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Abstract. In this work we consider the problem of learning a positive
semidefinite kernel matrix from relative comparisons of the form: “object
A is more similar to object B than it is to C”, where comparisons are
given by humans. Existing solutions to this problem assume many com-
parisons are provided to learn a high quality kernel. However, this can
be considered unrealistic for many real-world tasks since a large amount
of human input is often costly or difficult to obtain. Because of this,
only a limited number of these comparisons may be provided. We pro-
pose a new kernel learning approach that supplements the few relative
comparisons with “auxiliary” kernels built from more easily extractable
features in order to learn a kernel that more completely models the notion
of similarity gained from human feedback. Our proposed formulation is
a convex optimization problem that adds only minor overhead to meth-
ods that use no auxiliary information. Empirical results show that in
the presence of few training relative comparisons, our method can learn
kernels that generalize to more out-of-sample comparisons than methods
that do not utilize auxiliary information, as well as similar methods that
learn metrics over objects.

1 Introduction

The effectiveness of many kernel methods for unsupervised [24,6], semi-supervised
[30,29,27], and supervised [18] learning is highly dependent how meaningful the
input kernel is for modeling similarity among objects for a given task. In practice,
kernels are often built by using a standard kernel function on features extracted
from data. For example, when building a kernel over clothing items, features can
be extracted for each item regarding attributes like size, style, and color. Then, a
predefined kernel function (e.g. the Gaussian kernel function) can be applied to
this feature representation to build a kernel over clothing. However, for certain
tasks, objects may not be represented well by extracted features alone. Con-
sider a product recommendation system for suggesting replacements for out of
stock clothing items. Such a system requires a model of similarity based on how
humans perceive clothing, which may not be captured entirely by features. For
this, it is likely that human input is necessary to construct a meaningful kernel.
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In general, obtaining reliable information from humans can be challenging,
but retrieving relative comparisons of the form “object A is more similar to
object B than it is to object C” has several attractive characteristics. First,
relative comparison questions are less mentally fatiguing to humans compared
to other forms (e.g. quantitative comparison questions: “On a scale from 1 to
10, how similar are objects A and B?”) [10]. Second, there is no need to recon-
cile individual humans’ personal scales of similarity. Finally, relative comparison
feedback can be drawn implicitly through certain human-computer interactions,
such as mouse clicks. In this work, we consider the specific problem of learn-
ing a kernel from relative comparisons; A problem we will refer to as relative

comparison kernel learning (RCKL).
Current RCKL methods [1,22,14] assume that all necessary human feedback

to build a useful kernel is provided. This is often not the case in real-world
scenarios. A large amount of feedback is needed to build a kernel that represents
a meaningful notion of how a human views the relationships among objects, and
obtaining feedback from humans is often difficult or costly. Hence, it is a realistic
assumption that only a limited amount of feedback can be obtained.

In order to learn a meaningful kernel from only a limited number of relative
comparisons we propose a novel RCKL method that learns a combination of aux-
iliary kernels built from extracted features and a learned kernel. The intuition
behind this approach is that while human feedback is necessary to construct
an appropriate kernel, some aspects of how humans view similarity among ob-
jects are likely captured in easily extractable features. If “auxiliary” kernels are
built from these features, then they can be used to reduce the need of many
relative comparisons. To learn the aforementioned combination, we formulate a
convex optimization that adds a only small amount of computational overhead
to traditional RCKL methods. Experimentally, we show that by using auxiliary
information, our method can learn a kernel that accurately models the rela-
tionship among objects from few relative comparisons, including relationships
among objects not explicitly given. More specifically, our method is shown to
generalize to more held out relative comparisons than traditional RCKL meth-
ods. In addition, we compare our method to similar, state-of-the-art methods in
metric learning, and, again, we show that our method generalizes to more held
out relative comparisons.

The remainder of the paper is organized as follows. Section 2 provides our
formal definition of RCKL. Section 3 motivates our problem. Section 4 introduces
a general framework for extending RCKL methods to use auxiliary information.
Section 5 overviews related work. Section 6 presents an evaluation of our method.
Section 7 concludes with future work.

2 Preliminaries

The RCKL problem considered in this work is defined by a set of n objects,
X = {x1, ..., xn} ⊆ X, where X is the set of all possible objects. Similarity
information among objects is given in the form of a set T of triplets:



T = {(a, b, c)|xa is more similar to xb than xc} (1)

The goal is to find a positive semidefinite (PSD) kernel matrix K ∈ R
n×n

that satisfies the following constraints:

∀(a,b,c)∈T : dK(xa, xb) < dK(xa, xc)

Where dK(xa, xb) = Kaa +Kbb − 2Kab

(2)

Here, Kab is the element in the ath row and bth column of K, representing
the similarity between the ath and bth objects. The elements of K can be inter-
preted as the inner products of the objects embedded in a Reproducing Kernel
Hilbert Space (RKHS), HK, endowed with a mapping ΦK : X → HK. With
this interpretation Kaa +Kbb − 2Kab = ‖ΦK(xa)−ΦK(xb)‖22. Thus, learning a
kernel matrix K that satisfies the constraints in (2) is equivalent to embedding
the objects in a space, such that for all triplets (a, b, c) ∈ T , xa is closer to xb
than it is to xc without explicitly learning the mapping ΦK. We say that a triplet
(a, b, c) is satisfied if the corresponding constraint in (2) is satisfied.

One interpretation of (2) is that triplets define a binary relation over dis-
tances among objects. For example, if X = {x1, x2, x3} and T = {(1, 2, 3),
(2, 1, 3)}, then T defines a relation, RT over SX = {(dK(x1, x2), dK(x1, x3),
dK(x2, x3))}, such that RT = {(dK(x1, x2), dK(x1, x3)), (dK(x1, x2), dK(x2, x3))}.
With this in mind, we continue onto the next section where we discuss the RCKL
problem in more depth.

3 The Impact of Few Triplets

To help motivate this work, we provide some insight into why it can be assumed,
in practice, that only a limited number of triplets can be obtained from humans,
and the potential impact it has on learning an accurate kernel. First, we begin
by defining some properties of sets of triplets:

Definition 1. Given a set of triplets T , let T ∞ be the transitive closure of T

Definition 2. Given a set of triplets T , let T trans = T ∞ \ T

Definition 2 simply defines T trans as the set of triplets that can be inferred
by transitivity of triplets in T . For example, if T = {(a, b, c), (c, a, b)} then
T trans = {(b, a, c)}.

Definition 3. A set T of triplets is conflicting if ∃a, b, c : (a, b, c) ∈ T ∞ ∧
(a, c, b) ∈ T ∞

A set of conflicting triplets given by a source can be seen as inconsistent or
contradictory in terms of how the source is comparing objects. In practice, this
can be handled by prompting the source of triplets to resolve this conflict or by
using simplifying methods such as in [16]. We defer to these methods in terms



of how conflicts can be dealt with and consider the non-conflicting case. Let
T total be the set of all non-conflicting triplets that would be given by a source,
if prompted with every relative comparison question over n objects. We begin
by stating the following:

Theorem 1. For n objects, |T total| = 1
2 (n

3 − 3n2 + 2n)

Theorem 1 is proven in Sec. A.1 of the appendix. For even a small number
of objects, obtaining most of T total from humans would be too difficult or costly
in many practical scenarios, especially if feedback is gained through natural use
of a system, such as an online store, or if feedback requires an expert’s opinion,
such as in the medical domain. Let T ⊆ T total be the set of triplets actually
obtained from a source. We say that a triplet t is unobtained if t ∈ T total \ T .
To build a model that accurately reflects the true notion of similarity given by
a source of triplets, an RCKL method should learn a kernel K that not only
satisfies the obtained triplets, but also many of the triplets in T total, including
those that were unobtained. This means that given small number of obtained
triplets, an RCKL method should somehow infer a portion of the unobtained
triplets in order to build an accurate model of similarity. In the remainder of
this section we consider two possible scenarios where unobtained triplets could
potentially be inferred.

For the following analysis, we assume that triplets are obtained one at a
time. Also, we assume that the order in which triplets are obtained is random.
This could be a reasonable assumption in applications, such as search engines,
where the goal of asking relative comparison questions that are most useful
in the learning process comes secondary to providing the best search results,
and as such, no assumptions can be made regarding which relative comparison
questions are posed to a source. Thus, the worst-case in the following analysis
is with adversarial choice of both T total and the order in which triplets are
obtained. Let Ti be the set of triplets given by an adversary after i triplets are
given. Under these assumptions, we state the following theorem:

Theorem 2. In the worst-case, ∀i=1,...,|T total| : T trans
i \ Ti = ∅

Theorem 2 is proven in Sec. A.2 of the appendix. This states that in the
worst case, no unobtained triplet can inferred by transitive relationship among
obtained triplets. As a result, it may fall on the RCKL methods themselves to
infer triplets. Many RCKL methods attempt to do this by assuming the learned
kernel K has low rank. By limiting the rank of K to r < n, an RCKL method
may effectively infer unobtained triplets by eliminating those that cannot be
satisfied by a rank r kernel. For instance, assume an RCKL method attempts to
learn a rank r kernel from T , and assume the triplets (a, b, c) and (a, c, b) are not
in T . If the set T ∪(a, c, b) cannot be satisfied by a rank r kernel, but T ∪(a, b, c)
can, then the RCKL method can only learn a kernel in which (a, b, c) is satisfied.
Let T rank−r be the set of all unobtained, not otherwise inferred, triplets that are
inferred when an RCKL method enforces rank(K) ≤ r. For adversarial choice of
T total we can state the following theorem:



Theorem 3. In the worst case, ∀t∈T rank−r : t /∈ T total

Theorem 3 is proven in Sec. A.3 of the appendix. This theorem shows that it
could be the case that any triplet inferred by limiting the rank ofK is not a triplet
a source would give. If a large portion of T total cannot be obtained or correctly
inferred, then much of the information needed for an RCKL method to learn a
kernel that reflects how a source views the relationship among objects is simply
not available. The goal of this work is to use auxiliary information describing the
objects to supplement obtained triplets in order to learn a kernel that can satisfy
more unobtained triplets than traditional methods. In the following section we
propose a novel RCKL method that extends traditional RCKL methods to use
auxiliary information.

4 Learning a Kernel with Auxiliary Information

In this section we introduce a generalized framework for traditional RCKL meth-
ods. Then, we expand upon this to create two new frameworks: One that com-
bines auxiliary kernels to satisfy triplets, and another that is a hybrid of the
previous two.

4.1 Traditional RCKL

Many RCKL methods can be generalized by the following optimization problem:

min
K

E(K, T ) + λtrace(K)

s.t. K � 0,
(3)

The first term, E(K, T ), is a function of the error the objective incurs for K
not satisfying triplets in T . The second term regularizesK by its trace. Here, the
trace is used as a convex approximation of the non-convex rank function. The
rank of K directly reflects the dimensionality of the embedding of the objects in
HK. A low setting of the hyperparameter λ favors a more accurate embedding,
while a high value prefers a lower rank kernel. The PSD constraint ensures that
K is a valid kernel matrix, and makes (3) a semidefinite program (SDP) over
n2 variables. For the remainder of this paper we will refer to (3) as Traditional
Relative Comparison Kernel Learning (RCKL-T).

4.2 RCKL via Conic Combination

In general, if there are few triplets in T relative to n, there are many different
RCKL solutions. Without using information regarding how the objects relate
other than T , RCKL-T methods may not be able to prefer solutions that gen-
eralize well to the many unobtained triplets. However, objects can often be
described by features drawn from data. From these features, A auxiliary ker-
nels K1, ...,KA ∈ R

n×n can be constructed using standard kernel functions to



model the relationship among objects. If one or more auxiliary kernels satisfy
many triplets in T , they may represent factors that influence how some of the
unobtained triplets would have been answered. For instance, if a user considers
characteristics such as color and size to be important when comparing clothing
items, then kernels built from color and size may model a trend in how the user
answers triplets over clothing items. If these kernels do represent a trend, then
they could not only satisfy a portion of triplets in T , but also a portion of the
unobtained triplets. We wish to identify which of the given auxiliary kernels
model trends in given triplets and combine them to satisfy triplets in T . An
approach popularized by multiple kernel learning methods is to combine kernels
by a weighted sum:

K′ =

A
∑

a=1

µaKa µ ∈ R
A
+ (4)

K′ is a conic combination of PSD kernels, so itself is a PSD kernel [18]. K′

induces the mapping ΦK′ : X → R
D [7]:

ΦK′(xi) = [
√
µ1Φ1(xi), ...,

√
µAΦA(xi)] (5)

Here Φj : X → R
dj is a mapping from an object into the RKHS defined by

Kj , and D =
∑A

a=1 da. In short, (4) induces a mapping of the objects into a
feature space defined as the weighted concatenation of the individual kernels’
feature spaces. Consider, then, the following optimization:

min
µ

E(K′, T ) + λ‖µ‖1
s.t. µ ≥ 0

(6)

By learning the weight vector µ, (6) scales the individual concatenated fea-
ture spaces to emphasize those that reflect T well, and reduce the influence of
those that do not. Because of its relationship to multiple kernel learning, we call
this formulation RCKL-MKL.

Since the auxiliary kernels are fixed, regularizing them by their traces has no
effect on their rank nor the rank of K′. Instead, we choose to regularize µ by
its ℓ1-norm, a technique first made popular for its use in regression [23]. For a
proper setting of λ, this has the effect of eliminating the contribution of kernels
that do not help in reducing the error by forcing their corresponding weights to
be exactly zero. Note that RCKL-MKL does not learn the elements of a kernel
directly, and as a result is a linear program over A variables.

By limiting the optimization to only a conic combination of the predefined
auxiliary kernels, RCKL-MKL does not necessarily produce a kernel that satisfies
any triplets in T . To capture the potential generalization power of using auxiliary
information while retaining the ability to satisfy triplets in T , we propose to
learn a combination of the auxiliary kernels and K0, a kernel similar to the one
in RCKL-T whose elements are learned directly. By doing this, we force RCKL-
T to prefer solutions more similar to the auxiliary kernels, which could satisfy



unobtained triplets. We call this hybrid approach Relative Comparison Kernel
Learning with Auxiliary Kernels (RCKL-AK).

4.3 RCKL-AK

RCKL-AK learns the following kernel combination:

K′′ = K0 +

A
∑

a=1

µaKa µ ∈ R
A
+, K0 � 0 (7)

(7) is a conic combination of kernel matrices that induces the mapping:

ΦK′′(xi) = [Φ0(xi),
√
µ1Φ1(xi), ...,

√
µAΦA(xi)] (8)

The intuition behind this combination is that auxiliary kernels that satisfy
many triplets are emphasized by weighing them more, and K0, which is learned
directly, can satisfy the triplets that cannot be satisfied by the conic combination
of the auxiliary kernels. Consider, again, the example of a person comparing
clothing items on an online store. She may compare clothes by characteristics
such as color, size, and material, which are features that can be extracted and
used to build the auxiliary kernels. However, other factors may influence how
she compares clothes, such as designer or pattern, which may be omitted from
the auxiliary kernels. In addition, she may have a personal sense of style that is
impossible to be gained from features alone. K0, and thus features induced by
the mapping Φ0, is learned to model factors she uses to compare clothes that are
omitted from the auxiliary kernels or cannot be modeled by extracted features.
Using (7), we propose the following optimization:

min
K0,µ

E(K′′, T ) + λ1trace(K0) + λ2‖µ‖1
s.t. K0 � 0, µ ≥ 0

(9)

This objective has two regularization terms: trace regulation on K0, and
ℓ1-norm regularization on µ. Increasing λ1 limits the expressiveness of K0 by re-
ducing its rank, while increasing λ2 reduces the influence of the auxiliary kernels
by forcing the elements of µ towards zero. Thus, λ1 and λ2 represent a trade-off
between finding a kernel that is more influenced by K0 and one more influenced
by the auxiliary kernels. Like RCKL-T, RCKL-AK is an SDP, but with n2 + A
optimization variables. For practical A, RCKL-AK can be solved with minimal
additional computational overhead to RCKL-T.

One desirable property of (9) is that under certain conditions, it is a convex
optimization problem:

Proposition 1. If E is a convex function in both K0 and µ, then (9) is a convex

optimization problem.

Proposition 1 is proven in Sec. B.1 of the appendix. While Prop. 1 may
seem simple, it allows us to leverage traditional RCKL methods that contain



error functions that are convex in K0 and µ in order to solve (9) using convex
optimization techniques. Two such error functions are discussed in the following
subsections.

STE-AK Stochastic Triplet Embedding (STE) [14] proposes the following prob-
ability that a triplet is satisfied:

pKabc =
exp(−dK(xa, xb))

exp(−dK(xa, xb)) + exp(−dK(xa, xc))

If this probability is high, then xa is closer to xb than it is to xc. As such, we
minimize the negative sum of the log-probabilities over all triplets.

ESTE (K′′, T ) = −
∑

(a,b,c)∈T

log(pK
′′

abc) (10)

With this error function we call our method STE-AK and can state the following
proposition:

Proposition 2. (10) is convex in both K0 and µ

Proposition 2 is proven in Sec. B.2 of the appendix. By Props. 1 and 2,
STE-AK is a convex optimization problem.

GNMDS-AK Another potential error function is one motivated by Generalized
Non-Metric Multidimensional Scaling (GNMDS) [1] which uses hinge loss:

EGNMDS (K
′′, T ) =

∑

(a,b,c)∈T

max(0, dK′′(xa, xb)− dK′′ (xa, xc) + 1) (11)

We call our method with this error function GNMDS-AK. The hinge loss
ensures that only triplets that are unsatisfied by a margin of one increase the
objective. GNMDS-AK is also a convex optimization problem, due to Prop. 1
and the following:

Proposition 3. (11) is convex in both K0 and µ.

Proposition 3 is proven in Sec. B.3 of the appendix. For a more rigorous
comparison of RCKL methods see [14]. We propose to solve both STE-AK and
GNMDS-AK via projected gradient descent methods; both of which are outlined
in Sec. C of the appendix.

5 Related Work

RCKL-AK can be viewed as a combination of multiple kernel learning (MKL)
and non-metric multidimensional scaling (NMDS). Learning a non-negative sum
of kernels, as in (4), appears often in MKL literature, which is focused on finding



efficient methods for learning a combination of predefined kernels for a learning
task. The most widely studied problem in MKL has been Support Vector Clas-
sification [13,17,26,9]. To our knowledge there has been no application of MKL
techniques to the task of learning a kernel from relative comparisons.

The RCKL problem posed in Sec. 2 is a special case of the NMDS problem
first formalized in [1], which in turn is a generalization of the Shepard-Kruskal
NMDS problem [21]. GNMDS, STE, and Crowd Kernel Learning (CKL) [22] are
all methods that can be applied to the RCKL problem. However, none of these
methods consider inputs beyond relative comparisons. Our work creates a novel
RCKL method that uses ideas popularized in MKL research to incorporate side
information into the learning problem.

Relative comparisons have also been considered in metric learning [19,4,8].
In metric learning the focus is on learning a distance metric over objects that
can be applied to out-of-sample objects. This work focuses specifically on finding
a kernel over given objects that generalizes well to out-of-sample (unobtained)
triplets. In this way, the goal of metric learning methods is somewhat differ-
ent than the one in this work. Two recent works propose methods to learn a
Mahalanobis distance metric with multiple kernels: Metric Learning with Mul-
tiple Kernels (ML-MKL) [28] and Multiple Kernel Partial Order Embedding
(MKPOE) [16]; the latter focusing exclusively on relative distance constraints
similar to those in this work. The kernel learned by RCKL-AK induces a map-
ping that is fundamentally different than those learned by these metric learning
techniques. Consider the mapping induced by one of the metric learning methods
proposed in both [16] (Section 4.2) and [28] (Equation 6):

Φµ,Ω(x) = Ω [
√
µ1Φ1(x), ...,

√
µAΦA(x)] (12)

The derivation of this mapping can be found in Sec. D of the appendix. Here
Ω ∈ R

mxD produces a new feature space by transforming the feature spaces
induced by the auxiliary kernels. Without Ω, (12) learns a mapping similar to
(5). The matrix Ω plays a role similar to the one K0 plays in RCKL-AK: it
is learned to satisfy triplets that the auxiliary kernels alone cannot. Instead of
linearly transforming the auxiliary kernel feature spaces, RCKL-AK implicitly
learns new features that are concatenated onto the concatenated auxiliary kernel
feature spaces (see (8)).

In both works, the authors propose non-convex optimizations to solve for
their metrics, and, in addition, different convex relaxations. A critical issue with
the convex solutions is that they employ SDPs over n2 ∗A (MKPOE-Full) and
n2∗A2 (NR-ML-MKL) optimization variables, respectively. For moderately sized
problems these methods are impractical. To resolve this issue, [16] propose a
method that imposes further diagonal structure on the learned metric, reducing
the number of optimization variables to n∗A (MKPOE-Diag), but in the process,
greatly limit the structure of the metric. RCKL-AK is a convex SDP with n2 +
A optimization variables that does not impose strict structure on the learned
kernel. Unfortunately, by learning the unique kernel K0 directly and not the
mapping Φ0 or a generating function of K′′, our method cannot be applied to



out-of-sample objects. Data analysis that does not require the addition of out-
of-sample objects can be used over that kernel. There are many unsupervised
and semi-supervised techniques that fit this use case.

6 Experiments

In order to show that RCKL-AK can learn kernels from few triplets that general-
ize well to unobtained triplets, we perform two experiments: one using synthetic
data, and one using real-world data. In both experiments, we compare STE and
GNMDS variants of RCKL-T, RCKL-MKL, and RCKL-AK, as well as non-
convex and convex variants of MKPOE. For the MKPOE methods, we consider
a triplet (a, b, c) to be satisfied if dM (xa, xb) < dM (xa, xc), where dM is the dis-
tance function defined by the metric. The STE and GNMDS implementations
used are from [14], which are made publicly available on the authors’ websites.
The MKL and AK versions were extended from these implementations. MKPOE
implementations were provided to us by their original authors. All auxiliary ker-
nels are normalized to unit trace, and all hyperparameters were validated via
line or grid search using validation sets.

6.1 Synthetic Data

To generate synthetic data we begun by randomly generating 100 points in seven,
independent, two-dimensional feature spaces where both dimensions were over
the interval [0, 1]. Then, we created seven linear kernels, K0, ...,K6 from these
seven spaces. We combined four of the seven kernels:

K∗ =
1

2
K0 +

1

4
K1 +

1

6
K2 +

1

12
K3 (13)

We then used K∗ as the ground truth to answer all possible, non-redundant
triplets. Following the experimental setup in [22], we divided these triplets into
100 triplet “rounds”. A round is a set of triplets where each object appears once
as the head a being compared to randomly chosen objects b and c. From the
pool of rounds, 20 were chosen to be the training set, 10 were chosen to be the
validation set, and the remaining rounds were the test set. This was repeated
ten times to create ten different trials.

Next, we took all seven feature spaces and perturbed each point with ran-
domly generated Gaussian noise. From these new spaces we created seven new
linear kernels K̂0, ..., K̂6, of which K̂1, ..., K̂6 were used as the input auxiliary ker-
nels in the experiment. Here, K̂1, ..., K̂3 are kernels that represent attributes that
influence how the ground truth makes comparisons between objects. K̂4, ..., K̂6

contain information that is not considered when making comparisons, and K0

represents intuition about the objects that was not or cannot be input as an
auxiliary kernel.

We wish to evaluate the performance of each method as the number of triplets
increases. With more triplets each method should be able to build models that



satisfy more unobtained triplets. To show this we performed the following ex-
periment. For each trial, the 20 training rounds and 10 validation rounds are
divided into ten subsets, each containing two training rounds and one valida-
tion round. Starting with one of the subsets, each model is trained, setting the
hyperparameters through cross-validation on the validation set, and evaluated
on the test set. Then, another subset is added to the training and validation
sets. We repeat this process until all ten subsets are included. We evaluate the
methods by the total number of unsatisfied triplets in the test set divided by the
total number of triplets in the test set (test error). Here, the test set represents
unobtained triplets. For all of the following figures, error bars represent a 95%
confidence interval.

Discussion: Figure 1 shows the mean test error over the ten trials as a
function of the number of triplets in the training set. Both RCKL-MKL methods
improve performance initially, but achieve their approximate peak performance
early and fail to improve as triplets are added. This supports the claim that
RCKL-MKL is limited by only being able to combine auxiliary kernels through
a conic combination. Both RCKL-T methods perform much worse than either of
the methods that use auxiliary kernels. Without the side information provided
by the auxiliary kernels, RCKL-T cannot generalize to test triplets with few
training triplets.
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Fig. 1: Mean test error over ten trials of the synthetic data set

We believe this experiment demonstrates the utility of both K0 and the
auxiliary kernels in RCKL-AK. With very few training triplets, the RCKL-AK
methods relied on the auxiliary kernels, thus the performance is similar to the
RCKL-MKL methods. As triplets are added, the RCKL-AK methods used K0

to satisfy the triplets that a conic combination of the auxiliary kernels could not.
Further evidence for this is shown by the fact that the rank of K0 increased as
the number of training triplets increased. For example, for STE-AK, the mean
rank of K0 was 85.6, 94.2, and 96.2 for 200, 400, and 600 triplets in the training



set, respectively. In other words, the optimal settings of λ1 and λ2 made K0

more expressive as the number of triplets increased.
Ideally, the RCKL-AK methods should eliminate K̂4, K̂5, and K̂6 from the

model by reducing their corresponding weights µ4, µ5, and µ6 to exactly zero.
Figure 2 shows the values of the µ parameter for STE-AK and GNMDS-AK
as the number of triplets increase. Both RCKL-AK methods correctly identify
the three auxiliary kernels from which the ground truth kernel was created by
setting their corresponding weight parameters to be non-zero. In addition, they
assigned weights to the kernels roughly proportional to the ground truth. The
three noise kernels were assigned very low, and often zero weights. The RCKL-
MKL methods learned similar values for the elements of µ than those in Fig. 2.
Since RCKL-MKL learned the relative importance of the auxiliary kernels with
only few triplets, it had achieved approximately its peak performance and could
not improve further with the addition of more triplets.
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(b) GNMDS-based models

Fig. 2: Mean values of µ on synthetic data

Figure 3a shows the same STE-AK, GNMDS-AK, and GNMDS-MKL error
plots as Fig. 1, but also includes three variations of MKPOE: A non-convex
formulation (MKPOE-NC), and two convex formulations (MKPOE-Full and
MKPOE-Diag). All metric learning methods perform very similarly, yet worse
than RCKL-MKL and RCKL-AK. We believe that the MKPOE methods must
transform the auxiliary kernel space drastically to satisfy the few triplets. By
doing this they lose much of the information in the auxiliary kernels that allows
RCKL-MKL and RCKL-AK methods to form more general solutions.

6.2 Music Artist Data

We also performed an experiment using comparisons among popular music artists.
The aset400 dataset [5] contains 16,385 relative comparisons of 412 music artists
gathered from a web survey, and [15] provides five kernels built from various fea-
tures describing each artist and their music. Two of the kernels were built from
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Fig. 3: Mean test error over ten trials

text descriptions of the artists, and three were built by extracting acoustic fea-
tures from songs by each artist.

The aset400 dataset provides a challenge absent in the synthetic data: not all
artists appear in the same number of triplets. In fact, some artists never appear
as the head of a triplet at all. As a result, this dataset represents a setting where
feedback was gathered non-uniformly amongst the objects. In light of this, in-
stead of training the models in rounds of triplets, we randomly chose 2000 triplets
as the development set; the rest were used as the test set. Like before, we broke
the development set into ten subsets, and progressively added subsets to the
working set, training and testing each iteration. Ten percent of the working set
was used for validation and 90 percent was used for training. The experiment was
performed ten times on different randomly chosen train/validation/test splits.

Discussion: The results, shown in Fig, 4, are similar to those for the syn-
thetic data with a few key differences. The RCKL-MKL methods did not per-
form as well relative to the RCKL-T methods. This could be attributed to the
fact that the auxiliary kernels here did not reflect the triplets as well as those
in the synthetic data. Only one kernel was consistently used in every iteration
(the kernel built from artist tags). The rest were either given little weight or
completely removed from the model. As with the synthetic data, with 200 and
400 training triplets the RCKL-AK methods performed as well as their respec-
tive RCKL-MKL counterparts, but as more triplets were added to the training
set, the RCKL-AK methods began to perform much better. In this experiment,
the RCKL-T methods became more competitive, but were outperformed sig-
nificantly by RCKL-AK much of the time. This, again, could be because the
auxiliary kernels were less useful than with the synthetic data.

Figure 3b compares the performance of MKPOE-NC and MKPOE-Diag
on the aset400 dataset to the RCKL-AK methods as well as GNMDS-MKL.
MKPOE-Full could not be included in this experiment due to its impractically
long run-time for an experiment of this size. Both MKPOE methods perform
similarly, and seem to suffer greatly from the lack of meaningful auxiliary kernels,
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Fig. 4: Mean test error over ten trials of the aset400 data set

but do improve as the number of triplets increases. Still, over all experiments,
the MKPOE methods have statistically significantly higher test error than both
RCKL-AK methods.

7 Conclusions and Future Work

In this work we propose a method for learning a kernel from relative comparisons
called Relative Comparison Kernel Learning with Auxiliary Kernels (RCKL-AK)
that supplements given relative comparisons with auxiliary information. RCKL-
AK is a convex SDP that can be solved by adding slight computational overhead
to traditional methods and more efficiently than many metric learning alterna-
tives. Experimentally, we show that RCKL-AK learns kernels that generalize to
more out of sample relative comparisons than the aforementioned traditional
and metric learning methods.

There are three main directions of future work. First, we wish to create a
more efficient formulation of RCKL-AK. While common in solving SDPs, the
most time-consuming step in RCKL-AK is performing eigendecomposition in
order to project the kernel onto the PSD cone after each gradient step. In [12]
the authors create a kernel learning method that eliminates the need to project
onto the PSD cone. We will investigate extending their method to use auxiliary
kernels. Second, we would like to extend our method to out-of-sample objects. In
[2], generating functions are learned for kernels that were learnt through various
popular techniques (LLE, Isomap, etc.). Similarly, we will attempt to learn a
generating function for our kernel. Finally, we will explore practical applications
of our method, specifically, the use of RCKL-AK for product recommendation.

A Proof of Theorems

A.1 Theorem 1

Below we prove Thm. 1 from Section 3



Proof. For n objects there are
(

n
2

)

pair-wise distances between objects (we do
not consider distances between objects and themselves). A triplet is a compar-
ison between two pair-wise distances with a common object. Consider a single
pairwise distance, and without loss of generality, let this distance be d(xa, xb).
There exists exactly n− 2 other pairwise distances that contain xa (each with a
different second object that is not xa or xb), and exactly n−2 other pairwise dis-
tances that contain xb. Thus, each pair-wise distance can be compared to 2n− 4
other distances. As a result there are exactly, 1

2

(

n
2

)

∗ (2n− 4) = 1
2 (n

3− 3n2+2n)
triplets (the 1

2 comes from the fact that a single triplet (a, b, c) counts as an
answer to the relative comparison “is xa more similar to xb than xc” and “is xa

more similar to xc than xb”).

A.2 Theorem 2

To prove Thm. 2 from Section 3 we use the directed acyclic graph represen-
tation of relative comparisons given in Section 2 of [16]. A set of triplets T is
represented by a graph G = (V , E). Here, a vertex represents a distance between
two objects, and a an edge represents a relative comparison. Let v{1,2} ∈ V be
a vertex representing the distance between objects x1 and x2 indexed by the
unordered pair {1, 2}. Note the slight notational change from the main body
of the paper: Instead of indexing objects by alphabetic characters, we choose
to index them by natural numbers for convenience. As an example, the triplet
(1, 2, 3) can be represented by a directed edge e = (v{1,2} → v{1,3}) ∈ E from
vertex v{1,2} to vertex v{1,3}. Because this work considers triplets, vertices need
to have a common object between them for there to be a edge between them.
As an example, vertices v{1,2} and v{1,3} can have an edge between them, but
v{1,2} and v{3,4} cannot. Any cycle in G constitutes a conflict in relative com-
parisons. For this work we assume that there exists no conflicts or that conflicts
can be resolved either algorithmically, such as in [16] or by querying the source
of triplets again. From this point forward we say an edge is “valid” if it does
not create a conflict and it connects two vertices that have a common object
between them. An edge, and thus the corresponding triplet, can be inferred if
there exists a path of length greater than 1. For example, if there is an edge
from v{1,2} to v{1,3}, and an edge from v{1,3} to v{1,4} then the edge from v{1,2}
to v{1,4} can be inferred.

Theorem 2 considers the case where triplets are given one at a time. Let ti,
be the ith triplet to be given, and Ti = {tj |j ≤ i}. Let T trans

i be the triplets
that can be inferred by Ti. For this analysis we study the directed acyclic graph
analogues of these sets of triplets: Gi and Gtrans

i . Let ei ∈ Ei be the edge given
at time i. We assume that an edge given at time i has not been given at time
j < i. Next, we introduce the following recursive adversarial strategy for giving
edges to this graph (square brackets ([]) to denote an ordered list of elements
with subscripts indicating each element’s position in the list):

The following lines describe the process in which edges are given by Alg. 1
in more detail:



Algorithm 1 Adversarial Strategy

1: function Adversary(n ∈ N>2)
2: if n == 3 then

3: e1 ← (v{1,3} → v{1,2})
4: e2 ← (v{2,3} → v{1,2})
5: e3 ← (v{2,3} → v{1,3})
6: idx← 3
7: else

8: idx← 1

2
((n− 1)3 − 3(n− 1)2 + 2(n− 1))

9: [e1, ..., eidx]←Adversary(n− 1)
10: Vnew ←GetNewVertices(n)
11: [vold1 , ..., vold

(n−1

2
)
]←FindOldVertexOrder([e1, ..., eidx])

12: for j = 1 to
(

n−1

2

)

do

13: [eidx+1, eidx+2]←AddRemainingEdges(voldj , Vnew)
14: idx← idx+ 2
15: end for

16: for all vertices in Vnew do

17: vrnd ← SelectRandomVertex(Vnew)
18: [eidx+1,...,eidx′ ], idx′ ←AddRemainingEdges(vrnd, V

new)
19: idx← idx′

20: Vnew ← Vnew\vrnd

21: end for

22: end if

23: return [e1, ..., eidx]
24: end function



1. Lines 2-6: If n=3 (the base case) give the three edges on lines 3-5.
2. Line 9: Get the adversarial solution for n-1 objects.
3. Line 10: Call the procedure “GetNewVertices” which returns the set of

vertices in the graph for n objects that are not in the graph for n−1 objects.
This set is all vertices with n their indexing pair. We will call these vertices
“new vertices” and all edges that connect to at least one new vertex “new
edges”. We will call the vertices in the solution that are not new vertices “old
vertices”, and the edges that connect two old vertices “old edges”. Note, that
e1, ..., eidx on line 9 contains every old edge and no new edges.

4. Line 11: Call the procedure “FindOldVertexOrder”, which takes the ordered
set of old edges given as input. This procedure orders all old vertices in the
order in which they appear in the incoming side of an edge. If an old vertex
has no incoming edges it is added to the end of the list. For instance, if
the input is the solution for the base case, the output would be the list
[v{1,2}, v{1,3}, v{2,3}].

5. Line 12: Loop for each old vertex.
6. Line 13: Call the procedure “AddRemainingEdges” which exhaustively

gives all remaining edges involving voldi in any order and points them to-
wards voldi , assigning them to eidx+1 and eidx+2. After this, all valid edges
to or from voldi are given. Note that these new edges given here point from
new vertices to voldi .

7. Line 14: The index for the given edge numbers is incremented.
8. Line 16: Loop for each new vertex
9. Line 17: Call procedure “SelectRandomVertex” which randomly selects a

vertex from Vnew and assigns it to vrnd
10. Line 18: Call the procedure “AddRemainingEdges” which gives all remain-

ing valid edges eidx+1,...,eidx′ involving vrnd and have them point toward
vrnd. Note that these edges only connect new vertices together.

11. Lines 19 and 20: Update the current number of edges given and remove
vrnd from Vnew so it does not get chosen in line 21 next iteration.

12. Line 23: Return the given edges, their order indicated by their indices.

Next, we state the following lemmas:

Lemma 1. Algorithm 1 exhaustively gives all valid edges for a given n.

Proof. The loop beginning on line 12 loops over all old vertices and exhaustively
gives all edges involving these vertices. The loop beginning at line 16 does the
same for all new vertices. Since the sets of old and new vertices together include
every vertex, valid edges are given by line 23 and are returned.

In the subsequent proofs we will refer to any valid edge e /∈ Ei to be “ungiven”
at time i. A fact used to prove the following two lemmas is that when the
adversarial strategy gives an edge at time i, a vertex or group of vertices can
never be used to infer an ungiven edge if two conditions hold:

1. If all valid edges have been given involving a vertex or a group of vertices at
time i− 1



2. If there does not exist an edge leaving a vertex or group of vertices to a
vertex with at least one ungiven edge at time i − 1

The first condition is somewhat obvious in that if all edges are given involving
a vertex or group of vertices, then no ungiven edges involving this vertex can
be inferred, because there are no ungiven edges involving this vertex. Thus, the
only way for a vertex or group of vertices can be used to infer an ungiven edge is
that a path through them is used to infer an ungiven edge between two external
vertices. The second condition ensures that no such path exists. As a result,
regardless of what edge the adversary gives at time i, the ungiven inferred edges
of graph Gi is always the same as that on Gi with all vertices or groups of vertices
removed that satisfy these two conditions. With this we can prove the following
two lemmas:

Lemma 2. Line 13 of Alg. 1 never gives edges that infer ungiven edges.

Proof. Consider line 11 of Alg. 1. It orders the old vertices in the order in which
they appear as the vertex being pointed to in the solution for n objects. Any
vertex in this order only points to those that appear before it in the list, because
when a vertex is chosen by this algorithm all valid edges involving this vertex
are given pointing inward. Consider the first iteration of the for loop starting on
line 12. The first vertex in this list has only incoming edges (namely, v1,2 due to
the base case). Adding all remaining ungiven edges inward to this node cannot
create any inferred edges because all old edges are going inward due to it being
first in the list, thus Lem. 2 holds. In addition, after line 13 this node satisfies
the first condition above. It also satisfies the second condition as there exists
no outgoing edges, thus no paths can go through it. By these two conditions, it
can be eliminated from the graph. By doing so, all edges connecting it to other
vertices are also eliminated. As a result, the second vertex effectively becomes
the first vertex in the list, making it only have incoming edges. In the next
iteration the second vertex is chosen, and, again, all remaining edges are pointed
inward. Adding of these edges also satisfies Lem. 2, the same conditions hold,
and it can effectively be removed. The loop repeats this for all old vertices. As
such, for all iterations of the loop starting on line 12, line 13 never gives edges
that infer ungiven edges.

Lemma 3. Line 18 of Alg. 1 never gives edges that infer ungiven edges.

Proof. By line 16 all edges connected to or from any old vertex has already been
given via the loop staring on line 12. Thus, the first condition above is satisfied
for all old vertices. Line 13 only adds edges from new vertices to old vertices,
no edge leaves the subgraph of old vertices to the subgraph of new vertices.
This satisfies the second condition. As a result, all old vertices can be eliminated
from consideration. What is left is just the new vertices with no edges connecting
them to any other vertex. Consider the first iteration of the loop starting on line
16. Selecting a vertex vrnd and giving all edges pointing inward cannot infer any
edges, because it has only incoming edges. Thus, this operation does not violate



Lem. 3. In addition, the first condition is satisfied when all edges are given, and
since there are no paths through this vertex, condition 2 is satisfied. As a result,
this vertex too can then be eliminated. For the next iteration we now have one
less new vertex, but, again, no edges connecting the ones left. This loop repeats
until all edges are given.

Given these three lemmas we proceed by proving the following proposition:

Proposition 4. For a given n ∈ N>2 , there exists an adversarial strategy for

giving edges such that ∀i∈{1,...,|Etotal|}, Etrans
i \Ei = ∅

Proof. Let Ei = {e1, ..., ei} where {e1, ..., ei} is the first i triplets in the ordered
set returned by Alg. 1. First, we need to ensure Ei can be constructed for all
i ∈ {1, ..., |Etotal|}. Lemma 1 states that Alg. 1 gives all edges for a given n, thus
proving this. Lastly, we need to show that Alg. 1 never adds an edge to the se-
quence of edges that will infer an ungiven edge. To prove this, we use induction.
The base case is n = 3, which is the fewest number of objects for which triplets
can be defined. The base case is defined on lines 2-6 of Alg. 1. The edges e1 and
e2 do not infer the third and final edge e3, thus Prop. 4 is true for the case n = 3.

Line 9 in Alg. 1 returns the solution for n − 1. Thus, if Alg. 1 never gives
an edge that can infer an ungiven edge after this point in the algorithm, the
inductive step is proven. The only two lines after line 9 that add edges are lines
13 and 18. By Lem. 2, line 13 never adds an edge that can infer an ungiven edge
and by Lem. 3 neither does line 18. As a result the inductive step and thus Prop.
4 is proven.

Finally, with these propositions we can prove Thm. 2 from Section 3:

Proof. By Prop. 4, there exists an adversarial strategy such that, for all i ∈
{1, ..., |Etotal|}, Etrans

i \Ei = ∅. By construction of the directed acyclic graphs
representing sets of triplets we can construct sets Ti from Ei, T trans

i from Etrans
i ,

and T total from Etotal. Thus we can state, ∀i=1,...,|T total| : T trans
i \Ti = ∅ for the

worst case defined by Alg. 1.

A.3 Theorem 3

We begin by stating that the RCKL problem is equivalent to learning an em-
bedding of objects in a space that satisfies distance constraints imposed by the
triplets T . Limiting the comparisons to triplets makes this embedding problem
a special case of non-metric multidimensional scaling (NMDS). Also, the rank
of the learned kernel K is equivalent to the rank of the learned embedding (i.e.
if K = AAT , then rank(K) = rank(A). As a result, enforcing rank(K) ≤ r is
equivalent to enforcing that the objects be embedded in R

d where d ≤ r. With
this in mind we state the following proposition from Appendix A of [16]:

Proposition 5. Any set of objects X with a partial order of distances C can be

embedded in R
n−1



When C is a total ordering over all pairs, the problem of embedding X in a
space that respects the distances in C reduces to NMDS [11]. This implies that
given any objects X and any non-conflicting set of triplets T , the objects in X
can be embedded in R

n−1 and satisfy all triplets in T . Equivalently, given any
set of objects X and any non-conflicting set of triplets T , all triplets in T can
be satisfied by a rank n− 1 kernel. With this in mind we can prove Thm. 3 from
Section 3:

Proof. Assume an RCKL method enforces rank(K) = r. By Prop. 5, r must be
less than n− 1 to infer any triplets. Without loss of generality let t = (a, b, c) ∈
T rank−r. Because, t /∈ T trans by definition of T rank−r, T ∪ (a, c, b) does not
cause a conflict. An adversary can construct T total with rank rtotal > r, such
that (a, c, b) ∈ T total, because any non-conflicting set of triplets T total can be
satisfied by some choice of rtotal ≤ n− 1 from Prop. 5. By virtue of the fact that
T total contains no conflicting triplets, we can then deduce that (a, b, c) /∈ T total.
Trivially, this can be said of any rank less than r, as well. Thus, any triplet
t ∈ T rank−r is not an element in T total through adversarial choice of T total,
proving Thm. 3.

B Proofs of Propositions

The strategy employed throughout this section to prove the stated functions
are convex is to build each using convex combinations of convex functions. In
order to use this strategy, we need to establish the following Lems. (Above each
Lemma is a reference to a source for each lemma, respectively).

Section 3.2.1 of [3]:

Lemma 4. If f and g are both convex functions, then so is their sum f + g.

Section 2.3.2 of [3]:

Lemma 5. Affine functions of the form f(x) = Ax + b, where A ∈ R
mxn,

x ∈ R
n, and b ∈ R

m are convex in x

Section 3.2.3 of [3]:

Lemma 6. If f and g are convex functions, then their point-wise maximum,

max (f(x), g(x)), is also convex.

In addition, we will use the concept of logarithmic convexity:

Definition 4. A function f is logarithmically convex (log-convex) if f(x) > 0
for all x ∈ domf and log f is convex.

Which we then use to state the following Lemma.

Section 3.5.2 of [3]:

Lemma 7. If f and g are both log-convex functions, then so is their sum f +

g.



Finally, for the sake of notational brevity, let us define the following:

dabK = dK(xa, xb)

Dabc
K = dK(xa, xb)− dK(xa, xc)

These short-hand versions of our established notation will be used throughout
this section.

B.1 Proposition 1

Proof of Prop. 1:

Proof.

1. In order for (9) to be a convex optimization problem, it’s objective and
constraints must be convex in the optimization variables.

2. By Lem. 4, if E(K′′, T ), λ1trace(K0), and λ2‖µ‖1 are convex, then the
objective in (9) is convex.

3. It is an assumption of the proposition that E(K′′, T ) is convex.
4. λ1trace(K0) is defined as a constant times the sum of the diagonal elements

of the matrix K0, which is a sum of convex functions (Lem. 4).
5. λ2‖µ‖1 is defined as a constant times the the sum of the absolute values of

the elements of µ, which is a sum of convex functions (Lem. 4)
6. By lines 2, 3, 4, and 5, the objective in (9) is convex.
7. The positivity constraint on µ is trivially convex.
8. The positive semidefinite constraint is known to be convex [25].
9. By lines 7 and 8, both constraints of (9) are convex.
10. By lines 1, 6, and 9, (9) is a convex optimization problem.

B.2 Proposition 2

Proof of Prop. 2:

Proof.

1. Moving the negation into the sum, (10) becomes the sum of terms of the
following form:

− log
(

pK
′′

abc

)

(14)

= − log

(

exp
(

−dab
K′′

)

exp (−dac
K′′) + exp

(

−dab
K′′

)

)

= − log

(

1

1 + exp
(

Dabc
K′′

)

)

= − log(1) (15)

+ log
(

exp
(

Dabc
K′′

)

+ 1
)

(16)



2. By Lem. 4, if (14) is convex for all triplets (a, b, c), then (10) is convex.
3. By Lem. 4, (14) is convex if both (15) and (16) are convex.
4. (15) is a constant and trivially convex.
5. By Definition 4, if exp

(

Dabc
K′′

)

+ 1 is log-convex, then (16) is convex.

6. By Lem. 7 if exp
(

Dabc
K′′

)

and 1 are both log-convex, then exp
(

Dabc
K′′

)

+ 1 is
log-convex.

7. 1 is a constant and trivially log-convex.
8. The codomain of the exponential function is R

+, so exp
(

Dabc
K′′

)

> 0 for all
K′′, which satisfies the first condition for log-convexity.

9. To show log
(

exp
(

Dabc
K′′

))

is convex, thus satisfying the second condition of
log-convexity, we start by stating the following equivalence by using the
definition of K′′ (7):

log
(

exp
(

Dabc
K′′

))

= Dabc
K′′

= Dabc
K0

+

A
∑

i=1

µiD
abc
Ki

(17)

10. By Lem. 4 if Dabc
K0

and
∑A

i=1 µiD
abc
Ki

are convex, then (17) is convex.

11. Let kabc =
(

Dabc
K1

, ..., Dabc
KA

)

. Then,
∑A

i=1 µiD
abc
Ki

= kT
abcµ.

12. kT
abcµ is an affine function of µ that has the form f(µ) = Aµ + b where

A = kT
abc and b is 0.

13. By Lem. 5 and the previous step, kT
abcµ is convex in µ.

14. Using the definition of kernel distance from (2) (Note the slight change in
notation: Kab

0 refers to the ath column and bth row of K0):

Dabc
K0

= Kbb
0 + 2Kac

0 −Kcc
0 − 2Kab

0 (18)

15. By Lem. 4, if the individual terms of (18) are convex then (18) is convex.
16. The individual terms of (18) are simply elements ofK0 multiplied by scalers,

which are convex in K0.
17. By lines 3-16, (14) is convex.
18. By lines 1, 2, and 17, (10) is convex.

B.3 Proposition 3

Proof of Prop. 3:

Proof.

1. By Lem. 4 if max(0, Dabc
K′′ + 1) is convex for any triplet (a, b, c), then (11) is

convex.
2. By Lem. 6, if 0 and Dabc

K′′ + 1 are convex, then max(0, Dabc
K′′ + 1) is convex.

3. 0 is trivially convex.
4. By Lem. 4, if 1 and Dabc

K′′ are convex, then Dabc
K′′ + 1 is convex.



5. 1 is trivially convex.
6. Steps 9-16 of Section B.2 showedDabc

K′′ is convex in the optimization variables.
7. By lines 2-6, max(0, Dabc

K′′ + 1) is convex for any triplet (a, b, c).
8. By line 1 and 6, (11) is convex

C Auxiliary Kernel Algorithms

In this section we state and discuss the algorithms used to solve STE-AK and
GNMDS-AK. They share many steps, so we begin stating STE-AK and dis-
cussing it in detail, and then state GNMDS-AK and highlight how it differs
from STE-AK.

C.1 STE-AK

After initialization, Alg. 2 repeats the following steps until convergence:

1. Line 6: Take a gradient step for K0 (trace regularization included)
2. Line 7: Take a gradient step for µ (ℓ1-norm regularization included)
3. Line 8: Project K0 onto the positive semidefinite cone
4. Line 9: Project the elements of µ to be non-negative
5. Line 10: Update K′′

Algorithm 2 STE-AK Projected Gradient Descent

Input:

X = {x1, ..., xn},
T = {(a, b, c)|xa is more similar to xb than xc},
K1, ...,KA ∈ R

n×n, λ1 ∈ R
+, λ2 ∈ R

+, η ∈ R
+

Output:

K′′ ∈ R
n×n

1: t← 0
2: K0

0 ← In×n

3: µ0
1, ..., µ

0
A ←

1

A

4: K′′ ← K0
0 +

∑A

a=1
µ0
aKa

5: repeat

6: Kt+1
0 ← Kt − η ∗ (∇KtESTE(K

′′, T ) + λ1 ∗ I
n×n)

7: µt+1 ← µt − η ∗ (∇µtESTE(K
′′, T ) + λ2)

8: Kt+1
0 ← ΠPSD(Kt+1

0 )
9: µt+1 ← Π+(µ

t+1)
10: K′′ ← Kt+1

0 +
∑A

a=1
µt+1
a Ka

11: t← t+ 1
12: until convergence



Projection onto the positive semi-definite cone is done by performing eigen-
decomposition of the matrix K0, assigning all negative eigenvalues to zero, and
then reassembling K0 from the original eigenvectors and the new eigenvalues
[20]. Projection of the elements of µ to be non-negative is simply done by as-
signing all negative elements to be zero. The ℓ1-norm regularization in Alg. 2
is performed by adding λ2 = λ2 ∗ 1A to the gradient (Line 7). Since µ is con-
strained to the non-negative orthant, the subgradient of the ℓ1-norm function
needs only to be over the non-negative orthant, thus λ2 is an acceptable sub-
gradient. Moreover, since we then project the elements of µ to be non-negative,
we get the desired effect of the ℓ1-norm regularization: the reduction of some
elements to be exactly zero.

C.2 GNMDS-AK

Algorithm 3 GNMDS-AK Projected Gradient Descent

Input:

X = {x1, ..., xn},
T = {(a, b, c)|xa is more similar to xb than xc},
K1, ...,KA ∈ R

n×n, λ1 ∈ R
+, λ2 ∈ R

+, η ∈ R
+

Output:

K′′ ∈ R
n×n

1: t← 0
2: K0

0 ← In×n

3: µ0
1, ..., µ

0
A ←

1

A

4: K′′ ← K0
0 +

∑A

a=1
µ0
aKa

5: repeat

6: T ′ ← getActiveT riplets (T ,K′′)

7: Kt+1
0 ← Kt − η ∗ (∇KtE

′

GNMDS(K
′′, T ′) + λ1 ∗ I

n×n)

8: µt+1 ← µt − η ∗ (∇µtE
′

GNMDS(K
′′, T ′) + λ2)

9: Kt+1
0 ← ΠPSD(Kt+1

0 )
10: µt+1 ← Π+(µ

t+1)
11: K′′ ← Kt+1

0 +
∑A

a=1
µt+1
a Ka

12: t← t+ 1
13: until convergence

The differences between Algs. 2 and 3 are in lines 6, 7, and 8.

1. Line 6: The function getActiveT riplets checks each triplet in T to see if it
violates the margin constraint dK′′(xa, xc) − dK′′ (xa, xb) < 1. The set T ′ is
assigned to be the set containing only triplets that violate this constraint.
What this effectively does is form a set of only the triplets that would con-
tribute to the error EGNMDS, because the point-wise maximum would be
non-zero.



2. Lines 7 and 8: These two lines are similar to lines 6 and 7 in Alg. 3,
respectively. The first difference is in the error function E

′

GNMDS:

E
′

GNMDS (K, T ) =
∑

(a,b,c)∈T

dK(xa, xb)− dK(xa, xc) + 1

This is simply the sum over the triplets of the second argument in the point-
wise maximum of EGNMDS. Because the second argument of E

′

GNMDS in

these lines is the set T ′, E
′

GNMDS (K
′′, T ′) is equivalent to EGNMDS (K

′′, T )
for all possible triplets, but is differentiable everywhere.

D Derivation of Equation (12)

We begin by stating the definition of the distance metric learned in Equation
(5) of [28]:

d2
A,µ(xi, xj)=

A
∑

l=1

µl

(

Ki
l −K

j
l

)T

A

A
∑

l=1

µl

(

Ki
l −K

j
l

)

= (Φµ (xi)−Φµ (xj))
T
Φµ (X )

T
AΦµ (X ) (Φµ (xi)−Φµ (xj))

(19)

Here, Ki
l is the ith row of the lth auxiliary kernel, and A ∈ R

nxn. Also:

Φµ (x) = [
√
µ1Φ1 (x) , ...,

√
µAΦA (x)] (20)

Finally, Φµ (X ) is the matrix in which the rows are the mappings of the
elements of X to Hµ by Φµ. Note the slight change in notation from [28]. The
domain of their mapping Φµ is over vector representations of the objects (x).
In this work we assume that the mapping can exist over elements in a set (x)
that do not necessarily need to be vectors. By factoring the matrix A = BTB

and defining Ω = BΦµ (X ) we can distribute Ω through (19):

d2
A,µ(xi, xj)

= (Φµ (xi)−Φµ (xj))
T
ΩTΩ (Φµ (xi)−Φµ (xj))

= (ΩΦµ (xi)−ΩΦµ (xj))
T
(ΩΦµ (xi)−ΩΦµ (xj))

= d2 (ΩΦµ (xi) ,ΩΦµ (xj))

(21)

Where d2 (xi,xj) is the squared Euclidean distance between xi and xj . In this
form and by (20), we can see that learning the proposed Mahalanobis distance
metric in Equation (5) of [28] is equivalent to learning a squared Euclidean
distance of points transformed by the following linear transformation:

Φµ,Ω(x) = ΩΦµ (x)

= Ω [
√
µ1Φ1(x), ...,

√
µAΦA(x)]

Which is the mapping defined in (12) from Section 5.
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