networks (DBNs) [6, 11]. Such models al-
lows us to represent processes over large state spaces more efficiently. In particular,
the state of the process is factored into a set of state variables S = {Sy, Sy, ..., Sk}
and transition probabilities p(s’|s), decompose to ’local’ transition probabilities
p(si|pa(s;)), such that pa(s}) denote state variables the state variable S; depends
on. Our goal is to extend factored representations to semi-Markov processes. The
key is to model appropriately time dependent interactions between an arbitrary
state variable and all state variables it depends on. In particular, it is necessary to
define a clock for each state variable S; and rules for its resets. Nodelman et al [16]



proposed one such model for a special class of homegeneous Markov processes.
We extend the model to a more general semi-Markov settings.

Let C'(S;) be a set of state variables the variable S; depends on. Our transition
model for factored semi-Markov processes is defined by:

e Assumption 1: only one state variable can change at any instance of time;
e Assumption 2: a change in values of S; or C(S;) resets the time for .S; to 0;

e The transition model for S; and fixed values of its conditioning set ¢(.S;) is
a semi-Markov process model defined in terms of two probabilities:

— P(s!|s;,c(S;)) - the probability of a transition (s;, s;) under the fixed
set of values ¢(.S;) of the conditioning set.
- p(t|s;, sk, ¢(S;)) - time density for (s;s}) under ¢(S;).

Basically, the time changes in .S; are conditionally independent of the rest of the
state variables in § given C'(S;). In addition, the only events affecting the time
profile resets of S; are changes in conditioning variables and in .S; itself.

3 MC Algorithms for State Predictions in SMPs

Probabilistic inference in context of stochastic dynamic models covers predic-
tions, diagnosis, and other probabilistic queries. In this work, we focus on the
state prediction problem where we are interested in computing the probability
P(st = wvl|sg) of a future state of the system in time 7" given the initial state
sp or given the distribution of initial states. In general, no closed form solution
for computing the probability of P(st = v|sg) or the distribution P(st|sq) for an
arbitrary time-model exists. Exceptions are special cases, such as homogeneous
Markov processes [1, 16] with exponentially distributed transition times.

3.1 Basic Monte Carlo Inference Algorithm

Monte-Carlo (MC) approximations are a natural choice when closed form in-
ference solutions do not exist. The basic Monte-Carlo algorithm for state value
predictions is simple:

1. generate )M samples of states at time 7" by sampling sequentially transitions
(states and times) of a semi-Markov model (starting from the initial state sg);



2. estimate the target probability P(s7 = v|sg) of a state sz using the fre-
quency of occurrences of value v in M samples.

Complexity analysis. The total number of simulation steps depends on the num-
ber of samples M and lengths of simulation trajectories in every sample. Assuming
the same time model for every transition, the dependence between the error €, con-
fidence parameter ¢ and the number of samples M is captured by the following
(rather trivial) theorem.

Theorem 1 Let ppr(v) be the sample average approximation of P(st = v|sp).
Then: P (|pam(v) — E(sT = v|so)| > €) < 2e=2M] " The number of sample
trajectories that guarantees the €5 approximationis M > ﬁ In %.

Proof. Direct application of Hoeffding’s inequality [8, 15]. &

To fully analyze the complexity of the Monte Carlo algorithm we need to consider
the number of state transitions in every simulation trajectory reaching time 7. The
problem is that transitions in a semi-Markov model may occur at different times
and trajectories with (exponentially) many transitions (in terms of states) may be
occasionally generated. This affects negatively the worst case complexity of the
basic MC solution. However, we note that in the average-case analysis the expected
number of transitions in a trajectory depends only on 7" and the mean of the time
model and equals E(N) = [%]

3.2 Modified MC Algorithm

The problem with the basic Monte Carlo algorithm is the worst case complexity
since some trajectories may become very long. To remedy the problem we propose
a modification of the MC algorithm that simulates trajectories for at most IV steps.
The algorithm works as follows:

e generate )}/ samples of states at time 7' by sampling sequentially transi-
tions (states and times) of a semi-Markov model for at most IV steps, guess
randomly the result for samples not reaching time 7T’;

e estimate the target probability P(s7 = v|sg) of a state sy = v using M
samples.

We will show that for an appropriate choice of N, that is logarithmic in 1/e, we
obtain an additive €§ approximation that is very similar in terms of the sample



complexity of M to the basic MC algorithm. The crucial thing is that the result
generalizes to any practical transition time model with a finite mean or combina-
tions of such models.

Probability of Incomplete Simulation Trajectories

To analyze the complexity of the modified MC algorithm we first prove the key
result on probabilities of incomplete trajectories, that is, simulation trajectories that
were not able to reach time 7" in N steps. We show that for a sufficiently large N
that depends only on the characteristics of the time model density, the probability
of obtaining incomplete trajectories decreases exponentially fast in V. The result
holds for an arbitrary time density model with a finite mean. To simplify the initial
analysis we first consider the case in which every transition in the model follows
the same time density.

Theorem 2 Let Sy = t1 +t9 + - - -t is a sum of independent random variables
representing transition times of an arbitrary time density model t with a finite mean.
Then for N > T/ E(t) the probability of Sy not reaching time T', py = P(Sn <
T), decays exponentially fast in the number of steps N, in particular,

pn = P(Sy < T) < A(T, B)e NP

where A(T,3) > 0,C(3) > 0 are constants that depend only on the time model
used, the target time T, and a variational parameter 3 > 0.

Proof. To bound the difference between Sy and 7' we build upon Chernoff’s
exponential bound [4] (see also [14]). Let S be a real-valued random variable
with a finite mean E/(S). Then for any value § > 0, and € > E(S), it holds:
P(S > €) < e P<E(eP%).1f Sy is a sum of N independent random variables X;
we can rewrite the bounding expression as:

N
P(Sy > €) < e PE(PN) = P [T B(e?Y).
i=1

We want to bound the probability pxy = P(Sy < T') of not reaching time 7" in
N steps. First, py can be bounded as py < P(E(Sy) + Sy < E(Sn)+1T) =
P(E(Sv)—Sn > E(Sn)—T). Assuming that E(Sy) —T > 0 holds, Chernoff’s
exponential bound [4] applies and pxr can be bounded as:

pv < P(E(SN) = Sn > E(Sy) = T) < 7 /PEN=T) p(HPEN)=50)) = 0T [0t



The expectation is over time ¢. Since e™#* < 1 holds for any ¢ > 0 and 3 > 0, the
expectation E/ (e‘ﬁt) is bounded strictly from above by the distribution function:

/0 e—ﬁtp(t|o)dt</0 p(t|)dt = 1.

Thus, there exists a constant 1/K () such that E(e#*) < 1/K(3) < 1. Substi-
tuting the bound into the bound for py we get:

oy < PT-N1ogK(3),
As K(B) > 1, the probability py = P(Sy < T) can be bounded by py =
P(Sy < T) < A(T, 3)e~NC®) with A(T, ) > 0,C(6) = log K () > 0. Thus,
given N > T/ E(t) the probability of px decays exponentially in N. ll

The exponential decay result is critical for the analysis of Monte Carlo algorithms
for continuous-time semi-Markov models. Constants determining the decay rate
are density specific and need to be derived. Take, for example, Gamma time
model. The mean of Gamma(t|a,b) is E(t) = ab and E(e™?) = (1 + Bb)~°.
This leads to a bound:

oy < BT —aNIn(144b) _ BT ,~Naln(1+3b)

Figure 2 shows exponential bounds for a Gamma distribution and three different
values of # and compares them to its empirical py. The best value of 3, found by
differentiating the bound and setting the result to 0, is 5 = Na/T — 1/b.

Multiple different time models. The assumption used in the proof of Theorem 2
was that the transition time model is fixed for every transition in the SMP. To obtain
the bound on py for an SMP with many different time models we can substitute all
model specific quantities in the theorem with their worst case values from among
all time models. Assuming that there are L different transition time models ¢; we
can derive, for N > T'/[min,;— ... 1, E(t;)]:

oy < A(T, ﬁ)e—Nlog K*(B)7

where 1/K*(3) > max;—.... 1, Ey,(e7?%), and A(T, 8) = €*T > 0.
Complexity of the Modified MC Algorithm
Using theorem 2 we can to derive the complexity of the modified MC algorithm

introduced in Section 3.2. Once again the result applies to any time density with a
finite mean.



Figure 2: Gamma time model example with (¢ = 5,b = 2) and T = 500. An
empirical estimate of p based on 10000 trajectories and bounds on pa; for 3 values
of 3 are shown.

Theorem 3 Let A be a modified MC algorithmthat estimates the probability P (st =
v|so) using the sample average ,u% v (v) based on M truncated simulation trajec-
tories of the maximum length N. Then, for a fixed time density model t, ,u% v ()
gives an €5 approximation P(|,u%7M(v) — E(s =vl|sg)| > €) < & when:

T 1 2 2 2
> S z > Zin (=
N_max{ (t)’C[lOg<e>+T]} and M_€21n<5>,

where C > 0 is a constant specific to the time model t.

Proof.

P(|N%,M(U) — E(st=v|sg)| > €) =
= P(lﬂ%,M — E(sf = v|so, N)|+ |E(s¥ = v|so, N) — E(s7 = v|so)| > €)
= P(lufar(v) = B(s) = vlso,N)| > € — py) < 2¢[2empn)M],

Last step follows from Hoeffding’s inequality. Using the bound on px (from theo-
rem 2) with 8 = 1 to assure that p; accounts for at most half of the error we get:
py < eT=NC < 5 Substituting py and expressing both A/ and N we obtain:

1 2 2 2

We note that the sample complexity result in theorem 3 is not the tightest pos-
sible and can be improved, for example, by optimizing the variational parameter



(3. However, the theorem illustrates clearly two very important points. First, the
"worst-case’ sample complexity result for the modified MC is comparable, in terms
of M, to the ’expected’ sample complexity of the basic MC algorithm (see Theo-
rem 1). Second, the proof and the result show that the sample complexity bounds
for N and M are coupled only through error parameter €. Thus, using a fixed
proportion of € to cover py, N is able to fully absorb the effect of continuous
time at a very modest (logarithmic in 1/¢) expense. This separation is very conve-
nient for extending MC algorithms developed for discrete-time Markov processes
into continuous-time semi-Markov settings and their subsequent sample complex-
ity analysis.

MC Algorithm for Factored SMPs

The modified MC algorithm and its analysis for flat-state SMPs (Theorem 3) can
be easily extended to factored settings. In terms of complexity bounds only N will
change.

Trajectories in factored SMPs are defined by £ state variable subprocesses and each
of these trajectories must reach time 7" to make a simulation run successful. Things
are further complicated by dependences among state variables. An occurrence of a
transition affects all the variables that are conditioned on it and resets their clock.
The reset effect may cascade through multiple dependency relations. To analyze
MC algorithms for factored SMPs we consider two extreme cases:

¢ Fully independent semi-Markov subprocesses. In this case each state variable
is independent of other state variables and we have k independent subprocesses.
The probability of not reaching the target time 7" with at least one of the subpro-
cesses can be bound through the union (Bonferoni) bound, that is: py < ke ~N¢|
Then, using the same assumptions as in theorem 3, the number of steps NV for every
trajectory necessary to assure €4 approximation is: N > % [log (%) + T}. Note
that M stays unchanged.

e Fully dependent semi-Markov subprocesses. In this case every state vari-
able process is affected by changes in all other state variables. Assuming that
1,42, ... tX are random variables representing transitions times for state vari-
ables S1, Sy, -+, Sk, the time of occurrence of a transition is ¢ ~ minj—...x t.
If the time model used for each state variable .S; is the same and follows the den-
sity p/(t), the min statistic is: p(t) ~ K(1 — F'(¢))=Dp/(t), where F'(t) is
the distribution function of p’(t). Nevertheless, Theorem 3 applies directly to any
time model ¢. But then, M stays unchanged, and the only difference is the density
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specific constant C' affecting the bound on V.

Extensions of the Modified MC Method

A similar disassociation pattern between M and N also transfers to extensions of
the modified MC algorithm to more complex inference tasks. An example is an
MC algorithm approximating the distribution p(st|sg) of a state at time 7' with its
empirical distribution ,uTM n based on truncated simulation trajectories. In such a
case, the lower bound on the length of simulation trajectories [N for an accuracy €
under the L1 norm becomes:

1 2|5
> ol
N_C[log< : >—|—T],

while the sample complexity bound for the number of samples M differs from the
discrete-time case by the ’standard’ e —» €/2 correction.

4 Conclusions

Continuous-time semi-Markov processes allows us to model stochastic systems
with continuous time-dependent transition profiles. This property is crucial for
modeling many applications domains [12, 2, 3]. This advantage, however, comes
with trade-offs: (1) time-dependencies in the semi-Markov process model must be
explicitly represented which itself may translate to the increase in the complex-
ity of the stochastic model (2) closed-form inference solutions are typically not
available. To address these problems we have presented and analyzed (1) compact
parameterizations of semi-Markov processes based on parametric time models and
factorizations and (2) MC inference algorithms. We showed that time and simu-
lations over time for MC state predictions do not prevent efficient worst-case in-
ferences and a simple modification of the MC algorithm successfully resolves the
concern of exponentially long simulation trajectories for any practical time model.
We gave the detailed analysis of the modified MC solution and discussed its ex-
tensions to more complex inferences and models. We expect that the modification
and its analysis will transfer in a rather straightforward way also to MC methods
for semi-Markov decision processes.
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