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ABSTRACT
Objective Learning of classification models in medicine
often relies on data labeled by a human expert. Since
labeling of clinical data may be time-consuming, finding
ways of alleviating the labeling costs is critical for our
ability to automatically learn such models. In this paper
we propose a new machine learning approach that is
able to learn improved binary classification models more
efficiently by refining the binary class information in the
training phase with soft labels that reflect how strongly
the human expert feels about the original class labels.
Materials and methods Two types of methods that
can learn improved binary classification models from soft
labels are proposed. The first relies on probabilistic/
numeric labels, the other on ordinal categorical labels.
We study and demonstrate the benefits of these
methods for learning an alerting model for heparin
induced thrombocytopenia. The experiments are
conducted on the data of 377 patient instances labeled
by three different human experts. The methods are
compared using the area under the receiver operating
characteristic curve (AUC) score.
Results Our AUC results show that the new approach
is capable of learning classification models more
efficiently compared to traditional learning methods. The
improvement in AUC is most remarkable when the
number of examples we learn from is small.
Conclusions A new classification learning framework
that lets us learn from auxiliary soft-label information
provided by a human expert is a promising new direction
for learning classification models from expert labels,
reducing the time and cost needed to label data.

BACKGROUND AND SIGNIFICANCE
Large clinical data sets provide us with a great oppor-
tunity to better understand diseases and the efficacy
of different treatments, and afford the possibility to
build high-quality automated diagnosis systems.
However, many of these real-world data sets are not
perfect and lack information that we currently are
unable to collect automatically. One type of such
information is subjective labels provided by human
experts, for example, in electronic health records
(EHRs). While some of the data, such as laboratory
tests and medications given, are archived and col-
lected, the diagnoses of some conditions or adverse
events that occur during hospitalization are not. In
the context of supervised learning, in order to
analyze these conditions and predict them, individual
patient examples must be first labeled by an expert.
However, the process of labeling examples using sub-
jective human assessments can be very time-
consuming, especially in the medical domain where
data are complicated and their assessment requires a
high level of expertise. As a result, the amount of

labeled training data available for learning can be
limited. The development of new methods that
reduce dependency on the number of labeled exam-
ples becomes critical for their practical deployment.
To address this issue, we propose and study a

new machine learning framework in which the
binary class label information that is used to learn
binary classification models is enriched by soft-label
information reflecting a more refined expert’s view
on the class an instance belongs to. We expect the
soft-label information, when applied in the training
(learning) phase, will let us learn the binary classifi-
cation models more efficiently with a smaller
number of labeled patient instances. In general, the
soft-label information can be represented either in
terms of (1) a probabilistic (or numeric) score, for
example, the chance of the patient having the
disease is 0.7, or (2) a qualitative category, such as
weak or strong agreement with the patient having
the disease. The cost of obtaining this additional
information is typically small once the patient case
is reviewed by the expert.
Formally, we want to learn a binary classifier

g : X ! Y, where X are feature vectors and Y are
binary {0,1} labels. In the training phase, in addition
to binary labels, we also have access to additional
information: a soft label ci reflecting one’s belief that
the example xi belongs to class 1. Hence each data
entry in the data set D ¼ {d1; d2; . . . ;dN} we learn
from consists of three components: di ¼ (xi; yi; ci),
an input, a class label, and a soft label refining the
class assignment. Our conjecture is that soft-label
information, when properly used in the model train-
ing phase, can help us to learn a classification model
more efficiently (with a smaller number of labeled
examples) than with binary labels only.
In this paper we show how to adapt a number of

existing machine learning frameworks to the new
learning task. We demonstrate the benefits of these
methods on clinical data by focusing on heparin
induced thrombocytopenia (HIT)1 and the construc-
tion of classification models that can, given a set of
patients’ observations, predict as accurately as possible
patients who are at risk of HIT, and for whom the
human expert would like to generate an HITalert.

Related work
Solutions for reducing the cost of labeling have been
studied extensively by the machine learning commu-
nity. One of the most popular research directions
for this problem is active learning.2–4 The goal of
active learning research is to develop methods that
analyze unlabeled examples, prioritize them, and
select those that are most critical for the task to be
solved, while optimizing the overall data labeling
cost.
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Our research direction is orthogonal to active learning: we
aim to obtain more useful information from selected examples
through soft labels and utilize it to learn better classification
models. The research work most relevant to our problem was
carried out by Smyth et al,5 who studied ways of incorporating
probabilistic information into a simple generative classification
model in order to learn classification of volcanoes from radar
images of distant planets. Our work and methods apply to a
broader class of discriminative frameworks. Methodologically,
our learning problem and solutions are related to and built
upon classification and regression models, but modify them to
permit learning with both binary class and soft-label informa-
tion. Briefly, standard classification algorithms (eg, logistic
regression,6 support vector machines (SVMs)7) use only class
labels, and do not accept soft labels. On the other hand, regres-
sion models8 can learn from soft labels represented by continu-
ous quantities, but do not use categorical information.

Another direction we build upon in this work is preference/
rank learning.9–11 The rank-learning algorithms rely on prior
ordering of data examples and learn a ranking function that
respects the ordering. The ranking function can be then used to
define a classification model.

MATERIALS AND METHODS
Our goal is to learn a classification model g : X ! Y, where X
denotes the input (or feature) space and Y ¼ {0; 1} are two
classes one can assign to each input. Typically we approach this
task by learning a discriminant function f : X ! R. A classifier is
then defined using a decision threshold s, such that if f(x) � s
then y ¼ 1, otherwise y ¼ 0. In the standard binary classification
setting, the discriminant function is learned from examples with
class labels {0,1} only. In our framework, in addition to class
labels y, we also have access to auxiliary soft labels c associated
with these class labels. In the following, we first present
methods that learn binary classification models from auxiliary
probabilistic label information, and after that, methods that rely
on ordinal categorical labels.

Algorithms for learning with auxiliary probabilistic labels
In this section we develop classification learning algorithms that
let us learn classifiers from probabilistic labels ci [ [0; 1].

Discriminative linear regression
One relatively straightforward solution is to assume the discrim-
inant function is defined directly in terms of these auxiliary
probabilities. In such a case, the learning of the discriminant
function can be converted into a regression problem. One way
to learn the function is to regress the features directly to prob-
abilities, that is, we can learn a regression mapping f where
(xi; ci) are the input–output pairs.

Assuming the function f : X ! R is formed by a linear model
f(x) ¼ wTx, where w are the parameters (or weights) of the
model, the learning problem becomes a linear regression
problem solved by minimizing the error function based on the
sum of squared residuals:

w� ¼ argmin
w

1
N

XN

i¼1

(wTxi � ci)2 þQ(w)

The term Q(w) denotes an optional regularization term that
may help to prevent the model over-fit.8 12 Given the weights,
the final classifier is defined using a decision threshold s, such

that if wTxi � s then yi ¼ 1, otherwise yi ¼ 0. We refer to this
method as LinRaux (linear regression with auxiliary
information).

Logistic regression model
By fitting a regression function model, the outputs of the model
may fall outside the [0,1] range, and hence be inconsistent with
probabilities. An alternative is to regress inputs to a new space
of reals R obtained by transforming the probabilistic space, such
that the transformation is monotonic in ci, and its inverse lets us
revert back to probabilities. An example of such a transform-

ation is t(ci) ¼ ln
ci

1� ci
, which is the inverse of the logistic func-

tion. In such a case, the regression model is trained on (xi; t(ci))
pairs. Now, the learning problem becomes a linear regression
problem:

w� ¼ argmin
w

1
N

XN

i¼1

(wTxi � t(ci))2 þQ(w)

where Q(w), similarly to the previous model, defines a regular-
ization term. The solution w� yields a weight vector defining
the optimal discriminant function f(x). We refer to this method
as LogRaux (logistic regression with auxiliary information).

Using ranking to improve the noise tolerance
O’Hagan et al13 surveyed various methods for eliciting the sub-
jective uncertain assessments of physicians. They note that ‘sub-
jective probabilities can be well calibrated, but often they are
not,’ and cite many studies that revealed inaccurate judgments
of uncertainty, including those of Poses et al,14 Tierney et al,15

and Dolan et al.16 Since the above regression approach learns
the model solely using the auxiliary probabilistic information, it
may become very sensitive to the inconsistencies in the numer-
ical assessments and as a result, its performance may
deteriorate.

To address the problem, we propose to adapt ranking
methods9 10 that are more robust and better tolerate the noise
in the estimates. Briefly, instead of relying strongly on exact
probabilistic estimates, we try to model the relation between the
two probabilistic assessments only qualitatively, in terms of pair-
wise order constraints.

Let f : X ! R be a linear model f(x) ¼ wTx representing the
ranking function that lets us order pairs of data points such that
if instance xi is ranked higher than xj, then f(xi) . f(xj). The
two data points are ordered according to the subjective prob-
ability ci and cj, hence we expect the ranking function to pre-
serve their order. The learning to rank algorithms9 10 let us find
the ranking function f from the training data by minimizing the
number of violated pairwise constraints between the data
points. Now assume the ranking function defines a discriminant
function that lets us discriminate between examples in class
0 and class 1. This formulation makes the learning of a discrim-
inative model less dependent on the exact subjective value esti-
mates that are used to induce the pairwise ordering. Hence we
expect this relaxation would allow us to better absorb some
amount of noise in subjective probability estimates, eventually
leading to more robust learning algorithms.

Let r� be our target ranking order determined by the prob-
abilistic information ci associated with each example. Then for
every pair of examples xi and xj: (xi;xj) [ r�if ci � cj, we can
write a constraint wT(xi � xj) � 0 that we want the ranking
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function f(x) ¼ wTx to satisfy. Similarly to the standard SVM
learning problem formulation,7 we allow some flexibility in
building the solution w by adding slack variables jij representing
penalties for constraints violation and a constant to regularize
these penalties. We combine the constraints for satisfying
ranking orders with constraints for satisfying binary class labels
in one optimization problem. In particular, we propose to
optimize:

min
w;

Q(w)þ A1

XN

i¼1

hi þ A2

XN

i;j¼1

jij

8i ¼ 1 . . .N : yi(w
Txi þ b) � 1� hi

8(xi; xj) [ r� : yiw
T(xi � xj) � 1� jij

8i; j ¼ 1; . . .N : hi . 0; jij . 0

where A1 and A2 are constants and Q(w) is a regularization
penalty. This formulation assumes two sets of constraints and
two corresponding loss terms: A1

P
i
hi that defines the loss for

not respecting binary labels, and A2
P
i;j
jij that defines the loss

for not respecting the orders induced by subjective probabilistic
estimates. Solving this problem will give us the weight vector w
and the discriminant function f(x) that violates the smallest
number of constraints. Note that by changing scaling constants
A1 and A2, one can stress more either the label or the probabil-
istic order information. In general, the setting of these para-
meters is optimized using the internal cross-validation approach.
We refer to this approach as SVMaux (SVM with auxiliary soft
labels).

Algorithms for learning with auxiliary categorical labels
As mentioned earlier, auxiliary soft labels ci may be present not
only in the form of probabilistic estimates, but also in the form
of qualitative ordinal categories. For example, we can ask an
expert to assess the certainty in diagnosing a disease using four
ordinal categories: ‘strongly-disagree,’ ‘weakly-disagree,’
‘weakly-agree,’ and ‘strongly-agree.’ Since the auxiliary soft
labels are no longer probabilities/numbers, the regression
methods described in the previous section (LogRaux and
LinRaux) cannot be applied directly. In this section we describe
two methods that can accept auxiliary labels in the form of
qualitative ordinal categories. We use the following notation: r
to denote the number of ordinal categories and
C ¼ {c1; c2; . . . ; cr} the set of ordinal categories.

Ordinal regression approach
Ordinal regression17 is an approach which takes outputs, repre-
sented by an ordered set of categories, and constructs a regres-
sion function f(x) ¼ wTx that maps examples x onto a real line
such that examples in each category project to a compact and
well separated real-valued region. Assuming the ordered cat-
egories reflect the increased support for the binary label 1, the
function f defines a discriminant function one can apply to the
binary classification task. The method we propose in this work
is based on the SVM approach for ordinal regression.18

Let b ¼ {b1; b2; . . . ; br�1} denote the boundaries that separate
categories in C on a real-valued line formed by f. For x that is

assigned to category cj we want f to satisfy
b1 , � � � , bj�1 , f(x) , bj , bjþ1 , � � � , br�1. We encode
these inequalities by a set of margin constraints. More specifically,
we encode each inequality f(x) , bk using a lower margin con-
straint: f(x) � bk � 1, and each inequality f(x) . bk using an
upper margin constraint: f(x) � bk þ 1. Overall, for each bound-
ary b1; . . . ; br�1 there are N constraints, for the total of (r� 1) �N
constraints. In addition to order constraints for all examples and
boundaries of ordinal categories, we also include constraints for
binary class labels, that is, if yi ¼ 0 and yj ¼ 1, then f(xi) , f(xj).
Since the perfect discriminant function (satisfying all constraints)
may not exist, we permit violations of constraints, but penalize
them using sets of slack variables j (for ordinal constraints) and m
(for binary class constraints). This leads to the following optimiza-
tion problem:

min
w;d;b;m;j

Q(w)þ A1

XN

i¼1

mi þ A2

XN

i¼1

Xr�1

j¼1

jij

8i ¼ 1 . . .N : yi(w
Txi þ d) � 1� mi

8j ¼ 1; . . . ; r� 1; 8ðxi; ciÞ [ fðxi; ciÞjci � kg : wTxi

� bj � 1þ jij

8j ¼ 1; . . . ; r� 1; 8ðxi; ciÞ [ fðxi; ciÞjci . kg : wTxi

� bj þ 1� jij

8i ¼ 1 . . .N; 8j ¼ 1; . . . ; r� 1 : jij � 0

where Q(w) is a regularization term, and A1 and A2 are con-
stants that define the trade-off between penalty for violating
class-label constraints and penalty for violating categorical
order constraints, respectively. We refer to this method as
SVMaux_cat (SVM with auxiliary categorical labels).

Linear regression with local search
The idea of this method is to first convert the ordinal categories
to real values and then apply a regression model to learn the
discriminant function. To preserve the ordering of categories we
seek a mapping h : C ! R that assigns each category to a real
number such that h(ci) , h(cj) where i , j. In addition, we want
this mapping to yield the optimal classification performance
once it is regressed using a regression model f.

We find the optimal mapping h using the following local
search algorithm. In the initial step, the algorithm assigns all
ordinal categories {c1; c2; . . . ; cr} to numbers in interval [0,1],

such that h(ci) ¼ i� 1
r� 1

. This assignment distributes all ordinal

categories uniformly across [0,1] while preserving their order.
After that, we run a local re-optimization procedure which
repeatedly relaxes and re-optimizes the mapping h(ci) for
i ¼ 2; . . . ; r� 1 one at a time, while keeping the rest of the map-
pings fixed. The optimization of h(ci) is implemented as a line
search restricted to the subinterval [h(ci�1);h(ciþ1)]. The area
under the receiver operating characteristic curve (AUC)19 based
on the threefold cross-validation is used to measure the quality
of each mapping. The procedure stops if the improvement in
the AUC after we re-optimize all h(ci) for i ¼ 2; . . . ; r� 1 is
smaller than 0.01. We refer to this method as
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LinRaux_localsearch (linear regression with auxiliary informa-
tion and local search).

Experiments
We demonstrate the benefits of the proposed methods on the
problem of monitoring the risk of HIT.1 HIT is an adverse
immune reaction that may develop if a patient is treated with
heparin for a long time. If the condition is not detected and
treated promptly, it may lead to further complications, such as
thrombosis, and even death. An important problem is the moni-
toring and detection of patients who are at risk of developing
the condition. We investigate the possibility of building an HIT
alert model from patient data using assessment of the risk of
HIT by an expert. This corresponds to the problem of learning
a binary classification model from data.

HIT data
The data used in the experiments were extracted from the
Post-Surgical Cardiac (PCP) database20 21 of the EHRs of 4486
post-surgical cardiac patients. The extracted data consisted of over
51 000 patient-state instances obtained from EHRs using the 24 h
segmentation procedure proposed in Hauskrecht et al.20 Out of
these we selected 377 instances that were labeled (independently)
by three clinical pharmacists with respect to HIT. The instances for
the study were selected using a special stratified sampling approach
aimed at increasing the proportion of HIT alert instances the
expert would agree with in the dataset. For example, one stratum
with a larger proportion of positives was built using patient
instances for which an HPF4 test (ie, used to confirm the HIT)
was ordered in the next 24 h. The strata covered the full instance
space and the sampling was biased to strata with expected higher
proportions of positive instances. All 377 examples sampled by
this procedure were recorded with weights reflecting how likely
they would be if they were obtained by an unbiased random sam-
pling process. The weights let us correct biases due to stratified
selection. Please note that the reason for introducing stratified
sampling for labeling the patient instances was that the data and
their labels were intended also for other related projects and the
aim of one of them was to obtain and analyze a larger sample of
positive HIT alerts. Given the fixed review budget, the stratifica-
tion of patient instances and stratified sampling was the best
option to achieve our goals.

HIT data assessment
For each patient instance, we asked three experts in clinical
pharmacy the following two questions:

Question 1: How strongly does the clinical evidence indicate
that the patient is at risk of HIT? The answer was as a numeric
score in the range from 0 to 100, which we interpreted as a
probabilistic score by converting it to interval [0,1].

Question 2: Assume you have received an HIT alert for this
patient. Please indicate to what extent you agree/disagree with the
alert? The answer was one of the four ordinal categories: ‘strongly-
disagree,’ ‘weakly-disagree,’ ‘weakly-agree,’ and ‘strongly-agree.’

We used answers to question 2 to define the binary class label
‘Agree with alert.’ Briefly, the label is positive if the expert
agrees (weakly or strongly) with the alert in question 2, other-
wise it is negative. Our ultimate objective was to build a classifi-
cation model that predicts this binary class label. Answers to
questions 1 and 2 can be then viewed as its soft-label refine-
ment: answers to question 1 define probabilistic labels, and
answers to question 2 ordinal category labels.

In order to make the qualified judgment, the experts were
able to see EHRs up to the time of the alert assessment, which

is what the experts would see if the instances were encountered
prospectively. Questions 1 and 2 were asked, and the answers to
both questions were recorded on the same electronic input
form. The answers were submitted at the same time by the
expert by pressing the submit button on the form. We note that
inclusion of both questions on the same form and their specific
ordering could have influenced their respective answers.
However, at this point we do not have any evidence for or
against to believe this skewed the results in any significant way.

Table 1 gives basic statistics of the review process and answers
for the three experts. The last column shows the probability of
a positive alert normalized by taking into account the data
weights. Table 2 shows the basic statistics related to auxiliary
soft-label information collected from the experts and used in
the experiments. The second and third columns are related to
probabilistic label information, and the remaining columns to
the ordinal category labels. We see that while the strong HIT
alert (strong positive) option was used only rarely by the
experts, strong and weak no-alerts are quite frequent and likely
to be useful for learning a good discriminative model.

Online supplementary appendix 3 gives detailed agreement
matrices for all pairs of experts, and their corresponding agree-
ment, κ22 and weighted κ23 statistics. Fleiss’ κ24 statistic is used
to assess the agreement for all three experts combined. Briefly,
for binary labels the pairwise κ ranges between 0.33 and 0.57,
while Fleiss’ κ is 0.47. For ordinal categorical labels, the
weighted κ for pairwise analysis ranges between 0.31 and 0.51,
and Fleiss’ κ is 0.34.

Data features
Medical records consist of complex time-series data. Extracting
temporal information from the time-series that is useful for
building a good classification model is a challenging task.25–29

For the purpose of this study, in order to build classification
models, we represented each patient-state instance using 50 fea-
tures derived from EHRs using extraction routines from
Hauskrecht et al21 and Valko and Hauskrecht30 that convert
time-series data for different clinical variables to fixed feature
sets. More specifically, we applied these routines to generate fea-
tures for platelet counts, hemoglobin levels, white blood cell
counts, heparin administration record, and major heart surgeries
that are important for HIT detection. Examples of generated
features are last observed platelet value, last platelet trend, and
the length of time the patient is on heparin medication. Online
supplementary appendix 1 gives a complete list of the clinical
variables and features used in our models.

Experimental setup
We evaluated the performance of the soft-label classification
methods using the AUC score.19 To perform the evaluation, the
data set of 377 examples with weights (reflecting the

Table 1 Basic statistics for the review process for experts 1, 2
and 3

Mean time (SD) to
review a case (s)

Number of
positives

Number of
negatives

Normal probability
of a positive alert*

Expert 1 77.23 (111.54) 88 289 0.06
Expert 2 77.16 (81.47) 53 324 0.02
Expert 3 110.27 (178.31) 106 271 0.15

*Values in this column are calculated by normalizing the answers with respect to the
data weights.
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stratification) was first split randomly (by ignoring the weights)
using a 2:1 ratio into the disjoint training and testing groups.
This split assured that instances in the training group were used
for training the models, while instances in the testing group
were used for their evaluation. The weights associated with the
instances were then used to subsample the two groups in order
to generate the training and test sets. This process lets us gener-
ate un-biased and non-overlapping training and testing datasets.
The process (data splitting and subsampling of data according to
weights) was repeated 100 times and the average AUC and 95%
CI on the test set were calculated.

To investigate the impact of the soft-label information on the
sample complexity, we trained the new models that accept soft-
label information with data of different sizes and compared
them to models that learn from the binary ‘Agree with alert’ and
‘Disagree with alert’ labels only. In all experiments, the soft-
label information was used only to aid the training (learning)
process, and it was never used to test the binary model. The
training sizes were varied from 20 to 250. The upper limit
(250) was chosen because the performance of the methods at
that point stabilized and further increases in the training size
did not result in any significant changes. We performed two
experiments testing the impact of learning with auxiliary prob-
abilistic labels (experiment 1) and ordinal categorical labels
(experiment 2). Table 3 summarizes all methods in the experi-
ments. An L1 regularization penalty was used to implement
Q(w) for all models. Please note that because the number of
samples in the strong positive subcategory is very small, the mul-
ticlass method is trained only on three subcategories (positives,
weak negatives, and strong negatives).

RESULTS AND DISCUSSION
The results of all our experiments are shown graphically in
figures 1A–C and 3A–C. In addition, the same results are tabu-
lated together with the pairwise statistical significance test in
online supplementary appendix 2.

Experiment 1: learning with probabilistic labels
Figure 1A–C compares the performance of different methods
on HIT data and soft labels expressed in terms of probabilistic
scores (answers of the experts to question 1 for expert 1, expert
2, and expert 3, respectively). The x-axis shows the number of
examples the models are trained on and the y-axis shows the
AUC. The baseline methods (SVM and LogR) are illustrated
using dashed lines. Methods that utilize soft labels are shown
using solid lines.

The results in figure 1 show that the two simple approaches
utilizing the probabilistic information (LinRaux and LogRaux)
are worse than classification models (SVM and LogR) that learn
from the binary label information only. This is true for all three
experts. The new ranking approach (SVMaux) that ignores
exact probabilistic assessments but at the same time tries to pre-
serve the relative order of patient instances, performs the best
and outperforms all alternatives on two of the experts (experts
1 and 2) and is comparable to binary classifiers for expert 3.

Discussion
The LinRaux and LogRaux methods that attempt to fit probabil-
istic estimates to define the discriminant function perform the
worst. At first glance this is somewhat surprising. However,
these results can be explained by inconsistencies and biases in
subjective probability estimates provided by the experts. The
fact that subjective probability estimates are often not well cali-
brated is a widely documented problem in the literature.14–16

Hence, it is not realistic to expect that probabilistic assessments
for all instances are perfect both in absolute terms (ie, each
probability assessment is a perfect estimate of the true probabil-
ity) and in relative terms (when pairs of instances and their
probability differences are considered). This in turn may influ-
ence the model based on such assessments, especially when the
model tries to ‘closely’ fit the estimates. Figure 2 illustrates this
problem on the data in our study. It shows the distribution of
probability estimates for positive and negative examples for

Table 2 Basic statistics for the auxiliary soft-label information collected from the experts

Mean (SD) probability
for positives

Mean (SD) probability
for negatives

Number of strong
positives

Number of weak
positives

Number of weak
negatives

Number of strong
negatives

Expert 1 0.51 (0.16) 0.14 (0.17) 3 85 141 148
Expert 2 0.59 (0.06) 0.28 (0.16) 0 53 235 89
Expert 3 0.48 (0.13) 0.39 (0.14) 1 105 181 90

The second and third columns show the distribution of probabilities for positive and negative examples. The remaining columns show the counts of strong and weak subcategories for
positive and negative examples.

Table 3 Summary of all methods used in the experiments

Labels used Method Short description

Experiments

1 2

Binary labels LogR (baseline) Standard binary logistic regression ● ●
SVM (baseline) Standard binary SVM ● ●

Binary and auxiliary probabilistic labels LinRaux Linear regression with probabilistic labels ●
LogRaux Logistic regression with probabilistic labels ●
SVMaux Rank-based SVM with probabilistic labels ●

Binary and auxiliary ordinal categories Multiclass (baseline) Soft-max regression model31 that learns from categorical labels but
ignores the ordinal information

●

LinRaux_localsearch Linear regression with ordinal categories and local search ●
SVMaux_cat SVM regression with ordinal categories ●

SVM, support vector machines.
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Figure 1 Area under the receiver operating characteristic curve (AUC) for the different learning methods trained on probabilistic soft labels from
three different experts and for the different training sample sizes.

Figure 2 Distribution of probabilities assigned to negative (left) and positive (right) examples by experts 1, 2, and 3, respectively. Left and right
vertical bars show the mean and SD of assigned probabilities to negative and positive examples, respectively. The ‘overlap region’ between
horizontal dash lines is where probability estimates for positive and negative examples overlap. These inconsistencies may lead to deterioration of
models trained based on such probabilities.
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experts 1, 2, and 3, and overlaps of the two regions. These
overlaps and inconsistencies influence the discriminatory per-
formance of the models trained on probabilistic soft labels and
translate to the results observed in figure 1. More specifically,
notice that while the probability estimates of expert 2 assigned
to positive and negative labels in figure 2 are rather well sepa-
rated, the estimates of expert 1 and particularly of expert 3 are
much harder to separate, and there is a great deal of overlap in
the regions defining positive and negative labels. These differ-
ences translate to the results in figure 1. In particular, LinRaux
and LogRaux that learn their models only from probability esti-
mates get more benefit from probabilistic information provided
by expert 2 than by expert 1 or expert 3. SVMaux (our top per-
forming model) that relies on both probability estimates and
binary labels, is more robust and is able to absorb the inconsist-
encies much better. However, please notice that for expert 3
(with the most inconsistent probability assignments), the benefit
of probabilistic information even for this model diminishes and
the model is comparable to models one can learn from the
binary information only.

In summary, the new ranking approach (SVMaux) that
ignores exact probabilistic assessments, but at the same time pre-
serves the relative order of patient instances, is more robust to
noisy probabilistic estimates and outperforms all alternatives,
hence demonstrating the benefit of soft probabilistic labels for
learning the classification models.

Experiment 2: learning with ordinal categories
Figure 3 compares the performance of the methods on
HIT data and the soft labels expressed in terms of ordinal cat-
egories: ‘strongly-disagree,’ ‘weakly-disagree,’ ‘weakly-agree,’

and ‘strongly-agree’ with the HIT alert. Figure 3A–C shows the
AUC of models learned for expert 1, expert 2, and expert 3,
respectively.

The linear regression aided by the local search is the best
method for all three experts, followed by the SVM ranking
method modified to ordinal categories. The two baselines that
rely on the binary class information are comparable, and come
next. Finally, the multiclass learning method that tries to learn
different categories but ignores their order, is the worst and is
outperformed by all other methods.

Discussion
The results demonstrate that binary labels, when they are
further refined to ordinal subcategories, can lead to improved
classification models. In particular, splitting positive and nega-
tive labels into strong and weak positives and negatives, and
mapping them on the same discriminative function while assur-
ing their order helped us to converge faster to a better discrim-
inative function. However, we also observe that when these
subcategories are taken in isolation (without ordering) as in the
multiclass method, the performance tends to be worse. This can
be attributed to the fact that multiclass models require more
parameters and in general more samples are needed to fit them
accurately.

The refinement of the two alert classes to four ordinal subcat-
egories clearly helped us to learn better models for all three
experts. In contrast to this, the probabilistic information in
experiment 1 was helpful, but the margin of the improvement
was much smaller, and for expert 3, who was the least consistent
in assigning probabilities to examples, the benefit was marginal.
Our experiments with probabilistic assessments (experiment 1)

Figure 3 Area under the receiver operating characteristic (ROC) curve (AUC) for the different learning methods trained on ordinal categorical labels
from three different experts and for the different training sample sizes.
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given by humans suggest the assessments may suffer from con-
sistency/calibration problems which may reduce the utility of the
probabilistic information for aiding the learning process. This
also suggests that the utility of soft labeling may differ and vary
with the resolution and the number of soft categories the expert
may choose from. An interesting and open question is how
many categories to use in order to benefit from the soft labeling
the most.

CONCLUSION
Making use of real-world data sets often prompts one to fill
additional information with subjective human labels. However,
this process is often time-consuming, so different ways of redu-
cing the labeling effort need to be sought. In this work we
investigate a new framework for reducing this cost by using aux-
iliary soft labels that reflect how strongly the human expert
believes in the class label, which can be extracted quickly and
with virtually no additional time effort.

We proposed and studied different methods that incorporate
soft labels into the classification learning process. The experi-
mental results on HIT data show that our methods outperform
traditional binary classifiers, which supports our hypothesis that
auxiliary soft-label information may lead to improved learning
efficiency. We have also found that soft-label information
expressed in terms of four subcategories helped the models the
most, and the improvement was more consistent than for
models aided with soft probabilistic information. An interesting
open research question is whether this is the optimal number of
soft categories one can use in order to learn better classification
models.

Finally, we would like to note that soft-label approaches can
be used to learn discriminative models even in the case when
instances for one of the two target classes are not observed in
the training data. This feature is especially useful when classes
are unbalanced and the chance of observing the minority class
in a random sample is low.
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