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Abstract
The focus of this paper is on how to select a small sample
of examples for labeling that can help us to evaluate many
different classification models unknown at the time of sam-
pling. We are particularly interested in studying the sam-
pling strategies for problems in which the prevalence of the
two classes is highly biased toward one of the classes. The
evaluation measures of interest we want to estimate as ac-
curately as possible are those obtained from the contingency
table. We provide a careful theoretical analysis on sensitivity,
specificity, and precision and show how sampling strategies
should be adapted to the rate of skewness in data in order
to effectively compute the three aforementioned evaluation
measures.

1 Introduction
One of the important challenges of machine learning and
data mining research is the evaluation of models or hypothe-
ses with the help of data. The typical and the easiest ap-
proach to this problem is to draw a sample randomly from
the underlying sample distribution. However, this approach
may not be the best solution if each example in the sam-
ple comes at a cost that is associated, for example, with the
example extraction or annotation of examples by a human
expert. In such a case, one seeks a sampling solution that
maximizes the benefits of the sample for the evaluation task,
while minimizing its size.

As an example, consider the problem of assessment of
the quality of a diagnostic model in Medicine, that decides
whether a patient suffers from a certain disease. The typ-
ical statistics of interest when building such models are the
sensitivity, the specificity and the precision of the model. As-
suming the disease prevalence is low, the random selection of
patient examples may lead to a large number of negative and
a small number of positive examples, which may prevent us
from accurately estimating the sensitivity and the precision
of the model. To assure an accurate assessment of sensitiv-
ity, the random sample would have to be much larger which
would make the evaluation process very costly.
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The focus of our work is on the analysis of methods for
cost-effective evaluation of classification models and their
key statistics (e.g. sensitivity, specificity and precision) when
the prevalence of the two classes is unequal and highly
biased toward one of the classes. Our goal is to design
strategies for choosing examples such that they can be used
to evaluate accurately a large set of classification models or
rules one may want to experiment with, and not just one
model. The setting of our problem fits any problem for which
we expect to build a benchmark set of examples, programs,
images, documents, objects that need to be labeled for
evaluating the performance of multiple designs and assess
their performance. Here are a few examples:

• Consider the problem of evaluation of many possible
diagnostic models in Medicine. Such models may
originate from different sources; they can be proposed
either by different experts, or automated algorithms, or
some other model building processes. We want to get a
small set of examples to evaluate as accurately and cost-
efficiently as possible all these models and compute
their key classification (diagnostic) statistics.

• Assume we are interested in developing an inexpensive
test (assay) to accurately diagnose a disease from blood
samples. The current state-of-the art is a very expensive
but an accurate test. To assess how good the potential
inexpensive test or tests are, we use a set of stored
and labeled blood samples that can be used to run the
new assay and evaluate how well it performs. We are
interested in obtaining a small sample to be stored and
labeled with an expensive test. The sample should be as
small as possible and capable of assessing the quality of
any test.

• Assume the goal of a company is to develop a system
for classification of satellite (microscope) images. It
considers and studies multiple designs. To test and
assess the quality of the system a benchmark set of
images must be selected and assesses by experts so
that different designs can be readily evaluated. The
question is how to select a small set of benchmark
images sufficient for these evaluations.

Whilst our work bears some resemblance to the active



learning framework, we would like to stress that it is very
different in its goals and hence the methodology does not
transfer to our task. The key difference is that active learning
relies on an underlying model (classification, distribution
model) it aims to optimize (or learn) from data, and its
sample selection strategy makes an attempt to learn the pre-
selected model as efficiently and with as small sample size
as possible. Hence, the primary output of the active learning
is the model it learns. In our work, we do not pre-select and
learn (optimize) the model, instead we want a sample that
can help us to evaluate any classification model, regardless of
its origin. Therefore, our primary output is the sample itself.
Another difference is that we are interested in evaluating
every possible model with a broader range of classification
statistics (sensitivity, specificity, precision) while the active
learning framework typically narrows its focus to only one
statistics.

One might argue that active learning framework can
be used to accurately label all the unlabeled examples by
constructing a very good classifier. However, the active
learning framework cannot guarantee a classifier that has
controlled generalization ability when the labeling budget
is very limited. The only guarantee (to a certain degree) is
that the model constructed using active learning procedure
is better than the one constructed using the passive selection
of examples. Therefore, relying on the labels of examples
obtained using a model can be very risky and lead to a poor
evaluation of the future models (rules). Moreover, for the
problems that we consider in this paper (e.g. diagnosing
models in medicine), the construction of an accurate model is
a challenging task and subject to future model construction.
This continuous effort on model construction has been our
main motivation to obtain a sample that allows us to evaluate
the future models constructed by different procedures.

We start this paper by analyzing what types of examples
we need to include in the evaluation set when the priors of
the two classes changes. To get some insights to the types
of analysis in this paper, let us consider two extreme cases:
one that has classes of balanced sizes and the other one that
is very unbalanced. Intuitively, when the two classes are
balanced, a random selection of examples is likely to per-
form well in calculating all the interesting evaluation mea-
sures (i.e. precision, sensitivity, and specificity). However,
a random selection of examples will lead to a poor evalua-
tion of precision and sensitivity of the rules when the classes
are unbalanced (suppose the positive class is the minority
class). This is because the number of positive examples in
the sample will be very limited and the overlap of these posi-
tive examples and the positive examples returned by the rule
can be very small that leads to high uncertainty in evaluating
these rules. The smaller the positive rate of the rule (the num-
ber of positive examples returned by the rule) is, the smaller
this overlap and the higher the uncertainty will be. There-

fore, intuitively, the rule of thumb is to sample more positive
examples when the positive rate of the rule is small or the
positive class is rare. However, the question is how qualita-
tively the positive rate of the rule and the unbalance ratio of
classes on one hand and the number of positive examples on
the other hand are related when we aim to obtain a good es-
timation of all aforementioned measures. Looking at it from
a reverse perspective, the question we answer in this paper
is what is our confidence in evaluating the rules of specific
form for a specific problem (that has a particular unbalance
ratio of classes) using a given sampling? Our analysis in this
paper addresses this question. We show that when the prior
of the classes changes, the prior in sampling should change
with a rate proportional to the unbalance ratio of the classes.
This finding is very different from recent work in the active
learning area by [1] that advocates the approach in which the
examples from the two classes are balanced.

The contributions of this work are:

• We derive bounds on the estimation error of computing
precision, sensitivity, and specificity when a small sam-
ple size is used to compute these evaluation measures.

• Using these bounds, we show that the optimum sam-
pling strategy is dependent on the skewness rate of the
data and positive rate of the rule. One result of our anal-
ysis is that when the data is unbalanced, it is better to
sample more from the minority class.

• The bounds also suggest that there is a tradeoff be-
tween accurate estimate of precision and sensitivity on
one side and specificity on the other side. We show
how different samplings from the two classes influence
this tradeoff by studying the interaction between these
bounds.

• We discuss how the guidelines induced by our analysis
can be generalized to the case of evaluating rules by the
area under the ROC curve (AUC).

• We discuss how sampling from minority class helps to
increase the sample size by introducing blind labeling
of examples to the majority class. Our discussion
assumes a fixed and limited labeling budget.

• Since our analysis suggests we should sample from the
minority class, an open question is how to accomplish
this task. We propose practical ways to follow the
guideline induced by the analysis. In particular, we
suggests four different approaches one might utilize to
sample from the minority class.

• We verify the efficacy of the proposed method on two
UCI data sets by comparing the evaluation results of
random sampling and sampling strategy suggested by
the analysis.



This paper is organized as follows: We start with the re-
lated work in Section 2. Section 3 analyzes how the num-
ber of positive and negative examples in the labeled set in-
fluences the estimates of the three common evaluation mea-
sures: the sensitivity, the specificity and the precision. In
Section 3.2 we derive bounds on the estimation errors for
these measures. Then (in Section 3.3) we show that a good
sampling procedure must trade-off the estimation accuracies
of all these statistics and how this translates to controlling
the rate of positive examples in the labeled set. Section 3.4
considers the case when some of the statistics and the qual-
ity of their estimates are more important than the estimates
of other statistics and in Section 3.5 we describe how the
current analysis can be adapted in order to obtain a good es-
timation of area under the ROC curve (AUC). In Section 4,
we describe the practical approaches to implement the guide-
lines suggested by the analysis in Section 3. Section 5 studies
how the methodology works in practice on two different data
sets. We conclude the work in Section 6.

2 Related Work
The objective of this work is to select a set of unlabeled
examples from a large data set such that when they are
labeled by an expert they can be used to assess accurately
multiple classification statistics for many (apriori unknown)
classification models. To the best of our knowledge, there is
no prior work on this problem. In the following we briefly
review prior work in active learning, guided learning, and
active risk estimation, three research topics most relevant to
our problem.

2.1 Active learning The objective of active learning is to
improve the process of learning a model while restricting the
training sample size [14, 11]. The methods are motivated
by the fact that example labeling is a costly and time-
consuming task and that the number of examples we need
to label to learn the model can be significantly decreased by
choosing the most informative examples. To select the most
informative examples, active learning is usually reduced
to optimization of a certain criterion. Examples of such
criteria include but are not restricted to: minimizing the size
of version space for SVM [14], minimizing the variance
of the estimated generalization error [3], minimizing the
generalization error[10, 4] and minimization of empirical
one-step look ahead classification risk [17]. The difference
from our problem is that active learning methods optimize
the model, while we want to find and optimize the sample
itself.

One of our objectives is to analyze highly unbalanced
data sets. The problem of active learning in presence of
extremely unbalanced data set was recently considered by
[1, 2, 13]. To address the problem the authors in [1]
suggested to consider equal number of examples from two

classes to help the learning classes. Our analyses in this
paper show that examples in the minority class are more
important. Hence this is a very different conclusion than the
one proposed by [1] for the learning problem.

Another research work relevant to this paper is pool-
based active learning [15] where the objective is to label
all the examples in the pool as accurately as possible by
constructing a model that classifies all unlabeled examples
in the pool with a high confidence. This is unlike the regular
active learning where the objective is to construct an accurate
model able to classify unseen examples. Although pool-
based active learning has some similarities to our work, our
objective and tools are different; first we are looking for
sampling guidelines effective for the purpose of evaluation,
and second, we have a limited budget and cannot make a
confident model to classify accurately all the examples in the
pool. Notice that the finite-pool active learning is basically
designed to simplify the task of reviewers screening a huge
corpus of reports to find the relevant documents and it is
assumed that enough budget (yet small when compared to
label all examples) is available to label as many examples as
needed to construct a good classifier [15].

2.2 Guided Learning The second research direction rele-
vant to our problem is Guided Learning [1, 16]. The guided
learning framework works by asking an expert (or an algo-
rithm) to provide an example with certain characteristics [9].
It then constructs a model using those examples. Note that
this is different from active learning: active learning presents
samples to the expert to review and label, while guided learn-
ing only provides the expert with a guidance (or criteria to be
applied) to select an example or a set of examples, and it is
the duty of the expert (or a program) to find these examples.
In the simplest form, guided learning is interested in finding
the examples that belong to a specific class. When apply-
ing guided learning to highly imbalanced problems, the main
open questions are how to identify the minority class(es) and
how to find examples that belong to them.

Our sample selection framework is similar to guided
learning in that it provides recommendations of what type
(class) of examples to include in the data. The difference is
that we do not attempt to learn (optimize) any specific model
with a better sample of labeled examples, instead we want
to find the sample itself and use it for evaluation purposes.
To address the problem of how to select examples from the
minority class, we can utilize the solutions introduced in
the guided learning literature. Particularly, we rely either
on the human expert feedback and his/her ability to identify
the examples in the data set or a collection of surrogate
classifiers capable of identifying with a better accuracy
examples in the minority class that are then reviewed and
assessed by a human.



2.3 Active Risk Estimation Active Risk Estimation re-
cently introduced by Sawade et. al. [12] is probably the most
relevant work to our study, where the authors study the prob-
lem of evaluating the risk of a given model accurately for
a given evaluation measure at a given labeling budget. Un-
like active risk estimation that selects examples to label in
order to reduce the risk of evaluating one known model, our
work is much more general in the sense that it does not as-
sume there is only one apriori-known model to evaluate. The
generality of our setting makes the task of sample selection
much more difficult and does not allow one to have a detailed
sampling strategies of what individual examples are benefi-
cial to be selected. Instead, we can only find some hindsight
or guidelines on what general sampling strategies are good.

3 Sampling for Evaluation
Suppose we have a large sample S of unlabeled examples
from two classes. We would like to choose a subset L ⊂ S
of representative examples from S to be labeled by an expert,
such that the labeled set would let us evaluate a set of
(apriori unknown) classification rules or models (given to
us later either by an expert or an algorithm ) as accurately
as possible in terms of several evaluation measures. The
evaluation measures of interest in our work are the precision,
the sensitivity, and the specificity of the classification model,
or more generally measures obtained from the contingency
table.

A good evaluation set should estimate all aforemen-
tioned evaluation measures equally well and with similar ac-
curacy guarantees. But how to select examples in set L to as-
sure this is the case? If classes in S are balanced, we expect
a random sample from S will also preserve the balance in L,
so random sampling is likely to work well. However, a bal-
anced sample is harder to achieve if the classes in S are un-
balanced. Interestingly, if the two classes are extremely un-
balanced, the accuracy guarantees can be (relatively) easily
satisfied for statistics related to the majority class even with-
out seeing labeled examples from this class. What seems like
a contradiction can be easily explained as follows: assuming
all unlabeled examples take on the majority class label, the
overall error from mislabeling the minority class examples
is small because their prevalence (prior) is small. In such a
case we may prefer L to be purely from the minority class or
at least heavily biased towards this class.

In this section, we provide a careful analysis of the
relation of the skewness rate (the ratio of positive class to
the whole sample size), the size of the labeled data set, and
the quality of different evaluation measure estimates.

3.1 Preliminary Let S denotes the set of all examples in
the data set. We define the rule R : S 7→ {+,−} as a
labeling function which maps the members of S to either
the positive or the negative class. The set of all possible

rules is denoted by R. Let O ∈ R be a special rule which
returns the true labelings of the examples in S (“O” stands
for the Oracle). Throughout the paper, L ⊆ S and U ⊆ S
refer to the set of examples in S for which the true labeling
are, respectively, known and unknown; thus, L ∪ U = S,
L ∩ U = ϕ. Furthermore, and without loss of generality, we
assume that the positive class is the minority class and we
denote by B ∈ U the set of examples that are blindly labeled
with the majority class (negative class). For A ⊆ S, R ∈ R
and c ∈ {+,−}, we define:
• |A| as the cardinality of set A,
• Ac

R ≡ {x ∈ A | R(x) = c},
• ϵcR(A) ≡

|Ac
R|

|A|
For instance, S+

O means the set of all true positive examples
in S while ϵ+O(S) is the rate of true positives in S. It is
trivial to see that for any given A ⊆ S and R ∈ R, we have
A = A+

R ∪A−
R and ϵ−R(A) = 1− ϵ+R(A).

For oracle O and the rule R ∈ R (R ̸= O), the
quantities ϵ+O(S) and ϵ+R(S) are of special interest in this
work. The former is the rate of true positives in the data set
while the latter is called the positive rate of rule R. Both of
these quantities are dictated by the domain and do not change
due to any specific sampling strategy. Notice that ϵ+R(S) is
unknown at the time of sampling.

In the following analyses , we first assume the partition-
ing of S into L and U is known. We then use these results to
determine what partitioning yields better estimates of evalu-
ation measures. Table 1 shows the elements of contingency
table for a rule R and oracle O.

Table 1: Contingency table for rule R and oracle O.
S+
O S−

O

S+
R |S+

O ∩ S+
R | |S−

O ∩ S+
R |

S−
R |S+

O ∩ S−
R | |S−

O ∩ S−
R |

Using this contingency table, precision, sensitivity and
specificity of rule R over set S = U ∪ L are defined as
follows:

Pr(R) =
|S+

O ∩ S+
R |

|S+
R |

=
|U+

O ∩ U+
R |+ |L+

O ∩ L+
R|

|S+
R |

(3.1)

Se(R) =
|S+

O ∩ S+
R |

|S+
O |

=
|U+

O ∩ U+
R |+ |L+

O ∩ L+
R|

|S+
O |

(3.2)

Sp(R) =
|S−

O ∩ S−
R |

|S−
O |

=
|U−

O ∩ U−
R |+ |L−

O ∩ L−
R|

|S−
O |

(3.3)

where Pr, Se, and Sp stand for the precision, the sensitivity
and the specificity, respectively. We would like to identify
characteristics of set L or U (one determines the other) that
lead to a good estimation of the desired evaluation measures
over the whole set S.



3.2 Estimation Bounds The exact evaluation of preci-
sion, sensitivity, and specificity on S is dependent on both
U and L; for example, the precision is calculated from
|U+

O ∩ U+
R | and |L+

O ∩ L+
R|. For a given rule R, the de-

pendency on set L is known and we would like to choose U
such that the uncertainty of estimating these evaluation mea-
sures for different rules is small. Although the labels in set U
are not known, we know that |U+

O ∩ U+
R | ∼ B(n, p) follows

a binomial distribution with parameters n = |U+
O | and p =

ϵ+O(U). Using the properties of binomial distribution, we can
compute the expected value E(|U+

O ∩ U+
R |) = |U+

O |ϵ+O(U)
and variance σ2(|U+

O ∩ U+
R |) = |U+

R |ϵ+O(U)(1 − ϵ+O(U)).
Given that the labels of examples in L are known, the ex-
pected value and variance of precision for different labelings
on U for a specific but unknown rule R of size |S+

R | is de-
fined as follows:

E(Pr) =
E(|U+

O ∩ U+
R |)

|S+
R |

+
|L+

O ∩ L+
R|

|S+
R |

=
|U+

R |ϵ+O(U)

|S+
R |

+
|L+

O ∩ L+
R|

|S+
R |

(3.4)

σ2(Pr) =
σ2(|U+

O ∩ U+
R |)

|S+
R |2

=
|U+

R |ϵ+O(U)(1− ϵ+O(U))

|S+
R |2

(3.5)

Given these statistics, we can obtain the concentration
bounds for the values of precision and study the variation
of precision when the selection of samples in U changes.
Using Bernstein bound1[5], we can bound the deviation of
the expected value of precision for unknown labeling of U
from the true precision as follows:

P (|Pr − E(Pr)| > ξPr) ≤ 2 exp

(
− ξ2Pr

4σ2(Pr)

)
= 2 exp

(
−

ξ2Pr|S
+
R |2

4|U+
R |ϵ+O(U)ϵ−O(U)

)
(3.6)

where ξpr is a positive value. The above equation simply
explains that the value of precision is concentrated around
its mean with a density dependent on the properties of oracle
O (the uncertainty of labeling on U ) and the rule R (e.g. the
positive examples returned by the rule). We can rewrite the
above bound in the probably approximately correct (PAC)
form as given in the following proposition.

PROPOSITION 3.1. For any δ ∈ [0, 1], the difference be-
tween the true precision and the expected value of precision
defined by Equation 3.4 satisfies:

|Pr − E(Pr)| ≤ 2

√
|U+

R |ϵ+O(U)ϵ−O(U) log( 2δ )

|S+
R |

(3.7)

with probability at least 1− δ.

1Notice that the bound we use here is the Bernstein bound for small
values of ξPr relative to σ2. Check [5] for details.

Proof. The proof is standard and as follows. By defining

δ = 2 exp
(
− ξ2Pr|S

+
R |2

4|U+
R |ϵ+O(U)ϵ−O(U)

)
, solving it for ξPr, and

replacing it in Equation 3.6, we get:

P

|Pr − E(Pr)| > 2

√
|U+

R |ϵ+O(U)ϵ−O(U) log( 2δ )

|S+
R |

 ≤ δ

or

P

|Pr − E(Pr)| ≤ 2

√
|U+

R |ϵ+O(U)ϵ−O(U) log( 2δ )

|S+
R |

 > 1− δ

which is equivalent to the claim of the proposition.

Remark I: Notice that in order to get a better estimation
of precision, we need to have small values on the right hand
side of Equation 3.7. The right hand side of Equation 3.7
is inversely related to |S+

R | that implies we have a better
approximation of precision for the rules with large |S+

R |.
Moreover, the numerator shows how the selection of a
particular labeled set L affects this uncertainty: the direct
relation of numerator to |U+

R | and ϵ+O(U)(1−ϵ+O(U)) implies
that smaller values of |U+

R | and ϵ+O(U)(1 − ϵ+O(U)) are
preferable. To get smaller value for ϵ+O(U)(1 − ϵ+O(U)), U
should become very unbalanced because smaller value for
ϵ+O(U) or 1 − ϵ+O(U) leads to smaller value in ϵ+O(U)(1 −
ϵ+O(U)). Since the uncertainty is also inversely related to the
value of |U+

R | (look at the numerator on the right hand side),
more positive examples in L are required to reduce the right
hand side of Equation 3.7 and obtain a tighter bound. As
a summary, by labeling more positive examples, we reduce
the number of positive examples left in U and obtain smaller
uncertainty when estimating the precision.

Similarly, we can compute the mean and the variance
for sensitivity and specificity as follows:

E(Se) =
|U+

R |ϵ+O(U)

|S+
O |

+
|L+

O ∩ L+
R|

|S+
O |

(3.8)

σ2(Se) =
|U+

R |ϵ+O(U)(1− ϵ+O(U))

|S+
O |2

(3.9)

E(Sp) =
|U−

R |(1− ϵ+O(U))

|S−
O |

+
|L+

O ∩ L−
R|

|S−
O |

(3.10)

σ2(Pr) =
|U−

R |ϵ+O(U)(1− ϵ+O(U))

|S−
O |2

(3.11)

Consequently, we can obtain the bounds for sensitivity and
specificity:

P (|Se− E(Se)| > ξSe) ≤ 2 exp

(
−

ξ2Se|S
+
O |2

4|U+
R |ϵ+O(U)ϵ−O(U)

)(3.12)

P (|Sp− E(Sp)| > ξSp) ≤ 2 exp

(
−

ξ2Sp|S
−
O |2

4|U−
R |ϵ+O(U)ϵ−O(U)

)(3.13)



The following propositions show how L affects the
accuracy of sensitivity and specificity estimates.

PROPOSITION 3.2. For any δ ∈ [0, 1], the difference be-
tween the true sensitivity and the expected value of sensitivity
defined by Equation 3.8 satisfies:

|Se− E(Se)| ≤ 2

√
|U+

R |ϵ+O(U)ϵ−O(U) log( 2δ )

|S+
O |

(3.14)

with probability at least 1− δ.

PROPOSITION 3.3. For any δ ∈ [0, 1], the difference be-
tween the true specificity and the expected value of specificity
defined by Equation 3.10 satisfies:

|Sp− E(Sp)| ≤ 2

√
|U−

R |ϵ+O(U)ϵ−O(U) log( 2δ )

|S−
O |

(3.15)

with probability at least 1− δ.

The proofs of Propositions 3.2 and 3.3 are similar to the
proof of Proposition 3.1.

Remark II: The interpretation of the bound for sensi-
tivity is similar to the bound on the precision; to improve
the sensitivity estimate we need more positive examples in
L. The interpretation of the specificity bound is different: in
order to minimize the right hand side of the bound for speci-
ficity given in Equation 3.15, more negative examples need
to be collected in L. This is because smaller values of |U−

O |
and ϵ+O(U)(1 − ϵ+O(U) ask for sampling more negative ex-
amples in L. Thus the goals for improving the estimates of
the precision and sensitivity on one side and specificity on
the other are opposite. In general, decreasing one increases
the other side.

PROPOSITION 3.4. When the budget size |L| is very small
compared to the sample size |S| (i.e. |L| ≪ |S|), we have
the following approximations for almost all rules2:

|U+
R | ≈

|U |ϵ+O(U)|S+
R |

|S|ϵ+O(S)
(3.16)

|U−
R | ≈

|U ||S−
R |(1− ϵ+O(U)))

|S|(1− ϵ+O(S))
(3.17)

Proof. First notice that when |L| ≪ |S|, we have ϵ+O(U) ≈
ϵ+O(S). We also have ϵ+R(U) ≈ ϵ+R(S) if ϵ+O(S) ≪ |L|

|S| and

ϵ+R(S) ≪
|L|
|S| . Therefore:

|U+
R | = |U |ϵ+R(U) ≈ |U |ϵ+R(S) =

|U |
|S|

|S+
R |

=
|U |ϵ+O(S)
|S|ϵ+O(S)

|S+
R | ≈

|U |ϵ+O(U)

|S|ϵ+O(S)
|S+

R |(3.18)

2Notice that we can explain this in probably approximately correct
(PAC) approach. However we preferred not to make this proposition
overcomplicated for the practical purposes.

The proof for the second approximation is similar and more
intuitive considering that the negative class is majority.

Replacing Equations 3.16 and 3.17 in Equa-
tions 3.7, 3.14, and 3.15, we have the following bounds

when we use ϵ+R(S) =
|S+

R |
|S| :

|Pr − E(Pr)| ≤ 2

√
|U |ϵ+O(U)2ϵ−O(U) log( 2δ )

|S|2ϵ+R(S)ϵ
+
O(S)

(3.19)

|Se− E(Se)| ≤ 2

√
|U |ϵ+R(S)ϵ

+
O(U)2ϵ−O(U) log( 2δ )

|S|2ϵ+O(S)3

(3.20)

|Sp− E(Sp)| ≤ 2

√
|U |ϵ−R(S)ϵ

+
O(U)ϵ−O(U)2 log( 2δ )

|S|2ϵ−O(S)3

(3.21)

The above bounds depend on two types of parameters.
One group includes ϵ+O(S) and ϵ+R(S) which are the charac-
teristics of the underlying data set and the rule and are not
dependent on a particular approach of sampling. We have
no control on this group of parameters. ϵ+O(U) is the sec-
ond type of parameter that depends on the sampling strategy
(how we partition S into L and U ). Thus, any optimization
of these bounds involves finding the optimal value of ϵ+O(U).

3.3 Sampling Strategy As mentioned in the previous sub-
section, the accuracy of estimates of the three evaluation
measures depends on ϵ+O(U), as a variable that is dependent
on our sampling strategy. As explained by Remark I and Re-
mark II, we need small values of ϵ+O(U) to have a good esti-
mation of precision and sensitivity and large values of ϵ+O(U)
to have a good estimation on specificity. Therefore, getting
a good estimation for precision and sensitivity is in contrary
to getting a good estimation for specificity. We would like to
quantitatively measure how the estimation accuracy of dif-
ferent evaluation measures changes with different number
of positive examples in L or U (or equivalently ϵ+O(L) or
ϵ+O(U))3. To understand the interaction between the estima-
tion accuracy of the three evaluation measures, we study how
the changes in the value of ϵ+O(U) trades off between the es-
timation accuracy of precision, sensitivity, and specificity.

The bounds provided in Equations 3.19, 3.20, and 3.21
depend on several rule and problem specific parameters (i.e.
ϵ+R(S), |S|, ϵ

+
O(S), L or U , and δ) that makes the task of

visualizing the values of these bounds difficult. To address
this problem, we study only the values of ϵ+O(U) at which
similar upper bounds for different evaluation measures are
obtained. By the knowledge of these boundary values, we

3Notice that ϵ+O(L) and ϵ+O(U) are closely related; knowing one gives
the other one.
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Figure 1: ϵ+O(U)/ϵ+O(S) for precision vs. specificity as a
function of ϵ+O(S) (the x axis) and ϵ+R(S) (the y axis).

can study at what values we trade the accuracy estimation
of one evaluation measures with another. Since we cannot
study the trade-off values of ϵ+O(U) for all three evaluation
measures at once, we study the change in the value of ϵ+O(U)
that trades off precision vs. sensitivity and sensitivity vs.
specificity separately, in the following subsections.

3.3.1 Precision vs. Specificity To obtain the boundary
values of ϵ+0 (U) that trades off precision vs. specificity,
we need to have similar right hand side for the bounds of
these evaluation measures. By making the right hand side of
bounds in Equation 3.19 and 3.21 equal, we obtain:

ϵ+R(S)ϵ
+
O(S)

ϵ+O(U)
=

(1− ϵ+O(S))
3

(1− ϵ+R(S))(1− ϵ+O(U))
⇒

(1− ϵ+O(U)

ϵ+O(U)
=

(1− ϵ+O(S))
3

(1− ϵ+R(S))ϵ
+
R(S)ϵ

+
O(S)

⇒

ϵ+O(U) =
(1− ϵ+R(S))ϵ

+
R(S)ϵ

+
O(S)

(1− ϵ+O(S))
3 + (1− ϵ+R(S))ϵ

+
R(S)ϵ

+
O(S)

(3.22)

The value of ϵ+O(U) determines the rate of positive examples
in set U (and equivalently in set L) at which the same es-
timation accuracy are obtained for precision and specificity.

We can also find the exact required number of positive exam-
ples with the knowledge of ϵ+O(S), ϵ

+
R(S), ϵ

+
O(U), and |L| as

follows:

|L+
O| = min

(
|L|,

[
|S|ϵ+O(S)− |U |ϵ+O(U)

]
+

)
(3.23)

where [a]+ returns a if a > 0; otherwise it returns zero.
Although the above equation provides the required number
of positive examples, we need a more qualitative criteria,
independent of the budget size |L|, to study the sampling
strategy for different values of ϵ+O(S) and ϵ+R(S). It is easy
to see that ϵ+O(U) < ϵ+O(S) is an indicator to get more
positive examples in L, and ϵ+O(U) > ϵ+O(S) is an indicator
to get more negative examples in L. Therefore, we define
quantity α as a variable determining which class of examples
is preferable in L.

α =
ϵ+O(U)

ϵ+O(S)
(3.24)

The magnitude of α is inversely related to the required
number of positive examples in L; i.e. a small value for
α asks for more positive examples while a large value for
α asks for more negative examples in L. Figure 1 shows
the value α as a function of ϵ+O(S) and ϵ+R(S), suggested by
Equation 3.22. This figure suggests the following results: 1)
We expect to reduce the rate of positive examples in set U
compared to that in set S for small values of ϵ+O(S). This
is equivalent to say that more positive examples in L are
required. 2) We expect to get more positive examples in L
for rules with very small or large rate ϵ+R(S).

3.3.2 Sensitivity vs. Specificity Similarly, the boundary
values to trade off sensitivity vs. specificity can be obtained:

ϵ+O(S)
3

ϵ+R(S)ϵ
+
O(U)

=
(1− ϵ+O(S))

3

(1− ϵ+R(S))(1− ϵ+O(U)
⇒

(1− ϵ+O(U)

ϵ+O(U)
=

(1− ϵ+O(S))
3ϵ+R(S)

ϵ+O(S)
3(1− ϵ+R(S))

⇒

ϵ+O(U) =
ϵ+O(S)

3(1− ϵ+R(S))

ϵ+O(S)
3(1− ϵ+R(S)) + (1− ϵ+O(S))

3ϵ+R(S)

(3.25)

Figure 2 shows the value α as a function of ϵ+O(S) and
ϵ+R(S) for sensitivity vs. specificity, suggested by Equa-
tion 3.25. Notice that in order to guarantee good bounds on
both sensitivity and specificity, we need more positive exam-
ples in L if ϵ+O(S) is small compared to ϵ+R(S). Moreover,
compared to the discussion in the previous subsection, here
the small value for ϵ+O(S) is relative and the concept covers
a wider domain of situations.

3.3.3 Special case of ϵ+R(S) ≈ ϵ+O(S) In this section, we
give a comparison of precision, sensitivity, and specificity for
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Figure 2: α for sensitivity vs. specificity as a function of
ϵ+O(S) (the x axis) and ϵ+R(S) (the y axis).

rules that have the specific form of ϵ+R(S) ≈ ϵ+O(S) i.e. rules
that have the same rate in returning positive examples as
oracle. This set of rules are particularly interesting because
ϵ+R(S) does not provide any information about the quality
of the rule R. To see this, notice that if ϵ+R(S) ≫ ϵ+O(S),
we can make the general statement that R has a lot of false
positive alarms and a small number of false negative alarms
in average. On the other hand, if ϵ+R(S) ≪ ϵ+O(S), there
should be a lot of false negative alarms and in average a small
number of false positive alarms. So the case ϵ+R(S) ≈ ϵ+O(S)
provides minimums information in terms of estimating the
three evaluation measures. Replacing ϵ+R(S) ≈ ϵ+O(S) in
Equations 3.19, 3.20, and 3.21, we have:

|Pr − E(Pr)| ≤ 2

√
|U |ϵ+O(U)2ϵ−O(U) log( 2δ )

|S|2ϵ+O(S)2
(3.26)

|Se− E(Se)| ≤ 2

√
|U |ϵ+O(U)2ϵ−O(U) log( 2δ )

|S|2ϵ+O(S)2
(3.27)

|Sp− E(Sp)| ≤ 2

√
|U |ϵ+O(U)ϵ−O(U)2 log( 2δ )

|S|2ϵ−O(S)2
(3.28)

Interestingly, the first two bounds become equivalent

and we only need to compare precision (sensitivity) vs.
specificity. Similar to the previous section, by making
the right hand side of these two bounds equal, we get the
following boundary value for ϵ+O(U).

ϵ+O(U) =
ϵ+O(S)

2

ϵ+O(S)
2 + (1− ϵ+O(S))

2
(3.29)

Figure 3 shows α as a function of ϵ+O(S), suggested by
the above equation. As can be seen, for small values of
ϵ+O(S) we would like to reduce the rate of positive examples
in U compared to S, i.e. ϵ+O(S) ≥ ϵ+O(U), and for large
values of ϵ+O(S) we need ϵ+O(S) ≤ ϵ+O(U). In other words,
we need to get more positive in L for small values of ϵ+O(S)
and more negative examples in L for large values of ϵ+O(S).
This suggests sampling from the minority class.
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3.4 Cost Analysis of Different Evaluation Measures If a
cost is associated with the estimation of each evaluation mea-
sure, one can utilize such costs directly in the analysis, in a
similar approach to what we performed in the previous sub-
sections. To see this, suppose Cpr, Cse, and Csp are the costs
respectively associated with the estimation of precision, sen-
sitivity and specificity. In order to consider these costs in the
analysis of precision vs. specificity, for example, we need to
have:

ϵ+R(S)ϵ
+
O(S)

ϵ+O(U)
=

Csp

Cpr
×

(1− ϵ+O(S))
3

(1− ϵ+R(S))(1− ϵ+O(U)

It is easy to see that the costs will be multiplied as a constant
coefficient to the previous boundary values for ϵ+O(U).

3.5 Sampling to Evaluate Area under the ROC curve
(AUC) A receiver operating characteristic (ROC) [7] is the
plot of the sensitivity vs. 1-specificity for a binary classifier
when the discrimination threshold of the classifier is varied.
The area under the ROC curve or AUC is one standard mea-
sure of evaluating classification models particularly when the



problem is skewed. One might be interested in finding sam-
pling strategies that results a sample of examples for a good
approximation of AUC. In the setting of this paper, where
the sample is being used to evaluate unknown rules, obtain-
ing a sample to accurately estimate AUC of unknown rules is
a tricky problem, yet very related to approximating precision
and specificity. To see this, notice that estimating AUC of
a given classifier can be summarized in estimating precision
and specificity of all the rules obtained from that classifier
with varying threshold. Hence, an accurate estimate of AUC
for multiple unknown classifiers can be obtained by a sam-
pling strategy that produces an accurate estimation of preci-
sion and specificity of all the rules obtained from such clas-
sifiers. In other words, the discussion in the previous section
is valid for sampling to evaluate unknown rules using AUC.

4 Sampling in Practice
The previous discussion provides a guideline to the sampling
strategy based on the parameters of the problem such as
the nature of ϵ+O(S), the total number of examples |S|, the
budget size |L|, and some preliminary knowledge about the
characteristics of the rules we are interested to evaluate (e.g.
ϵ+R(S) is small). Once this guideline for sampling is available
(based on the analysis), the next interesting question is
how to follow the strategy dictated by the guideline. For
example, if the guideline asks for more positive examples,
how should we retrieve positive examples? We call this
problem finite-pool sampling. Notice that this problem is
different from 1) the problem of regular active learning [11]
and guided learning [16] where the objective is to construct
a good predictive model; 2) the problem of finite-pool active
learning [15] where the objective is to label all the examples
in the pool. Unlike finite-pool active learning, the budget
in finite-pool sampling is limited and we cannot afford to
label as many examples as required to construct a classifier
with a good confidence on labeling all the examples in the
pool [15]. Nonetheless, the same procedures utilized for
finite-pool active learning [15] and guided learning [16] to
follow their suggested guidelines can be used for finite-pool
sampling.

Here, we summarize four different schemes one can use
to implement the task of finite-pool sampling. We note that
while some of these schemes do not guarantee the examples
from the target class are always selected, they at least try
to follow the analysis (i.e. they make every effort to obtain
more examples from the minority class).

• The simplest approach is to ask an expert to provide an
example from the class the sampling guideline dictates.
This example is then included in set L with the corre-
sponding label. The limitation of this approach is that
all the burden of finding the example among all possi-
ble examples in the data set S is on the expert. This

is similar to the strategy utilized in biomedical citation
screening [15], where the reviewers manually screen
the reports to retrieve the most relevant studies to a re-
search question. Notice that this approach is also sim-
ilar to guided learning approach (discussed in the re-
lated work) where the reviewers are provided with cer-
tain characteristics of the data and then the reviewers
find such examples and label them [1, 16].

• The second approach still requires expert’s input, but
eliminates expert’s responsibility to search for individ-
ual examples. The idea is to start from a small initial
set of labeled (positive and negative) examples and use
them to learn a classification model. The model is then
used to label all remaining unlabeled examples. One of
the examples the model classifies to the minority class
is presented to the expert to provide the true label. The
example with its true label is then included in L. As
more labeled examples are collected, the model is grad-
ually improved. Active learning approaches can be also
utilized to help this process, like in [15].

• The third approach is similar to the second approach
and differs in how the model is initialized. The idea
here is to use expert’s input to define conditions that are
more predictive of the minority class than the baseline
population. The examples are then drawn either from
examples that satisfy these conditions, or alternatively,
from the model trained on the labeling induced by
these conditions. The model can be further refined
if examples with true labels become available, as was
handled in the second approach.

• Finally, yet another approach may rely on the implicit
domain information. For example, in getting labeled
examples for information retrieval or recommendation
systems, the possible relevant items could be detected
implicitly by monitoring the user behavior; e.g. the
items that get clicked or checked out are relevant.
This is the click-through feedback widely utilized in
information retrieval [8].

4.1 Blind Labeling In the previous subsections, we
showed that by sampling from the minority class, we reduce
the estimation uncertainty for the evaluation measures. An
intuitive justification of sampling from minority class is that
obtaining examples from the majority class is cheap if the
prevalence of the two classes is highly biased toward one of
the classes. We say it is cheap because if we randomly sam-
ple examples and assign them the label of majority class, we
make a small error as we will see in this section. Without
loss of generality, let us assume that |S+

O | ≤ |S−
O |; i.e. the

negative class is the majority one. If the rate of positive ex-

amples is very small (i.e. ϵ+O(S) =
|S+

O |
|S| ≪ 1

2 ), we propose



to blindly assign negative label to a subset B of examples
from set U (B ∈ S). By blind labeling, we not only increase
the number of labeled examples in L with a small error but
also we keep almost the same rate of positive examples in set
L as original set S. This is particularly important because if
the rate of positive examples in L is very different than that
in set S, we might over/under-estimate the values of the eval-
uation measures. To perform the blind labeling, we propose

to bring |L+
O|−|L|ϵ+O(S)

ϵ+O(S)
random examples from S to L and

blindly label them as the majority class (negative). Let us
call the new sampled set L̂ that contains examples in L and
the extra blindly labeled negative examples. L̂ has the same
rate of examples from two classes as S because

|L̂+
O|

|L̂|
=

|L+
O|

|L|+ |L+
O|−|L|ϵ+O(S)

ϵ+O(S)

= ϵ+O(S)(4.30)

The error caused by the blind sampling will be small if the
rate of examples from the minority class is small enough. To
see this, notice that if we sample |B| examples from U for
blind labeling, the average number of positive examples in
B will be |B|ϵ+O(U), a small number if |L| and ϵ+O(S) are
small.

One practical problem with this approach is that it needs
the knowledge of ϵ+O(S). In many domains, there is a domain
knowledge about approximate value of ϵ+O(S). In case that
there is not such knowledge, one approach to obtain an
approximation is to get an initial set of randomly selected
labeled examples and estimate ϵ+O(S) using this set. This
set can further be used to learn an initial model to select
positive examples. The following proposition shows that
the approximation can be reasonably good for very small or
large values of ϵ+O(S).

PROPOSITION 4.1. For any δ ∈ [0, 1], with probability at
least 1 − δ, we have the following bound on the difference
between ϵ+O and the approximation made using a random
sample M :

|ϵ+O(M)− ϵ+O(S)| ≤ 2

√
ϵ+O(S)ϵ

−
O(S) log(

2
δ )

|M |
(4.31)

Proof. Notice that the mean and variance of ϵ+O(M) is:

E(ϵ+O(M)) = E(
|M+

O |
|M |

) =
E(|M+

O |)
|M |

=
|M |ϵ+O(S)

|M |
= ϵ+O(S)

δ2(ϵ+O(M)) =
δ2(|M+

O |)
|M |2

=
|M |ϵ+O(S)ϵ

−
O(S)

|M |2
=

ϵ+O(S)ϵ
−
O(S)

|M |
Using Bernstein inequality, we have

P
(
|ϵ+O(M)− ϵ+O(S)|| > ξ

)
≤ 2 exp

(
− ξ2|M |
4ϵ+O(S)ϵ

−
O(S)

)(4.32)

Similar to the proof of Proposition 3.1, we can conclude the
result in this proposition.
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Figure 4: The retrieved number of positive examples over
the trials.

5 Experiments
In this section, we verify the efficacy of the guidelines pro-
posed by the analysis in this paper on covtype and connect-4
data sets from UCI data repository [6], as described here.
Covtype has about 580, 000 records, each represented by 54
attributes and one of the 7 classes. We preprocessed this
data and constructed a binary problem by considering classes
4 and 7 as positives and other classes as negatives4. This
results in 23257 positive and 557755 negative examples, a
positive rate of 0.04. Connect-4 has 67557 records, with
each record represented by 126 features and one of the three
classes (-1,0,1). We construct a binary problem from this
data by considering class 0 as the positive class, which re-
sults a positive rate of 0.1.

To retrieve positive examples in the active mode, we
utilize 100 randomly selected examples and construct an
initial decision tree classifier. Using the recommendation of
this decision tree, we randomly choose 5 positive examples5,
and add them to the labeled set. We then construct a new
classifier and repeat the same procedure until we collect a
total number of 2000 examples. Note that not all 5 selected
examples in each round are positive. Figure 4 shows the
retrieved number of positive examples over the trials for both
the active and random sampling for two data sets.

As the baseline, we randomly sample from the data set
until we obtain 2000 examples. To compare the results,
we create rules with different rate of positive examples, i.e.
|S+

R | ∈ {10000, 20000, 30000, 40000, 50000}. For each
S+
R , we create 100 random rules and report the average per-

formance and the confidence interval of both active sampling
and random sampling. We report the absolute value of the
difference between the true value of each evaluation measure
(the gold standard computed using the whole data set) and
the value computed on the subsets created by active/random
sampling.

Figures 5 and 6 shows the result for rules with varying

4Notice that the method is not sensitive to the choice of the classes as
long as the result is an unbalanced data set.

5The procedure is robust to the different setting of this parameter.
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Figure 5: The difference between the true value of evaluation measure (computed over S) and the estimated ones on
CovType data set. The dot line is the estimation using random sampling and the solid line is the estimation using active
sampling. Column i in the figure shows the average of 100 random generation of rules of size i ∗ 10000.

value of ϵ+R(S) on two data sets. Column ith in these
features is the average result in estimating three evaluation
measures on 100 rules with positive rate of ϵ+R(S) = i ×
10000. As can be seen, the active sampling approach
results in a better approximation of the evaluation measures.
The results confirms that with only a small labeled set of
examples, we obtain much better estimation accuracy than
random sampling. Consider the computation of precision
on CovType data set for rules with ϵ+R(S) = 10000, as an
example. With only about 80 labeled examples, we can
obtain an accuracy of 0.025 using active sampling while to
obtain the same estimation accuracy using random sampling,
more than 2000 examples are required. Overall in all
the figures for CovType, a reduction rate of 95% in the
number of labeled examples is achieved when compared to
the random sampling of examples. The reduction rate for
connect-4 data set is smaller than that for the CovType data
sets. This is because CovType data set is very unbalanced
in which random sampling performs very poor as shown by
the analysis. Also notice that the smaller is the ϵ+R(S), the
more effective is sampling from minority class, as predicted
by the analysis. As we go from unbalanced data set and
unbalanced rules (rules with small ϵ+O(S)) to balanced data
set and balanced rules, the advantage of sampling from one
class disappears and it becomes more beneficial to perform
random sampling.

6 Conclusion
We provided a theoretical analysis of the sampling strategy
for evaluating classification rules of unknown nature. In
particular, we showed that for unbalanced data sets, it is
much more beneficial to sample from the rare class. We
discuss how the proposed framework can be generalized
to the case where a cost associated with estimating each
evaluation measure. We also verified and confirmed our
theoretical analyses experimentally using two data sets from
the UCI data repository.
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Figure 6: The difference between the true value of evaluation measure (computed over S) and the estimated ones on
Connect-4 data set. The dot line is the estimation using random sampling and the solid line is the estimation using active
sampling. Column i in the figure shows the average of 100 random generation of rules of size i ∗ 10000.
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