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ABSTRACT
We propose a new probabilistic approach for multi-label
classification that aims to represent the class posterior dis-
tribution P (Y|X). Our approach uses a mixture of tree-
structured Bayesian networks, which can leverage the com-
putational advantages of conditional tree-structured mod-
els and the abilities of mixtures to compensate for tree-
structured restrictions. We develop algorithms for learning
the model from data and for performing multi-label pre-
dictions using the learned model. Experiments on multiple
datasets demonstrate that our approach outperforms several
state-of-the-art multi-label classification methods.

Categories and Subject Descriptors
I.2.6 [LEARNING]: General
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1. INTRODUCTION
In many real-world applications, a data instance is natu-

rally associated with multiple class labels. For example, a
document can cover multiple topics [21, 42], an image can be
annotated with multiple tags [6, 29] and a single gene may be
associated with several functional classes [9, 42]. Multi-label
classification (MLC) formulates such situations by assuming
each data instance is associated with a subset of d labels. Al-
ternatively, this problem can be defined by associating each
instance with d binary class variables Y1, ...Yd, where Yi de-
notes whether or not the i-th label is present in the instance.
The goal is to learn a function that assigns to each instance,
represented by a feature vector x = (x1, ..., xm), the most
probable assignment of the class variables y = (y1, ..., yd).
However, learning of such a function can be very challeng-
ing because the number of possible label configurations is
exponential in d.
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A simple solution to the above problem is to assume that
all class variables are conditionally independent of each other
and learn d functions to predict each class separately [9,
6]. However, this may not suffice for many real-world prob-
lems where dependences among output variables exist. To
overcome this limitation, multiple machine learning meth-
ods that model class relations have been proposed in recent
years. These include two-layer classification models [14, 8],
classifier chains [31, 41, 10], output coding methods [18, 34,
44, 45] and multi-dimensional Bayesian network classifiers
[38, 5, 1].

In this work, we develop and study a new probabilis-
tic approach for modeling and learning an MLC. Our ap-
proach aims to represent the class posterior distribution
P (Y1, ..., Yd|X) such that it captures multivariate depen-
dences among features and labels. Our proposed model is
defined by a mixture of Conditional Tree-structured Bayesian
Networks (CTBNs) [2]. A CTBN defines P (Y1, ..., Yd|X) us-
ing a directed tree structure to model the relations among
the class variables conditioned on the feature variables. The
main advantage of CTBN is that it allows efficient learning
and inference. A mixture of CTBNs leverages the computa-
tional advantages of CTBNs and the ability of a mixture to
compensate for the tree-structure restriction.

Our new mixture model extends the work by [26] that
models and learns the joint distribution over many variables
using tree-structured distributions and their mixtures, to
learn conditional distributions where the multivariate rela-
tions among Y components are conditioned on inputs X.
To support learning and inference in the new model, we de-
velop and test new algorithms for: (1) learning the param-
eters of conditional trees mixtures, (2) selecting individual
tree structures and (3) inferring the maximum a posteriori
(MAP) output label configurations.

An important advantage of our method compared to ex-
isting MLC methods is that it gives a well-defined model
of posterior class probabilities. That is, our model lets us
calculate P (Y = y|X = x) for any (x,y) input-output pair.
This is extremely useful not only for prediction, but also for
decision making [30, 3], conditional outlier analysis [15, 16,
17], or for performing any inference over subsets of output
class variables. In contrast to our approach, the majority of
existing MLC methods aim to only identify the best output
configuration for the given x.

2. PROBLEM DEFINITION
In Multi-Label Classification (MLC), each instance is as-

sociated with d binary class variables Y1, ...Yd. We are given



labeled training data D = {x(n),y(n)}Nn=1, where x(n) =

(x
(n)
1 , ..., x

(n)
m ) is a m-dimensional feature vector represent-

ing the n-th instance (the input) and y(n) = (y
(n)
1 , ..., y

(n)
d )

is its corresponding d-dimensional class vector (the output).
We want to learn a function h (from D) that assigns to each
instance, represented by its feature vector, a class vector:

h : Rm → {0, 1}d

One way to approach this task is to model and learn the
conditional joint distribution P (Y|X), where Y = (Y1, ..., Yd)
is a random variable for the class vector and X is a random
variable for the feature vector. Assuming the 0-1 loss func-
tion, the optimal classifier h∗ assigns to each instance x the
maximum a posteriori (MAP) assignment of class variables:

h∗(x) = arg max
y

P (Y=y|X=x)

= arg max
y1,...,yd

P (Y1 =y1, ..., Yd=yd|X=x) (1)

A key challenge for modeling and learning P (Y|X) from
data, as well as for defining the corresponding MAP classi-
fier, is that the number of all possible class assignments one
has to consider is 2d. The goal of this paper is to develop a
new, efficient model and methods for its learning and infer-
ence that overcome this difficulty.

Notation: For notational convenience, we will omit the index su-

perscript (n) when it is not necessary. We may also abbreviate the

expressions by omitting variable names; e.g., P (Y1 = y1, ..., Yd =

yd|X=x) = P (y1, ..., yd|x).

3. RELATED RESEARCH
In this section, we briefly review the research work related

to our approach and pinpoint the main differences.
MLC method based on learning independent classifiers

was studied by [9, 6]. Zhang and Zhou [43] presented a
multi-label k-nearest neighbor method, which learns a clas-
sifier for each class by combining k-nearest neighbor with
Bayesian inference. To model possible class dependences,
[14, 8] proposed adding a second layer of classifiers that com-
bine input features with the outputs of independent classi-
fiers. The limitation of these early approaches is that class
dependences are either not modeled at all, or modeled in a
very limited way.

The classifier chains (CC) method [31] models the class
posterior distribution P (Y|X) by decomposing the relations
among class variables using the chain rule:

P (Y1, ..., Yd|X) =

d∏
i=1

P (Yi|X, Y1, ..., Yi−1) (2)

Each component in the chain is a classifier that is learned
separately by incorporating the predictions of preceding clas-
sifiers as additional features. Zhang and Zhang [41] realized
that the performance of CC is influenced by the order of
classes in the chain and presented a method to learn such
ordering from data. Dembczynski et al. [10] discussed the
suboptimality of CC and presented probabilistic classifier
chains to estimate the entire posterior distribution of classes.
However, this method has to evaluate exponentially many
label configurations, which greatly limits its applicability.

Another approach for modeling P (Y|X) relies on condi-
tional random fields (CRFs) [24]. Ghamrawi and McCallum

[13] presented a method called collective multi-label with
features classifier (CMLF) that captures label co-occurrences
conditioned on features. However, CMLF assumes a fully
connected CRF structure which results in a high compu-
tational cost. Later, Shahaf et al. [32] and Bradley et al.
[7] proposed to learn tractable (low-treewidth) structures of
class variables for CRFs using conditional mutual informa-
tion. More recently, Pakdaman et al. [28] used pairwise
CRFs to model the class dependences and presented L2-
optimization-based structure and parameter learning algo-
rithms. Although the later methods share similarities with
our approach by modeling the conditional dependences in Y
space using restricted structures, their optimization of the
likelihood of data is computationally more costly. To alle-
viate this, CRF-based methods often resort to optimization
of a surrogate objective function (e.g., the pseudo-likelihood
of data [28]) or include specific assumptions (e.g., features
are assumed to be discrete [13]; relevant features for each
class are assumed to be known [32, 7]), which complicate
the application of the methods.

Multi-dimensional Bayesian network classifiers (MBC) [38,
5, 1] build a generative model of P (X,Y) using special
Bayesian network structures that assume all class variables
are top nodes and all feature variables are their descendants.
Although our approach can be compared to MBC, there are
significant differences and advantages: (1) MBC only han-
dles discrete features and, thus, all features should be a pri-
ori discretized; while we handle both continuous and discrete
features. (2) MBC defines a joint distribution over both fea-
ture and class variables and the search space of the model
increases with the input dimensionality m; while our search
space does not depend on m. (3) Feature selection in MBC
is done explicitly by learning the individual relationships be-
tween features and class variables; while we perform feature
selection by regularizing the base classifiers. (4) MBC re-
quires expensive marginalization to obtain class conditional
distribution P (Y|X); while we directly estimate P (Y|X).

An alternative approach for MLC is based on output cod-
ing. The idea is to compress the output into a codeword,
learn how to predict the codeword and then recover the cor-
rect output from the noisy predictions. A variety of ap-
proaches have been devised by using different compression
techniques, such as compressed sensing [18], principal com-
ponent analysis [34] and canonical correlation analysis [44].
The state-of-the-art in output coding utilizes a maximum
margin formulation [45] that promotes both discriminative
and predictable codes. The limitation of output coding
methods is that they can only predict the single “best” out-
put for a given input, and they cannot compute probabilities
for different input-output pairs.

Several researchers proposed using ensemble methods for
MLC. Read et al. [31] presented a simple method that av-
erages the predictions of multiple random classifier chains
trained on a random subset of the data. Antonucci et al.
[1] proposed an ensemble of multi-dimensional Bayesian net-
works combined via simple averaging. These networks repre-
sent different Y relations (the structures are set a priori and
not learned) and all of the networks adopt the näıve Bayes
assumption (the features are independent given the classes).
Unlike these methods, our approach learns the structures
in the mixture, its parameters and mixing coefficients from
data in a principled way.



Figure 1: An example CTBN

4. PRELIMINARY
The MLC solution we propose in this work combines mul-

tiple base MLC classifiers using the mixtures-of-trees (MT)
[26, 39] framework, which uses a mixture of multiple trees
to define a generative model of P (Y) for discrete multi-
dimensional domains. The base classifiers we use are based
on the conditional tree-structured Bayesian networks (CTBN)
[2]. To begin with, we briefly review the basics of MT and
CTBN.

MT consists of a set of trees that are combined using mix-
ture coefficients λk to represent the joint distribution P (y).
The model is defined by the following decomposition:

P (y) =

K∑
k=1

λkP (y|Tk), (3)

where P (y|Tk) are called mixture components that repre-
sent the distribution of outputs defined by the k-th tree Tk.
Note that a mixture can be understood as a soft-multiplexer,
where we have a hidden selector variable which takes a value
k ∈ {1, ...,K} with probability λk. That is, by having a con-
vex combination of mutually complementary tree-structured
models, MT aims at achieving a more expressive and accu-
rate model.

While MT is not as computationally efficient as individual
trees, it has been considered as a useful approximation at a
fraction of the computational cost learning general graphical
models [22]. MT has been successfully adopted in a range
of applications, including modeling of handwriting patterns,
medical diagnostic network, automated application screen-
ing, gene classification and identification [26], face detection
[20], video tracking [19], road traffic modeling [39] and cli-
mate modeling [22].

In this work, we apply the MT framework in context of
MLC. In particular, we combine MT with CTBN to model
individual trees. CTBN is a recently proposed probabilistic
MLC method that has been shown to be competitive and
efficient on a range of domains. CTBN defines P (Y|X) us-
ing a collection of classifiers modeling relations in between
features and individual labels that are tied together using
a special Bayesian network structure that approximates the
dependence relations among the class variables. In modeling
of the dependences, it allows each class variable to have at
most one other class variable as a parent (without creating
a cycle) besides the feature vector X.

A CTBN T defines the joint distribution of class vector
(y1, ..., yd) conditioned on feature vector x as:

P (y1, ..., yd|x, T ) =

d∏
i=1

P (yi|x, yπ(i,T )), (4)

where π(i, T ) denotes the parent class of class Yi in T (by
convention, π(i, T ) = {} if Yi does not have a parent class).

Figure 2: An example MC

For example, the conditional joint distribution of class as-
signment (y1, y2, y3, y4) given x according to the network T
in Figure 1 is defined as:

P (y1, y2, y3, y4|x, T )

= P (y3|x) · P (y2|x, y3) · P (y1|x, y2) · P (y4|x, y2)

Although our proposed method is motivated by MT, there
are significant extensions and differences. We summarize the
key distinctions below.

1. Model : Our model represents P (Y|X), the class poste-
rior distribution for MLC, using CTBNs that each con-
sists of a collection of logistic regression models, linked
together by a directed tree; on the other hand, the MT
model [26] represents the joint distribution P (Y) using
standard tree-structured Bayesian networks.

2. Structure learning : Our structure learning algorithm
optimizes P (Y|X) using weighted conditional log-likelihood
criterion; while MT relies on the standard Chow-Liu
algorithm [23] that optimizes P (Y) using mutual in-
formation.

3. Parameter learning : Not surprisingly, both our param-
eter learning method and that of MT rely on the EM
algorithm. However, the criteria and how to optimize
them are very different. For example, the M-step of our
algorithm corresponds to learning of instance-weighted
logistic regression classifiers; while that of MT is based
on simple (weighted) counting.

5. OUR METHOD
In this section, we describe Mixture of Conditional Tree-

structured Bayesian Networks (MC), which uses the MT
framework in combination with the CTBN classifiers to im-
prove the classification accuracy of MLC tasks, and develop
algorithms for its learning and predictions. In section 5.1,
we describe the mixture defined by the MC model. In sec-
tion 5.2 through 5.4, we present the learning and prediction
algorithms for the MC model.

5.1 Representation
By following the definition of MT in Equation (3), MC

defines the multivariate posterior distribution of class vector



y = (y1, ..., yd) as:

P (y|x) =

K∑
k=1

λkP (y|x, Tk), (5)

where λk ≥ 0, ∀k; and
∑K
k=1 λk = 1. Here each mixture

component P (y|x, Tk) is the distribution defined by CTBN
Tk (as in Equation (4)) and mixture coefficients are denoted
by λk. Figure 2 depicts an example MC model, which con-
sists of K CTBNs and the mixture coefficients λk.

5.2 Parameter Learning
In this section, we describe how to learn the parameters

of MC by assuming the structures of individual CTBNs are
known and fixed. The parameters of the MC model are the
mixture coefficients {λ1, ..., λK} as well as the parameters of
each CTBN in the mixture {θ1, ..., θK}.

Given training data D = {x(n),y(n)} : n ∈ 1, ..., N , the
objective is to optimize the log-likelihood of D, which we
refer to as the observed log-likelihood.

N∑
n=1

logP (y(n)|x(n)) =

N∑
n=1

log

K∑
k=1

λkP (y(n)|x(n), Tk)

However, this is very difficult to directly optimize because it
contains the log of the sum. Hence, we cast this optimization
in the expectation-maximization (EM) framework. Let us

associate each instance (x(n),y(n)) with a hidden variable

z(n) ∈ {1, ...,K} indicating which CTBN it belongs. The

complete log-likelihood (assuming z(n) are observed) is:

N∑
n=1

logP (y(n), z(n)|x(n)) (6)

=

N∑
n=1

log

K∏
k=1

P
(
y(n), Tk|x(n)

)1[z(n)=k]

(7)

=

N∑
n=1

log

K∏
k=1

[
λkP

(
y(n)|x(n), Tk

)]1[z(n)=k]

=

N∑
n=1

K∑
k=1

1[z(n) = k]
[
log λk + logP

(
y(n)|x(n), Tk

)]
,

where 1[z(n) = k] is the indicator function, which is one
if the n-th instance belongs to the k-th CTBN and zero
otherwise; and λk is the mixture coefficient of CTBN Tk,
which can be interpreted as its prior probability in the data.

The EM algorithm iteratively optimizes the expected com-
plete log-likelihood, which is always a lower bound to the ob-
served log-likelihood [27]. In the E-step, the expectation is
computed with the current set of parameters; in the M-step,
the parameters of the mixture (λk, θk : k = {1, ...,K}) are
relearned to maximize the expected complete log-likelihood.
In the following, we describe our parameter learning algo-
rithm by deriving the E-step and the M-step for MC.

5.2.1 E-step
In the E-step, we compute the expectation of the hidden

variables. Let γk(n) denote P (z(n) = k|y(n),x(n)), the pos-

terior of the hidden variable z(n) given the observations and

the current parameters. Using Bayes rule, we write:

γk(n) =
λkP (y(n)|x(n), Tk)∑
k′ λk′P (y(n)|x(n), Tk′)

(8)

5.2.2 M-step
In the M-step, we learn the model parameters {λ1, ..., λK ,

θ1, ..., θK} that maximize the expected complete log-likelihood,
which is a lower bound of the observed log-likelihood. Let
us first define the following two quantities:

Γk =

N∑
n=1

γk(n), wk(n) =
γk(n)

Γk

Γk can be interpreted as the number of observations that be-
longs to the k-th CTBN (hence,

∑K
k=1 Γk = N), and wk(n)

is the renormalized posterior γk(n), which can be interpreted
as the weight of the n-th instance on the k-th CTBN.

Note that when taking the expectation of the complete
log-likelihood (Equation (6)), only the indicator 1[z(n) = k]
is affected by the expectation. By using the notations intro-
duced above, we rewrite the expected complete log-likelihood:

N∑
n=1

K∑
k=1

γk(n)
[
log λk + logP

(
y(n)|x(n), Tk

)]
=

K∑
k=1

Γk log λk +

K∑
k=1

Γk

N∑
n=1

wk(n) logP
(
y(n)|x(n), Tk

)
(9)

We wish to maximize (9) with respect to {λ1, ..., λK , θ1, ..., θK}
subject to the constraint

∑K
k=1 λk = 1. Notice that (9)

consists of two terms and each term has a disjoint subset
of parameters – which allows us to maximize (9) term by
term. By maximizing the first term with respect to λj (the
mixture coefficient of Tj), we obtain:

λj =
Γj∑K
k=1 Γk

=
Γj
N

To maximize the second term, we train θj (the parameters
of Tj) to maximize:

θj = arg max

N∑
n=1

wj(n) logP (y(n)|x(n), Tj) (10)

It turns out (10) is the instance-weighted log-likelihood, and
we use instance-weighted logistic regression to optimize it.
Algorithm 1 outlines our parameter learning algorithm.

5.2.3 Complexity
E-step: We compute γk(n) for each instance on every

CTBN. To compute γk(n), we should estimate P (y(n)|x(n), Tk),
which requires applying the logistic regression classifiers for
each node of Tk, which requiresO(md) multiplications. Hence,
the complexity of the E-step is O(KNmd).

M-step: The major computational cost of the M-step is
to learn the instance-weighted logistic regression models for
the nodes of every CTBN. Hence, the complexity is O(Kd)
times the complexity of learning logistic regression.

5.3 Structure Learning
In this section, we describe how to automatically learn

multiple CTBN structures from data. We apply a sequential



Algorithm 1 learn-MC-parameters

Input: Training data D; base CTBNs T1, ..., TK
Output: Model parameters {θ1, ..., θK , λ1, ..., λK}
1: repeat
2: E-step:
3: for k = 1 to K, n = 1 to N do
4: Compute γk(n) using Equation (8)
5: end for
6: M-step:
7: for k = 1 to K do
8: Γk =

∑N
n=1 γk(n)

9: wk(n) = γk(n)/Γk
10: λk = Γk/N

11: θk = arg max
∑N
n=1 wk(n) logP (y(n)|x(n), Tk)

12: end for
13: until convergence

boosting-like heuristic, where in each iteration we learn the
structure that focuses on the instances that are not well
predicted by the previous structures (i.e., the MC model
learned so far). In the following, we first describe how to
learn a single CTBN structure from instance-weighted data.
After that, we describe how to re-weight the instances and
present our algorithm for learning the overall MC model.

5.3.1 Learning a Single CTBN Structure on Weighted
Data

The goal here is to discover the CTBN structure that max-
imizes the weighted conditional log-likelihood (WCLL) on

{D,Ω}, where D = {x(n),y(n)}Nn=1 is the data and Ω =

{ω(n)}Nn=1 is the weight for each instance. We do this by
partitioning D into two parts: training data Dtr and hold-
out data Dh. Given a CTBN structure T , we train its pa-
rameters using Dtr and the corresponding instance weights.
On the other hand, we use WCLL of Dh to score T .

Score(T ) =
∑

(x(n),y(n))∈Dh

ω(n) logP (y(n)|x(n), T ) (11)

=
∑

(x(n),y(n))∈Dh

d∑
i=1

ω(n) logP (y
(n)
i |x(n), y

(n)
π(i,T )

)

In the following, we describe our algorithm for obtaining
the CTBN structure that optimizes Equation (11) without
having to evaluate all of the exponentially many possible
tree structures.

Let us first define a weighted directed graph G = (V,E),
which has one vertex Vi for each class label Yi and a directed
edge Ej→i from each vertex Vj to each vertex Vi (i.e., G is
complete). In addition, each vertex Vi has a self-loop Ei→i.
The weight of edge Ej→i, denoted as Wj→i, is the WCLL of
class Yi conditioned on X and Yj :

Wj→i =
∑

(x(n),y(n))∈Dh

ω(n) logP (y
(n)
i |x

(n), y
(n)
j )

The weight of self-loop Ei→i, denoted asWφ→i, is the WCLL
of class Yi conditioned only on X. Using the definition of
edge weights, Equation (11) can be simplified as the sum of
the edge weights:

Score(T ) =
d∑

n=1

Wπ(i,T )→i

Now we have transformed the problem of finding the op-
timal tree structure into the problem of finding the tree in
G that has the maximum sum of edge weights. The solution
can be obtained by solving the maximum branching (ar-
borescence) problem [11], which finds the maximum weight
tree in a weighted directed graph.

5.3.2 Learning Multiple CTBN Structures
In order to obtain multiple CTBN structures for the MC

model, we apply the algorithm described above multiple
times with different sets of instance weights. We assign the
weights such that we give higher weights for poorly predicted
instances and lower weights for well-predicted instances.

We start with assigning all instances uniform weights (i.e.,
all instances are equally important a priori).

ω(n) = 1/N : n = 1, ..., N

Using this initial set of weights, we find the initial CTBN
structure T1 (and its parameters θ1) and set the current
model M to be T1. We then estimate the prediction error
margin ω(n) = 1 − P (y(n)|x(n),M) for each instance and

renormalize such that
∑N
n=1 ω

(n) = 1. We use {ω(n)} to
find the next CTBN structure T2. After that, we set the
current model to be the MC model learned by mixing T1

and T2 according to Algorithm 1.
We repeat the process by incrementally adding trees to

the mixture. To stop the process, we use internal validation
approach. Specifically, the data used for learning are split to
internal train and test sets. The structure of the trees and
parameters are always learned on the internal train set. The
quality of the current mixture is evaluated on the internal
test set. The mixture growth stops when the log-likelihood
on the internal test set for the new mixture is worse than
for the previous mixture. The trees included in the previous
mixture are then fixed, and the parameters of the mixture
are relearned on the full training data.

5.3.3 Complexity
In order to learn a single CTBN structure, we compute

edge weights for the complete graph G, which requires esti-
mating P (Yi|X, Yj) for all d2 pairs of classes. Finding the
maximum branching in G can be obtained in O(d2) using
[35]. To learn K CTBN structures for the mixture, we re-
peat these steps K times. Therefore, the overall complexity
is O(d2) times the complexity of learning logistic regression.

5.4 Prediction
In order to make a prediction for a new instance x, we

want to find the MAP assignment of the class variables (see
Equation (1)). In general, this requires to evaluate all pos-
sible assignments of values to d class variables, which is ex-
ponential in d.

One important advantage of the CTBN model is that the
MAP inference can be done more efficiently by avoiding
blind enumeration of all possible assignments. More specifi-
cally, the MAP inference on a CTBN is linear in the number
of classes (O(d)) when implemented using a variant of the
max-sum algorithm [23] on a tree structure.

However, our MC model consists of multiple CTBNs and
the MAP solution may, at the end, require enumeration of
exponentially many class assignments. To address this prob-
lem, we rely on approximate MAP inference. Two com-
monly applied MAP approximation approaches are convex



programming relaxation via dual decomposition [33], and
simulated annealing using a Markov chain [40]. In this work,
we use the latter approach. Briefly, we search the space of all
assignments by defining a Markov chain that is induced by
local changes to individual class labels. The annealed ver-
sion of the exploration procedure [40] is then used to speed
up the search. We initialize our MAP algorithm using the
following heuristic: first, we identify the MAP assignments
for each CTBN in the mixture individually, and after that,
we pick the best assignment from among these candidates.
We have found this (efficient) heuristic to work very well
and it often results in the true MAP assignment.

6. EXPERIMENTS
We perform experiments on ten publicly available multi-

label datasets. These datasets are obtained from different
domains such as music recognition (emotions [36]), semantic
image labeling (scene [6] and image [10]), biology (yeast [12])
and text classification (enron [4] and RCV1 [25] datasets).
Table 1 summarizes the characteristics of the datasets. We
show the number of instances (N), number of feature vari-
ables (m) and number of class variables (d). In addition,
we show two statistics: label cardinality (LC), which is the
average number of labels per instance, and distinct label set
(DLS), which is the number of all distinct configurations
of classes that appear in the data. Note that, for RCV1
datasets, we have used the ten most common labels.

6.1 Methods
We compare the performance of our proposed mixture-

of-CTBNs (MC) model with simple binary relevance (BR)
independent classification [9, 6] as well as several state-of-
the-art MLC methods. These methods include classifica-
tion with heterogeneous features (CHF) [14], multi-label k-
nearest neighbor (MLKNN) [43], instance-based learning by
logistic regression (IBLR) [8], classifier chains (CC) [31], en-
semble of classifier chains (ECC) [31], probabilistic classifier
chains (PCC) [10], ensemble of probabilistic classifier chains
(EPCC) [10], multi-label conditional random fields (ML-
CRF) [28], and maximum margin output coding (MMOC)
[45]. We also compare MC with a single CTBN (SC) [2]
model without creating a mixture.

For all methods, we use the same parameter settings as
suggested in their papers: For MLKNN and IBLR, which
use the k-nearest neighbor (KNN) method, we use Euclidean
distance to measure similarity of instances and we set the
number of nearest neighbors to 10 [43, 8]; for CC, we set the
order of classes to Y1<Y2, ... <Yd [31]; for ECC and EPCC,
we use 10 CCs in the ensemble [31, 10]; finally for MMOC,

Table 1: Datasets characteristics
(N : number of instances, m: number of features, d: number of

labels, LC: label cardinality, DLS: distinct label set)

Dataset N m d LC DLS Domain
Emotions 593 72 6 1.87 27 music

Yeast 2,417 103 14 4.24 198 biology
Scene 2,407 294 6 1.07 15 image
Image 2,000 135 5 1.24 20 image
Enron 1,702 1,001 53 3.38 753 text

RCV1 subset1 6,000 8,394 10 1.31 69 text
RCV1 subset2 6,000 8,304 10 1.21 70 text
RCV1 subset3 6,000 8,328 10 1.22 74 text
RCV1 subset4 6,000 8,332 10 1.22 79 text
RCV1 subset5 6,000 8,367 10 1.31 76 text

we set the decoding parameter to 1 [45]. Also note that all of
these methods except MLKNN and MMOC are considered
as meta-learners because they can work with several base
classifiers. To eliminate additional effects that may bias the
results, we use L2-penalized logistic regression for all of these
methods and choose their regularization parameters by cross
validation. For our MC model, we decide the number of
mixture components using our stopping criterion (Section
5.3.2) and we use 150 iterations of simulated annealing for
prediction.

6.2 Evaluation Measures
Evaluating the performance of MLC methods is more dif-

ficult than evaluating simple classification methods. The
most suitable performance measure is the exact match ac-
curacy (EMA), which computes the percentage of instances
whose predicted label vectors are exactly the same as their
true label vectors.

EMA =

N∑
n=1

δ(y(n), h(x(n)))

However, this measure could be too harsh, especially when
the output dimensionality is high. Another very useful mea-
sure is the conditional log-likelihood loss (CLL-loss), which
computes the negative conditional log-likelihood of the test
instances:

CLL-loss =

N∑
n=1

− log
(
P (y(n)|x(n))

)
CLL-loss evaluates how much probability mass is given to
the true label vectors (the higher the probability, the smaller
the loss).

Other evaluation measures used commonly in MLC litera-
ture are based on F1 scores. Micro F1 aggregates the num-
ber of true positives, false positives and false negatives for
all classes and then calculates the overall F1 score. On the
other hand, macro F1 computes the F1 score for each class
separately and then averages these scores. Note that both
measures are not the best for MLC because they do not ac-
count for the correlations between classes (see [10] and [41]).
However, we report them in our performance comparisons
as they have been used in other MLC literature [37].

6.3 Results

6.3.1 Performance Comparisons
We have performed ten-fold cross validation for all of our

experiments. To evaluate the statistical significance of per-
formance difference, we apply paired t-tests at 0.05 signifi-
cance level. We use markers ∗/~ to indicate whether MC is
significantly better/worse than the compared method.

Tables 2, 3, 4 and 5 show the performance of the meth-
ods in terms of EMA, CLL-loss, micro F1 and macro F1,
respectively. We only show the results of MMOC on four
datasets (emotions, yeast, scene and image) because it did
not finish on the remaining data (MMOC did not finish one
round of the learning within a 24 hours time limit). For the
same reason, we do not report the results of PCC, EPCC
and MLCRF on the enron dataset. Also note that we do
not report CLL-loss for MMOC, ECC and EPCC because
they do not compute a probabilistic score for a given class
assignment.



Table 2: Performance of each method on the benchmark datasets in terms of exact match accuracy
Marker ∗/~ indicates whether MC is statistically superior/inferior to the compared method (using paired t-test at 0.05 significance level). The last row
shows the total number of win/tie/loss for MC against the compared method (e.g., #win is how many times MC significantly outperforms that method).

EMA BR CHF MLKNN IBLR CC ECC PCC EPCC MLCRF MMOC SC MC
Emotions 0.265 ∗ 0.300 ∗ 0.283 ∗ 0.335 0.268 ∗ 0.288 ∗ 0.317 0.344 0.303 ∗ 0.332 0.322 0.346

Yeast 0.151 ∗ 0.163 ∗ 0.179 ∗ 0.204 ∗ 0.193 ∗ 0.204 ∗ 0.230 0.219 0.180 ∗ 0.219 0.192 ∗ 0.235
Scene 0.541 ∗ 0.605 ∗ 0.629 ∗ 0.644 ∗ 0.632 ∗ 0.658 ∗ 0.666 0.671 0.583 ∗ 0.664 0.625 ∗ 0.680
Image 0.280 ∗ 0.360 ∗ 0.346 ∗ 0.387 ∗ 0.426 ∗ 0.413 ∗ 0.449 0.442 0.377 ∗ 0.448 0.414 ∗ 0.463
Enron 0.164 ∗ 0.170 ∗ 0.078 ∗ 0.163 ∗ 0.173 ∗ 0.180 - - - - 0.167 ∗ 0.187

Rcv1 subset1 0.334 ∗ 0.357 ∗ 0.205 ∗ 0.279 ∗ 0.429 ∗ 0.410 ∗ 0.432 ∗ 0.420 ∗ 0.344 ∗ - 0.441 ∗ 0.457
Rcv1 subset2 0.439 ∗ 0.465 ∗ 0.288 ∗ 0.417 ∗ 0.516 ∗ 0.509 ∗ 0.523 ∗ 0.516 ∗ 0.475 ∗ - 0.531 0.536
Rcv1 subset3 0.466 ∗ 0.486 ∗ 0.327 ∗ 0.446 ∗ 0.539 ∗ 0.539 ∗ 0.548 ∗ 0.544 ∗ 0.489 ∗ - 0.560 0.561
Rcv1 subset4 0.510 ∗ 0.531 ∗ 0.354 ∗ 0.491 ∗ 0.579 ∗ 0.569 ∗ 0.588 0.576 ∗ 0.550 ∗ - 0.592 0.591
Rcv1 subset5 0.439 ∗ 0.456 ∗ 0.276 ∗ 0.411 ∗ 0.497 ∗ 0.494 ∗ 0.519 ∗ 0.513 ∗ 0.457 ∗ - 0.539 0.540

#win/#tie/#loss 10/0/0 10/0/0 10/0/0 9/1/0 10/0/0 9/1/0 4/5/0 5/4/0 9/0/0 0/4/0 5/5/0

Table 3: Performance of each method in terms of conditional log-likelihood loss
Marker ∗/~ indicates whether MC is statistically superior/inferior to the compared method (using paired t-test at 0.05 significance level).

The last row shows the total number of win/tie/loss for MC against the compared method.

CLL-loss BR CHF MLKNN IBLR CC PCC MLCRF SC MC
Emotions 153.5 ∗ 147.5 ∗ 151.7 ∗ 143.0 ∗ 169.6 ∗ 134.9 139.2 ∗ 147.4 ∗ 128.8

Yeast 1500.3 ∗ 1491.7 ∗ 1464.9 ∗ 1434.2 ∗ 2303.8 ∗ 932.1 ~ 1175.4 ∗ 1097.0 ∗ 1000.0
Scene 344.7 ∗ 318.4 ∗ 310.9 ∗ 283.9 ∗ 395.0 ∗ 258.9 313.2 ∗ 306.3 ∗ 260.1
Image 432.5 ∗ 415.9 ∗ 425.3 ∗ 395.6 ∗ 480.3 ∗ 354.7 401.4 ∗ 388.4 ∗ 347.1
Enron 1287.3 ∗ 1272.5 ∗ 1301.2 ∗ 1287.4 ∗ 1293.5 ∗ - - 1437.9 ∗ 1224.4

Rcv1 subset1 1443.8 ∗ 2144.2 ∗ 1873.7 ∗ 1379.5 ∗ 1701.3 ∗ 1034.3 ∗ 1369.4 ∗ 962.7 951.1
Rcv1 subset2 1207.4 ∗ 2223.6 ∗ 1687.8 ∗ 1172.6 ∗ 1398.8 ∗ 923.0 ∗ 1123.6 ∗ 893.5 ∗ 855.8
Rcv1 subset3 1207.4 ∗ 2156.0 ∗ 1674.6 ∗ 1168.2 ∗ 1500.5 ∗ 896.7 ∗ 1116.4 ∗ 939.7 ∗ 837.2
Rcv1 subset4 1072.9 ∗ 1759.9 ∗ 1532.9 ∗ 1034.8 ∗ 1282.1 ∗ 823.0 ∗ 951.4 ∗ 790.7 ∗ 770.6
Rcv1 subset5 1267.0 ∗ 2283.6 ∗ 1795.5 ∗ 1234.7 ∗ 1422.0 ∗ 1009.0 ∗ 1192.4 ∗ 924.0 ∗ 894.3

#win/#tie/#loss 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 5/3/1 9/0/0 9/1/0

Table 4: Performance of each method in terms of micro F1
Marker ∗/~ indicates whether MC is statistically superior/inferior to the compared method (using paired t-test at 0.05 significance level).

The last row shows the total number of win/tie/loss for MC against the compared method.

Micro F1 BR CHF MLKNN IBLR CC ECC PCC EPCC MLCRF MMOC SC MC
Emotions 0.645 ∗ 0.672 0.656 ∗ 0.692 0.621 ∗ 0.652 ∗ 0.664 ∗ 0.688 0.684 0.687 0.678 0.693

Yeast 0.635 0.637 0.646 0.661 ~ 0.628 0.631 0.645 0.650 0.619 ∗ 0.651 0.631 0.640
Scene 0.696 ∗ 0.722 ∗ 0.736 0.758 0.697 ∗ 0.724 ∗ 0.722 ∗ 0.743 0.713 ∗ 0.711 ∗ 0.717 ∗ 0.745
Image 0.479 ∗ 0.541 ∗ 0.504 ∗ 0.573 0.550 0.563 0.565 0.577 0.558 0.572 0.561 0.573
Enron 0.551 0.569 ~ 0.450 ∗ 0.566 ~ 0.577 ~ 0.583 ~ - - - - 0.552 0.556

Rcv1 subset1 0.503 ∗ 0.516 0.257 ∗ 0.459 ∗ 0.511 ∗ 0.525 0.510 ∗ 0.529 0.505 ∗ - 0.512 ∗ 0.525
Rcv1 subset2 0.568 ∗ 0.584 0.317 ∗ 0.546 ∗ 0.586 0.589 0.588 0.591 0.582 ∗ - 0.591 0.587
Rcv1 subset3 0.576 ∗ 0.592 0.364 ∗ 0.564 ∗ 0.594 0.610 ~ 0.594 0.613 ~ 0.590 - 0.596 0.599
Rcv1 subset4 0.622 ∗ 0.637 0.404 ∗ 0.606 ∗ 0.640 0.646 ~ 0.644 ~ 0.650 ~ 0.635 - 0.638 0.635
Rcv1 subset5 0.582 ∗ 0.597 0.314 ∗ 0.566 ∗ 0.595 0.603 0.600 0.605 ~ 0.589 ∗ - 0.598 0.597

#win/#tie/#loss 8/2/0 2/7/1 8/2/0 5/3/2 3/6/1 2/5/3 3/5/1 0/6/3 5/4/0 1/3/0 2/8/0

In terms of EMA (Table 2), MC clearly outperforms the
other methods on most datasets. MC is significantly bet-
ter than BR, CHF, MLKNN and CC on all ten datasets,
significantly better than IBLR, ECC and MLCRF on nine
datasets, significantly better than EPCC and SC on five
datasets and significantly better than PCC on four datasets
(see the last row of Table 2). Although not statistically sig-
nificant, MC performs better than MMOC on all datasets
MMOC is able to finish. MLKNN and IBLR perform poorly
on the high-dimensional (m > 1, 000) datasets because Eu-
clidean distances between data instances become indiscernible
in high dimensions.

Interestingly, MC shows significant improvements over SC
(a single CTBN) on five datasets, while SC produces com-
petitive results as well. We attribute the improved perfor-
mance of MC to the ability of mixtures to compensate for
the restricted dependences modeled by CTBNs, and that of
individual CTBNs to better fit the data with different weight
sets. On the contrary, ECC and EPCC do not show consis-

tent improvements over their base methods (CC and PCC,
respectively) and sometimes even deteriorate the accuracy.
This is due to the ad-hoc nature of their ensemble learn-
ing and prediction (see Section 3) that limits the potential
improvement and disturbs the prediction of the ensemble
classifiers.

Table 3 compares MC to other probabilistic MLC meth-
ods using CLL-loss. The results show that MC outperforms
all other methods. This is expected because MC is tailored
to optimize the conditional log-likelihood. Among the com-
pared probabilistic methods, only PCC produces compara-
ble results with MC because PCC explicitly evaluates all
possible class assignments to compute the entire class con-
ditional distribution. On the other hand, CC greedily seeks
the mode of the class conditional distribution (Equation (2))
and results in large losses. In addition, CHF and MLKNN
perform very poorly because they apply ad-hoc classification
heuristics without performing proper probabilistic inference.
Again, MC shows consistent improvements over SC because



Table 5: Performance of each method in terms of macro F1
Marker ∗/~ indicates whether MC is statistically superior/inferior to the compared method (using paired t-test at 0.05 significance level).

The last row shows the total number of win/tie/loss for MC against the compared method.

Macro F1 BR CHF MLKNN IBLR CC ECC PCC EPCC MLCRF MMOC SC MC
Emotions 0.632 ∗ 0.667 0.656 0.690 0.620 ∗ 0.643 ∗ 0.659 0.683 0.667 0.679 0.670 0.686

Yeast 0.457 ∗ 0.461 ∗ 0.478 0.498 ~ 0.467 0.477 0.486 0.496 ~ 0.451 ∗ 0.473 0.467 0.477
Scene 0.703 ∗ 0.730 ∗ 0.743 0.765 0.709 ∗ 0.740 0.729 ∗ 0.753 0.721 ∗ 0.721 ∗ 0.728 ∗ 0.755
Image 0.486 ∗ 0.546 ∗ 0.516 ∗ 0.581 0.562 0.571 0.575 0.586 0.560 ∗ 0.578 0.572 0.584
Enron 0.478 ~ 0.479 0.411 ∗ 0.475 0.484 ~ 0.482 ~ - - - - 0.470 0.470

Rcv1 subset1 0.495 ∗ 0.511 0.273 ∗ 0.463 ∗ 0.506 ∗ 0.516 0.504 ∗ 0.521 0.500 ∗ - 0.507 0.517
Rcv1 subset2 0.503 ∗ 0.526 0.264 ∗ 0.475 ∗ 0.531 0.539 0.531 0.538 0.516 ∗ - 0.536 0.531
Rcv1 subset3 0.513 ∗ 0.536 0.278 ∗ 0.497 ∗ 0.547 0.558 ~ 0.548 0.561 ~ 0.531 - 0.543 0.542
Rcv1 subset4 0.499 ∗ 0.519 0.269 ∗ 0.477 ∗ 0.534 ~ 0.540 ~ 0.534 ~ 0.539 ~ 0.515 - 0.526 0.522
Rcv1 subset5 0.500 ∗ 0.526 0.257 ∗ 0.487 ∗ 0.536 0.538 ~ 0.534 0.538 ~ 0.513 ∗ - 0.536 0.527

#win/#tie/#loss 9/0/1 3/7/0 7/3/0 5/4/1 3/5/2 1/5/4 2/6/1 0/5/4 6/3/0 1/3/0 1/9/0

(a) CLL-loss: Emotions (b) CLL-loss: Scene (c) CLL-loss: Image

(d) EMA: Emotions (e) EMA: Scene (f) EMA: Image

Figure 3: Conditional log-likelihood loss and exact match accuracy of MC with different number of mixture components

mixing multiple CTBNs allows us to account for different
patterns in the data and, hence, improves the generalization
of the model.

Lastly, Tables 4 and 5 show that MC is also very com-
petitive in terms of micro and macro F1 scores, although
optimizing them was not our immediate objective. One
noteworthy observation is that ECC and EPCC do partic-
ularly well in terms of F1 scores. We consider averaging
out the predictions on each class variable enhances BR-
like characteristics in their ensemble decision. In the fu-
ture, we will crossbreed these two different ensemble ap-
proaches (e.g., MCC/MPCC by applying our mixture frame-
work and algorithms to CC/PCC; ECTBN using randomly
structured CTBNs and simple averaging) and compare the
performances.

6.3.2 Effect of the Number of Mixture Components
In the second part of our experiments, we investigate the

effect of different number of mixture components in the MC
model. Using three of the benchmark datasets (emotions,

scene and image), we study how the performance of MC
changes while we increase the number of trees in a model
from 1 to 20. In particular, we use ten-fold cross validation
and trace the average CLL-loss and EMA across the folds.

Figure 3 summarizes the results. Figures 3(a), 3(b) and
3(c) show how CLL-loss changes on emotions, scene and im-
age, respectively. On all three datasets, adding first few
trees brings the CLL-loss of a mixture model in a rapid im-
provement. Then the growth becomes slower until it reaches
its first peak. After it passes the first peak, CLL-loss stops
improving and becomes stable.

Figures 3(d), 3(e) and 3(f) show the performance changes
in EMA. Notice that EMA is closely correlated with CLL-
loss on all three datasets, and our stopping criteria is useful
in optimizing EMA as well as CLL-loss. That is, EMA im-
proves significantly while CLL-loss increases rapidly. Once
CLL-loss becomes stable, EMA also seems to be stable and
does not show any signs of fluctuation or overfitting.



7. CONCLUSION
In this work, we proposed a new probabilistic approach

to multi-label classification based on the mixture of Condi-
tional Tree-structured Bayesian Networks. We devised and
presented algorithms for learning the parameters of the mix-
ture, finding multiple tree structures and inferring the maxi-
mum a posteriori (MAP) output label configurations for the
model. Our experimental evaluation on a range of datasets
shows that our approach outperforms the state-of-the-art
multi-label classification methods in most cases.
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classification with bayesian networks. International
Journal of Approximate Reasoning, 52(6):705 – 727,
2011.

[6] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown.
Learning multi-label scene classification. Pattern
Recognition, 37(9):1757 – 1771, 2004.

[7] J. K. Bradley and C. Guestrin. Learning tree
conditional random fields. In International Conference
on Machine Learning (ICML 2010), Haifa, Israel,
2010.

[8] W. Cheng and E. Hüllermeier. Combining
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