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ABSTRACT

In this paper, we define a new query expansion method that
relies on term similarity metric derived from the electric
resistance network. This proposed metric lets us measure
the mutual relevancy in between terms and between their
groups. This paper shows how to define this metric auto-
matically from the document collection, and then apply it in
query expansion for document retrieval tasks. The experi-
ments show this method can be used to find good expansion
terms of search queries and improve document retrieval per-
formance on two TREC genomic track datasets.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval

General Terms: Algorithm, Performance

Keywords: Information Retrieval, Query Expansion, Term
Similarity

1. INTRODUCTION

A fundamental challenge of information retrieval (IR) is to
find documents that are relevant to user queries. The search
queries usually consists of only few terms, which barely de-
scribe the information that users request. A widely used
approach to deal with this problem is to expand the original
query with relevant terms [4, 5]. In this study, we tackle the
query expansion problem by defining new term-similarity
metric that is based on the electric resistant network. In
particular, this metric is derived from the effective resis-
tance distances in between pairs of vertices in an undirected
weighted graph. In this graph, nodes represent terms and
they are linked together based on their co-occurrences. The
edge weights represent the strength of term co-occurrences
and are interpreted as electric resistances. Based on the re-
sistance distances between pairs of terms, we demonstrate
how to derive the similarity between terms and groups of
terms. In this paper, we will discuss how to build the metric
from document collection and apply it in query expansion
for document retrieval tasks. We then present some of the
evaluation results on two TREC Genomic Track data. Fi-
nally we will conclude the paper and suggests some future
work.

2. METHODOLOGY
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Our objective is to define a metric in the term space that
would reflect how likely the terms are to be associated (or co-
occur) in the document. We define the metric with the help
of a weighted graph representing direct associations among
terms and their strength. More formally, our model consists
of an undirected weighed graph G = (V, E, w) where nodes
V represent terms in the document, edges F represent pair-
wise association relations in between them, and weights w
on the edges measure the strength of associations in between
the connected pairs of nodes. In general, the association in
between any two terms is calculated by considering all asso-
ciation paths and cumulative weights connecting them. This
defines a metric on the term space.

Building an Association Graph

We propose to build the graph from the (training) corpus
of documents by parsing each document and by extracting
the pairwise associations among terms on the sentence level.
If these two concepts co-occur in the same sentence, a direct
link in between the concepts is included in the graph. Let
j and k represent two distinct terms. If the two terms co-
occur in n > 0 different documents, a link in between j and
k with weight n is added to the graph (See Figure 1).
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Figure 1: Building an association network from doc-
uments

Electric Resistance Network

To define the metric for any pairs of nodes (terms or con-
cepts) in the association graph, we propose to interpret the
weighted graph as a resistance network. Figure 2 illustrates
the resistance network obtained from a weighted association
network. In this case, the links and their weights in the
graph are replaced with connections with resistances corre-
sponding to their weights. More specifically, a weight w;
in between nodes 7, k in the original weighted graph defines
the electric conductance c;  of the connecltion thlat is the re-

ciprocal of its electric resistance rj, = = We can
gk J

ik
use the electric resistance network to calculate the effective
resistance in between any two nodes in the network. This
effective resistance is the basis of our distance (similarity)



metric. The metric is also referred as resistance distance
and comes with an intuitive random walk interpretation [1].
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Figure 2: Building a resistance network from an as-
sociation network

Calculating Effective Resistances

In general, the calculation of resistances (or conductances)
in between any two nodes in an electric network is more
complex and requires us to consider all serial and parallel
path connections in between them. Also in order to define a
proper metric we should define the distance for all possible
pairs. We calculate the resistances with the help of graph
Laplacian (L) [2], where L = A — D and A is the adjacency
matrix and D is the degree matrix of the graph. This ap-
proach is also used to defined the spectral transformation
kernel function [6].

The effective resistance in between nodes v; and v can
be calculated as: 7, = L;j + L;k — L;fk — L;j where LT
is the pseudo-inverse of the graph Laplacian. In general,
the pseudo-inverse of a matrix A can be calculated from
the singular value decomposition of A = USV* as AT =
U*STV where =7 is the pseudo-inverse of ¥.

3. USING THE DISTANCE METRIC IN IR

The effective resistance calculations define a distance met-
ric in between nodes (terms or concepts) that can in turn
be used to support various inferences in the term space. We
extend this metric to define the distance in between a set of
(seed) terms S and a target ¢ as the average of the distances
between nodes in S and t: rg: = ‘—él ZS;ES Ts; t-

With the above metric, we can find all relevant terms
to the original query terms. However, the metric may not
differentiate well the relevant terms that are specific to the
query from the rest of the relevant terms. To deal with it,
we borrow the idea from TF-IDF[3] and re-normalize the
distances between terms based on their relative distances:
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where @ is a query, x is a term, and X is the set of all terms.
rQ,z is the resistance distance computed using the proposed
metric and it is normalized by the average distance between
z and all other non-query terms in the graph.

4. EXPERIMENTS

We evaluate our method using TREC Genomic Track 2003
& 2004 datasets, which are consist of abstracts from Med-
line. Test queries in 03 data contains gene names, their
associated products (e.g., proteins), and their symbols and
synonyms. Test queries in 04 data are sentences and they
cover more general topics and involve more genomic con-
cepts. We define our metric over only important terms:
gene/protein names for 03 data and 5000 terms with high-
est TF-IDF scores for 04 data. We use 30% of 03 data and

25% of 04 data to extract the association networks respec-
tively. ~ We choose Lemur/Indri and its internal Pseudo

Table 1: TREC genomic track data statistics
Year | #Abstracts | #Test Queries
2003 525,932 50
2004 4,591,008 50

Relevance Feedback (PRF) query expansion module as the
baselines. We use the Mean Average Precision (MAP), to
measure the retrieval performance of various methods. All
query terms are connected by “#combine” and the weights
of expanded terms are assigned according to distance mea-
sures as w(z) = e "@*. z is a expanded term, @ is the
set of original query terms, and rg , defines the resistance
distance between them.

We report results of query expansion with two proposed
metrics, rq, and its normalized version rg . We first com-
bine our metrics with Lemur/Indir and compare them with
two baselines (See Tables 2). We use 5 expanded terms
in this experiment. Both proposed metrics perform much
(about 20%) better than the original Indri. More impor-
tantly, our metrics are much (over 9%) better than the PRF
expansion approach and the normalized metric is the best.

Table 2: MAP of various methods
Methods 03 04

Indri 0.243 | 0.216
Indri+PRF | 0.258 | 0.228
Indri+rg,. 0.282 | 0.251
Indri4-rg , 0.291 | 0.261

S. CONCLUSION AND FUTURE WORK

We have presented a new term similarity metric that can
be easily defined using the document collection and applied
it successfully in query expansion for document retrieval
tasks. To the best of our knowledge this is the first study
that attempts to define the term similarity metric based on
electric resistance networks. In our evaluation, we defined
the similarity metrics on important concepts because the
data is from genomic domain. We would extend our study
to define the similarity on all terms and experiment it on
general document retrieval tasks.
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