
An Efficient Framework for Constructing
Generalized Locally-Induced Text Metrics

Saeed Amizadeh

Intelligent Systems Program
University of Pittsburgh

saa63@pitt.edu

Shuguang Wang

Intelligent Systems Program
University of Pittsburgh

swang@cs.pitt.edu

Milos Hauskrecht

Department of Computer Science
University of Pittsburgh

milos@pitt.edu

Abstract

In this paper, we propose a new framework for con-
structing text metrics which can be used to com-
pare and support inferences among terms and sets
of terms. Our metric is derived from data-driven
kernels on graphs that let us capture global relations
among terms and sets of terms, regardless of their
complexity and size. To compute the metric effi-
ciently for any two subsets of terms, we develop an
approximation technique that relies on the precom-
piled term-term similarities. To scale-up the ap-
proach to problems with huge number of terms, we
develop and experiment with a solution that sub-
samples the term space. We demonstrate the ben-
efits of the whole framework on two text inference
tasks: prediction of terms in the article from its ab-
stract and query expansion in information retrieval.

1 Introduction

A huge number of text documents is published or shared ev-
ery day in different areas of science, technology, culture etc.
Due to the huge volumes, the analysis of these documents and
their contents is becoming increasingly hard. This prompts
the development of tools that let us better analyze these texts
and support various automatic inferences upon their content.

This paper focuses on the development of a new class of
text kernels that let us capture complex relations between
terms and sets of terms in a corpus. Such kernels can be very
useful for analysis of term relations, or to support inference
tasks such as term predictions, term clustering, or more ap-
plied tasks such as query expansion. The key challenge in
designing a good text kernel is to account for indirect global
term relations that are not immediate from relations explic-
itly mentioned in the text. As an example, there is a logical
relevance between ’designer’ and ’software’ and between ’de-
signer’ and ’cloth’, while ’software’ and ’cloth’ may not ever
happen together in a document while there is a weak similar-
ity between them as artifacts designed by humans.

At the core of our methodology is the design of term-term
similarity metrics (or, in other words, term-term kernels).
These metrics aim to capture abstract and often complex rela-
tions among terms and their strength. All the proposed met-
rics in this paper are derived from a graph of local associa-

tions among the terms observed in the document corpus. We
call this graph the association graph. To cover and account
for indirect relations which span multiple direct associations,
we define a global term similarity metric based on the spec-
tral decomposition of the association graph and a special class
of graph-Laplacian kernels [Zhu et al., 2006] that assure the
smoothness of the metric across observed term associations.

The term-term similarity metric is defined on the term
space. However, many useful text inferences, e.g. query ex-
pansion, work with sets of terms. To address the problem, we
need a generalized term similarity metric that lets us represent
set-set similarities. We show how this new metric can be, in
principle, built by expanding the original association graph
with n nodes (corresponding to terms) with special auxiliary
nodes representing sets of terms. However, computing the
distance between any two sets would require a new graph ex-
pansion and the recalculation of the O(n3) spectral decom-
position, which is infeasible in practice. We approach the
problem by proposing and defining a new method that can
efficiently approximate the set-set similarities on-line, when-
ever they are needed, by computing the spectral decomposi-
tion of the underlying graph only once.

The spectral decomposition of the graph Laplacian takes
O(n3) time. This is prohibitive for large n even if computed
only once. One way to alleviate the issue is to benefit from the
graph structure and its disconnected components. A more
principled approach requires a reduction of the number of
terms in the graph. We propose and study an approximation
approach that first performs the decomposition on a randomly
selected sub-graph of the association graph, and then extends
the results to the entire graph to approximate the spectral de-
composition of the full graph.

As mentioned earlier, a good metric relating terms and their
sets can be used to support various text inferences such as text
clustering, query expansion, etc. We demonstrate the benefit
of our text kernels on two text inference problems: (1) predic-
tion of terms in the full document from terms in its abstract
and (2) the query expansion for the retrieval of documents
relevant to the search query [G. Cao and Robertson, 2008].

2 Related Work

Embedding-based methods for text metric learning have been
recently studied in the literature. In [Lebanon, 2006], para-
metric metrics have been learned for text documents based
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on Fisher geometry. In [Cai et al., 2005], text documents are
mapped into a semantic space using Locally Preserving In-
dexing. However, in both frameworks, the text metrics only
compare documents and not any arbitrary chunks of texts.

Laplacian kernels and their special cases, on the other
hand, have been used in various machine learning problems.
However, their application in text analysis is still relatively
rare. [Dillon et al., 2007] used a specific Laplacian kernel to
derive the document similarity for Machine Translation tasks.
[Bordino et al., 2010] proposed to estimate the query similar-
ity using the classical spectral projection on the query flow
graph. This is in fact a special case of Laplacian embedding
using step function transform which is used on the graph over
queries instead of terms. Our framework is more general than
these two works and also assures the metric is smooth in that
it respects directly the observed term relations.

[Collins-Thompson and Callan, 2005] proposed to model
term association using the Markov chain (random walk)
model defined on the graph over terms. The edges in the
graph are defined using multiple external sources such as the
synonyms in WordNet [Moldovan and Rus, 2001]. The anal-
ysis is performed on the term relevance graph directly instead
of its Laplacian matrix. We propose to model term relevance
using a general family of graph-Laplacian kernels.

We note that there are different ways of defining term sim-
ilarity other than graph-based methods. For example, [Wang
et al., 2010] propose to apply a PHITS model, originally de-
signed for the link analysis of document networks, to term
association graphs. The PHITS model learned from the train-
ing data is then used to approximate the probability of a term-
term association. However, this method projects terms into a
latent low-dimensional space representing clusters of inter-
connected terms and the similarity for any pair is computed
in this space. In our experiments, we show that these methods
are outperformed by our graph-based similarity metrics.

For computing the similarity between sets of objects, [Kon-
dor and Jebara, 2003] proposed to compute the Bhattacharyya
divergence between the densities of the sets in the embedded
space. [Bach, 2008] proposed to use efficient graph kernels to
compute the kernel between point clouds. Our set similarity
extension is different from these methods in that first we work
with sets of terms (and not vectors) and second our work is
inspired by short-circuiting in electrical circuits.

3 Laplacian-based Graph Kernels

The framework we propose in this paper computes the sim-
ilarity between two texts using Laplacian-based graph ker-
nels. In this section, we briefly review the basics of the graph
Laplacian and data-driven kernels derived from it. Interested
readers may refer to [Chung, 1997] for further details.

Let G = 〈V,E,W 〉 be a weighted graph with a weighted
adjacency matrix W , such that Wij = w(eij) is the weight
of edge eij ∈ E and 0 otherwise. If D is the diagonal ma-
trix with diagonal entries Djj =

∑
k Wjk, the Laplacian L

of G is defined as: L = D − W [Ng et al., 2001]. L is
a semi-positive definite matrix with the smallest eigenvalue
λ1 = 0 [Chung, 1997]. The eigen decomposition of L is
L =

∑
i λiuiu

T
i , where λi and ui denote eigenvalues and

their respective eigenvectors.
Let f : V → R

k be a vector-valued function over the nodes
of G. Let the smoothness of f(·) w.r.t. G be defined as:

ΔG(f) � fTLf =
1

2

∑

eij

Wij‖f(i)− f(j)‖22 (1)

The smoother the function f(·) is on G (f(i) and f(j) are
close in R

k if nodes i and j are close in G), the smaller is
ΔG(f). By replacing L with its eigen decomposition, we will
get ΔG(f) =

∑
i λia

2
i where ai = fTui is the projection of

f(·) on the ith eigenvector of L. For f = uk, we will have
ΔG(f) = λk. Therefore, those eigenvectors of L with small
eigenvalues, in fact, define smooth functions over G.

To define a similarity metric on V , a Laplacian-based ker-
nel matrix K is defined to be a semi-positive definite kernel
with exactly the same eigenvectors as L and different non-
negative eigenvalues θ = [θi]n×1; that is, K =

∑
i θiuiu

T
i .

Depending on the values of θ, K can define very different
similarity metrics on V . Here, we are interested in those ker-
nels which make nodes close in G more similar. This is equiv-
alent to assigning more weight (eigenvalue θ) to the smoother
eigenvectors of L in building the kernel K. To this end, Zhu et
al. [Zhu et al., 2006] define a class of Laplacian-based graph
kernels with θi = g(λi), where g(·) is an arbitrary spec-
tral transformation function which is a non-negative non-
increasing function of λis, the eigenvalues of L. This last
condition assures that smoother eigenvectors (with smaller
λ) are assigned higher weights in the kernel. In fact, the
reason that we are interested in Laplacian-based kernels as
opposed to more general kernels is that their eigen decompo-
sition gives us a series of eigenfunctions on the graph sorted
by their degrees of smoothness.

Given a kernel K, now we can define the distance between
nodes i and j in the graph as d(i, j) = Kii + Kjj − 2Kij .
Furthermore, any Laplacian-based kernel K defines a map-
ping φ : V → R

n from the nodes of the graph to some
metric feature space such that Kij = φ(i)Tφ(j), d(i, j) =
‖φ(i)− φ(j)‖22 where:

φ(i) =
[√

θ1u1(i),
√

θ2u2(i), . . . ,
√

θnun(i)
]T

(2)

uk(i) denotes the ith element of the kth eigenvector of L.
A variety of kernels can be defined using different spec-

tral transformation functions g(·). For example, g(λ) =
1/(λ + ε) for some small ε > 0 (called resistance ker-
nel) is the kernel whose derived distance measure approx-
imates the total resistance between two nodes in G, given
that the edge weights are interpreted as electric conductances
(reciprocal of electric resistances) [Doyle and Snell, 1984;
Klein and Randić, 1993]. Other useful kernels in this class
are the diffusion kernel: g(λ) = exp (−λσ2/2) [Kondor and
Lafferty, 2002] and the random walk kernel: g(λ) = (α− λ)
[Zhu et al., 2006], where σ2 and α ≥ 2 are parameters of
these kernels. Alternatively, one can define a non-increasing
function g(·) in a completely non-parametric fashion by set-
ting the values of θis independently without using any func-
tional form (we refer to it as non-parametric kernel). In prin-
ciple, given a relatively smooth function f(·) on G, one can
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optimize the kernel parameters or the values of θis directly
such that the similar nodes according to f(·) become closer
according to K as well.

4 The Graph-based Text Metric

We build our framework for generating text distance metrics
based on the Laplacian-based graph kernels. In particular, we
first show how a distance metric between the simplest ele-
ments of texts, namely terms, can be induced and then gener-
alize it to define a distance metric between the sets of terms.

4.1 Term-Term Distance Metrics

First, let us define the key ingredients of our framework.
Term association graph is a weighted graph A with nodes
V corresponding to the terms in the lexicon extracted from
an input document corpus. The edges in A represent the co-
occurrence of the two terms corresponding to the edge in the
same sentences. Furthermore, each edge is assigned an as-
sociation weight in R

+ expressing the strength of the rela-
tion. For the term co-occurrence relation, the strength is the
number of different documents in which the two terms co-
occur in the same sentence. We note that, in general, the co-
occurrence relation and its weight can be replaced with any
reasonable term-term relation and corresponding statistics as
long as it is easy to extract them from the input corpus.
Relevance function is defined as a vector-valued function r :
V �→ R

k such that if two terms ti and tj are considered to
be relevant according to the domain of the desired task, then
‖r(ti) − r(tj)‖22 is small. Thus, knowing r(·) would greatly
help to build a reliable term-term distance metric. However,
in general, the true r(·) is unknown for a given problem.

Now, the question is how r(·) and A are related? Our key
assumption in this work is: r(·) is relatively smooth with re-
spect to A; that is, the smoothness ΔA(r) is relatively small.
As a result, we can use the Laplacian-based kernels derived
from A to define term-term distance metrics which are able
to capture the true relevance among the terms. In particular,
we use the resistance, diffusion and non-parametric kernels
in the previous section to build distance metrics on terms.

As mentioned before, the parameters of these kernels can
be optimized based on the task (or equivalently the true r(·)).
However, since r(·) is unknown, we can use some proxy ob-
jective for this optimization. In particular, if we have the bi-
nary information whether two terms are relevant or not on a
subset of terms as training data, we can maximize the AUC
measure between the goal standard and the distance ordering
derived from the kernel on the same set of terms. Based on
this objective, the optimization of single-parameter kernels,
such as the diffusion kernel, can be carried out using a simple
line search procedure. For the non-parametric kernel (with
spectral transformation parameters θi subject to constraints),
we define a linear program to find the optimal θ vector as:

max
θ=(θ1,...,θn)T

∑

ij

K(ti, tj)− bθTΛ

s.t. 0 ≤ θi ≤ θi+1 ≤ 2 ∀i = n− 1, · · · , 1
where the sum is over all pairs of terms which are considered
relevant according to the training data, b ≥ 0 is a regular-
ization penalty and Λ is the vector of eigenvalues of the A’s

Laplacian. The order constraints over θs assure that smoother
eigenvectors are assigned higher weights.

Now that the kernel is specified and its parameters are op-
timized, one can derive the mapping φ(·) using Eq. (2) to
define the distance between terms. In fact, φ(·) can be seen
as an approximation to the true r(·).

4.2 Set-Set Distance Metric

To generalize the distance measures derived in the previous
subsection to the distance between sets of terms, a straight-
forward approach is to somehow combine the mutual term-
term distances between the two sets. To do so, the natural
candidates are the max, the min and the average functions.
Here, we develop a more principled approach to compute the
distance between two sets of terms.

Recall that the resistance kernel in the previous section
approximates the total resistance between two nodes in the
graph if the edge weights are interpreted as reciprocal of re-
sistance. In an actual circuit, in order to compute the total
resistance between two sets of nodes S1 and S2, one should
first short-circuit all the nodes in each set separately to col-
lapse each set to one node. Then, the total resistance between
the collapsed nodes is equal to the total resistance between
S1 and S2. Figures 1(I)&(II) illustrate the idea. Figure 1(I)
shows an electrical network; Figure 1(II) is the same network
after collapsing the terms (nodes) in the set S = {A,E}.
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Figure 1: Collapsing nodes in electrical resistance network

Note that the electrical circuit example is just one analogy
and the core idea is more general. In fact, short-circuiting the
nodes in a set S in an electrical circuit is equivalent to adding
high association (0 resistance) edges between S’s members in
a more general graph. After doing so, if a candidate node x
is similar to any of S’s members then it will become similar
to all the nodes in S (due to the insertion of high association
edges). This somehow encodes an ’OR’ logic.

We extend the same idea to compute the distance between
two sets of terms for any Laplacian-based kernel. That is,
to compute the distance between the term sets S1 and S2, we
collapse the corresponding terms of each set inA to one super
node to obtain a new reduced association graphA′. After that
we recompute the Laplacian-based kernel for A′ to get the
distance between the collapsed nodes. The main drawback of
this approach is for any given two subsets of nodes, we have
to reshape the graph, form the Laplacian matrix and compute
its eigen decomposition which takes O(n3) time.
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To avoid recalculations, we propose an efficient approx-
imation that does not require us to change the structure in
the underlying association graph. The solution is based on
the following electrical circuit analogy: short-circuiting the
nodes in some set S is equivalent to adding an auxiliary node
s′ to the network and connecting it to the nodes in S with
zero resistance (infinite association weight) links. The to-
tal resistance between s′ and any other node in the graph
is equivalent to the resistance between the collapsed node
representing S to these nodes. We apply the same trick on
the association graph to build our approximation: instead of
collapsing the terms in a set into one node, we add a new
node s′ to A and connect it to all terms in S with some
high association weights (to approximate infinite weights).
This is illustrated in Figure 1(III). Now, we have to com-
pute the eigen decomposition for the Laplacian of A ∪ s′ to
find the mapping φ(s′) for the new node; however, instead
of recalculating everything from scratch, we can just extend
the eigenvectors of A’s Laplacian to one more element using
the Nyström approximation [Buchman et al., 2009]. More
specifically, if node s′ was included in the graph, we would
have

∑
j L(s

′, j)uk(j) = λkuk(s
′), for the kth eigenvector

of L. Solving for uk(s
′), we will get:

∀k, uk(s
′) =

1

λk − L(s′, s′)

∑

j �=s′
L(s′, j)uk(j), (3)

where L(s′, j) is just the negative assigned association weight
between node j and the auxiliary node s′ (and 0 if j /∈ S).
Also L(s′, s′) is the degree of s′. Having approximated
uk(s

′) for all k, we can compute φ(s′) using Eq. 2.
Using this approximation, we propose to define and cal-

culate the set-set kernel as follows. First, we compute and
store the eigen decomposition for the term-term associations,
which takes O(n3) time and O(n2) space. This step is per-
formed offline. The metric for any two sets of terms S1 and
S2 is then calculated online using the stored decomposition.
In fact, it only takes O(|S1|+ |S2|) to find ‖φ(s1)−φ(s2)‖22.

4.3 Scaling Up to Large Association Graphs

If the number of terms n is large, computing the eigen de-
composition over the entire term space (in principle O(n3)
time) becomes computationally demanding, even if it is done
offline and only once. To address this issue, we propose to
first build A over the whole term space and then keep only a
random sub-graph of size m for the eigen decomposition pur-
poses. We can use the same Nyström approximation as used
before to extend the eigenvectors of the sub-graph (size m)
to vectors of size n over the entire graph. Using this approxi-
mation, the total time reduces to O(m3 + d̄n), where d̄ is the
average node degree in A. This is a significant improvement
if m� n.

Obviously, eigen-decomposition of a smaller graph and its
Nyström-based expansion to all nodes define an approxima-
tion of the true metric. Now, we have to show how much
this approximation affects the final distance metric. How-
ever, in many real applications, it is the ordering over the
terms induced by the distance metric that really matters and
not the actual distance values. Therefore, we can only mea-
sure how many misplacements (in %) are introduced using the

proposed approximation compared to the ordering induced in
the exact case (i.e. the gold standard order). Table 1 shows
the (normalized) number of misplacements introduced in a
test set of 100 terms using different sample sizes m for a term
space and the graph of size n = 5000 we used for the analysis
of PubMed articles in Section 5. The experiment is repeated
5 times for each sample size and the results are averaged. As
the table shows, even for 20% of the terms (m = 1000), 16%
misplacements are introduced in average which means that
the approximation is pretty robust.

m Avg % of misplacements std deviation

20% 16.0% 0.011
40% 13.7% 0.005
60% 8.9% 0.012
80% 4.4% 0.002

Table 1: The average number of misplacements for different sample
size m with standard deviation

5 Experiments

A good text similarity metric can open door to some interest-
ing applications: predicting term occurrences from text com-
ponents, clustering of text components, query expansion, etc.
In this section, we demonstrate the merits of our framework
on two applications; prediction of terms in the document and
query expansion in information retrieval.

5.1 Term Prediction

The objective of this experiment is to demonstrate that our
kernel-based distance metrics can predict the occurrence of
terms in a full article from terms in the abstract. Intuitively,
for the same document, terms in the full body should be very
relevant to the terms mentioned in its abstract.

Data: The documents used in this experiments are from
the cancer corpus [Wang and Hauskrecht, 2008] that consists
of 6,000 documents related to 10 cancer subtypes that are in-
dexed in PubMed. The articles were randomly divided into
the training (80%) and test (20%) sets. Only the abstracts
in the training set were used to build the term association
network. Although, we could have trained our kernels us-
ing the terms in the document bodies as well, they perform
well over the entire vocabulary even just using the terms in
the abstracts. The terms extracted were the names of genes
and proteins occurring in the free text. We used LingPipe1 to
identify genes and proteins.

Evaluation Metric: For evaluation, we first compute the
distances between terms in the abstracts to all candidate terms
and rank them. If our proposed similarity metrics is good, the
terms in the full body of the text should be ranked higher than
the rest. We assess this using the Area Under the ROC Curve
(AUC) score. More specifically, we assign label 0 to those
concepts that were not observed in the full article and 1 to
those that were observed. The ranking based on the metric

1http://alias-i.com/lingpipe
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is then combined with the labels and the AUC score is calcu-
lated. Note that the optimal term ordering for this document
should give a perfect separation of 1s and 0s.

Baselines: We compare our methods to three baseline
methods: TF-IDF, PHITs, and the shortest-path approach.
The TF-IDF method predicts the terms in the document body
using the TF-IDF score ranking [Salton and McGill, 1983]
calculated on the training documents and is independent of
the query (the terms in the abstract). The PHITS-based ap-
proach [Wang and Hauskrecht, 2008] first learns the PHITS
model [Cohn and Chang, 2000] from the term association
graph and uses it to approximate the strength of the term and
set-to-term relations. The shortest path method uses the term
association graph and its reciprocal weights to calculate the
shortest paths between terms in the abstract and the rest of
the terms. The shortest path lengths are then used to estimate
term-term and set-to-term similarities.

Results: Table 2 summarizes the results of the experiment
on the full term vocabulary of 1200 test documents. For each
method, the table shows the mean AUC scores obtained for
test documents and their 95% confidence intervals (CI).

Methods AUC 95% CI
TF-IDF 0.782 [0.767, 0.801]
PHITS 0.781 [0.749, 0.805]
shortest-path 0.745 [0.729, 0.756]
KDiffusion 0.878 [0.870, 0.887]
KResistance 0.883 [0.878, 0.892]
KNonpara 0.870 [0.863, 0.878]

Table 2: AUCs for predicting terms on test documents. The best
AUC score is in bold.

Baselines vs. Kernels: All Laplacian-based metrics were
statistically significantly better than baselines when predict-
ing the terms in full documents. This means the derived sim-
ilarity metrics are very meaningful and model the term rele-
vance better than baselines.

Comparison of Kernels: The parameters of all kernels
were optimized using either line search (for diffusion and re-
sistance kernels) or the linear program (for non-parametric
kernel). There are small overlaps between confidence inter-
vals of different kernel methods. To examine the differences
in the mean AUC scores more carefully, we analyzed the
methods using pair-wise comparisons. We found that the re-
sistance kernel performs statistically significantly better than
other kernels. The diffusion kernel and the non-parametric
kernel were not significantly different. We attribute the supe-
riority of the resistance kernel to the fact that it heavily em-
phasizes the smoother (smaller) eigenvalues of the Laplacian
compared to other kernels due to its functional form.

5.2 Query Expansion

In this experiment, we test our metrics on the query expansion
task. Briefly, in the query expansion task, we seek to find a
small number of terms that can help us to improve the re-
trieval of relevant documents if they are added to the original
query. Here, we enrich a given query with the terms consid-
ered close to it according to the resistance kernel.

Datasets: We use four TREC datasets2 to analyze the per-
formance of our method on the query expansion task: Ge-
nomic Track 2003, Genomic Track 2004, Ad hoc TREC 7,
Ad hoc TREC 8. The key properties of these datasets are
summarized in Table 3. Each TREC dataset comes with 50
test queries and the list of relevant documents assessed by
human experts for each query.

TREC Type # of docs n m Term type

Genomic-03 abs 500k 349K 5K gene/protein
Genomic-04 abs 4.5mil 1123K 5K gene/protein
Ad Hoc 7 doc 550k 469K 20K words
Ad Hoc 8 doc 550k 469K 20K words

Table 3: TREC datasets used in for query expansion (abs=abstract,
doc=document, n = total # of terms, m = # of terms used)

Experimental setup: Since there are no query expansion
baselines, we use our methods in combination with Terrier
search engine 3 to rank the documents and observe its rela-
tive performance to the baselines. Terrier is a search engine
that parses and indexes the document corpus to build its own
vocabulary; its performance can be further improved by do-
ing query expansion first. For baselines, we use: (1) Terrier
search engine without query expansion, and (2) Terrier with
the PRF-based (pseudo-relevance feedback) [Xu and Croft,
1996] query expansion. PRF methods are the state-of-the-
art methods for query expansion that use auxiliary searches
to expand original queries. They use all terms in the term vo-
cabulary. We report the best results from the DFR-Bo1 model
included in Terrier, which is based on Bose-Einstein statistics
[Macdonald et al., 2005]. In contrary to PRF, to run our meth-
ods on Ad Hoc 7 and 8 datasets efficiently, we subsample and
work with 25% of the overall terms. Yet the end results are
very comparable to those of PRF.

Results: Table 4 summarizes the result for the experiment.
The statistics used in the evaluation is a widely used doc-
ument retrieval evaluation metric, the Mean Average Preci-
sion (MAP) [Buckley and Voorhees, 2005]. The table shows
that our kernel-based query expansion either outperforms or
comes close to Terrier’s PRF-based expansion baseline which
is the state-of-the-art. The difference in Ad Hoc 8 can be
explained by applying our method on a reduced term space
which includes approximately 25% of the original terms.

6 Conclusions

In this paper, we developed a graph-based framework for con-
structing text metrics to compare any two arbitrary text com-
ponents. One important feature of our framework is being
global meaning that as opposed to the traditional document
similarity metrics, the metrics produced by our framework
are able to detect the relevance between two text components
for which their corresponding terms neither overlap nor co-
occur in the same sentence/document across the corpus.

The other key feature of our framework is that it produces
a consistent distance measure for two input texts regardless

2http://trec.nist.gov/data.html
3http://www.terrier.org
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Methods Genomic 03 Genomic 04 Ad Hoc 7 Ad Hoc 8

Terrier 0.19 0.31 0.18 0.24
Terrier+PRF 0.22 0.37 0.22 0.26

Terrier+ Kresistance 0.24 0.37 0.22 0.25

Table 4: MAP of methods on document retrieval tasks on TREC data

of their sizes (e.g., comparing a term vs. an abstract). We
achieved this property by generalizing the distance between
two terms to the distance between two sets of terms. To
avoid recalculations in computing the distance between ar-
bitrary sets, we proposed an efficient approximate technique
which uses the results of one-time spectral decomposition to
compute the distance between any two given sets in an online
fashion. Moreover, to scale up our framework for large-scale
corpora, we developed an approximate subsampling tech-
nique which dramatically reduces the order of computations.
We experimentally showed that our technique is reasonably
robust even if we use moderately small subsamples.

To show the merits of our framework in practice, we used
the metrics constructed by our framework for term prediction
and query expansion. In both experiments, our metric outper-
formed the traditional baselines. These very promising results
justify further investigation, refinements and possible deploy-
ment of our framework for solving real world problems.
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