
An Efficient Probabilistic Framework for Multi-Dimensional
Classification

Iyad Batal
Computer Science Department

University of Pittsburgh

iyad@cs.pitt.edu

Charmgil Hong
Department of Computer Science

University of Pittsburgh

charmgil@cs.pitt.edu

Milos Hauskrecht
Department of Computer Science

University of Pittsburgh

milos@cs.pitt.edu

ABSTRACT
The objective of multi-dimensional classification is to learn
a function that accurately maps each data instance to a vec-
tor of class labels. Multi-dimensional classification appears
in a wide range of applications including text categoriza-
tion, gene functionality classification, semantic image label-
ing, etc. Usually, in such problems, the class variables are
not independent, but rather exhibit conditional dependence
relations among them. Hence, the key to the success of
multi-dimensional classification is to effectively model such
dependencies and use them to facilitate the learning. In this
paper, we propose a new probabilistic approach that repre-
sents class conditional dependencies in an effective yet com-
putationally efficient way. Our approach uses a special tree-
structured Bayesian network model to represent the condi-
tional joint distribution of the class variables given the fea-
ture variables. We develop and present efficient algorithms
for learning the model from data and for performing ex-
act probabilistic inferences on the model. Extensive experi-
ments on multiple datasets demonstrate that our approach
achieves highly competitive results when it is compared to
existing state-of-the-art methods.

Categories and Subject Descriptors
I.2.6 [LEARNING]: General

Keywords
Multi-dimensional classification, Bayesian network, MAP in-
ference

1. INTRODUCTION
In traditional classification learning, each data instance

is associated with a single class variable and the goal is to
predict the class label for future instances. However, there
are many real-world applications where each data instance is
naturally associated with multiple class variables (a vector
of labels). To name a few, in text categorization [8, 17], a
document can simultaneously cover multiple topics, such as
politics and economy ; In bioinformatics [4, 17], each gene

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505594.

may be associated with several functional classes, such as
protein synthesis, transcription and metabolism; In semantic
scene and video classification [2, 10], a scene object can be
classified as urban, building and road ; In clinical informatics,
a patient may become resistant to multiple drugs for HIV
treatment.

Multi-Dimensional Classification (MDC) learning deals with
the above mentioned situations and assumes each instance
is associated with d discrete-valued class variables Y1, ..., Yd.
The goal is to learn a function that assigns to each instance,
represented by its feature vector x = (x1, ..., xm), the most
probable assignment of the class variables y = (y1, ..., yd).
Learning such a function can be very challenging due to the
exponential number of possible class labelings that may be
assigned to each instance.

The simplest solution to MDC is to completely ignore class
correlations by constructing a classifier that predicts each
class variable independently from the other classes [2, 4, 12].
This approach often fails because it does not take advantage
of the dependency relations between the classes, which is
the key to facilitate the learning of MDC. For example, a
document that is related to politics is unlikely to be labeled
as sports. To overcome this limitation, several methods have
been proposed in the literature. These methods account
for class dependencies by using different strategies, such as
instance-based learning [18, 3], output coding [7, 19, 20],
multi-dimensional Bayesian networks [14, 1] and classifier
chains [11, 5, 16, 15].

In this paper, we propose a new probabilistic method
called Conditional Tree-structured Bayesian Network (CTBN)
which models the conditional dependencies between classes
in an effective yet computationally efficient way. Briefly,
CTBN learns a Bayesian network to represent the distribu-
tion of all class variables conditioned on the feature vari-
ables P (Y1, ..., Yd|X). The network structure is defined by
making the feature vector X a common parent for all class
variables. Besides that, each class variable Yi is allowed to
have at most one other class variable Yπ(i) as a parent (in
addition to X). In other words, the conditional dependency
relations between class variables follow a directed tree. The
conditional probability distribution of each class conditioned
on its parents P (Yi|X, Yπ(i)) is modeled using a probabilistic
classifier, such as logistic regression. An example of CTBN
with four class variables is depicted in Figure 1.

To learn CTBN structure from data, we present an effi-
cient algorithm for finding the structure that has the highest
conditional log likelihood score. To classify new instances,
we present an exact inference algorithm, which computes
the most probable assignment of the classes in linear time
in the number of classes.



Figure 1: An example of a CTBN model that defines

the conditional distribution P (Y1, Y2, Y3, Y4|X).

Note that CTBN is related to some recent MDC meth-
ods. In particular, it shares some similarities with the multi-
dimensional Bayesian network classifier (MBC) approach
[14, 1], in that both use Bayesian networks to solve the MDC
problem. The main difference, however, is that MBC at-
tempts to model the full joint distribution over both features
and classes P (Y,X) (a generative model), while CTBN di-
rectly models the conditional distribution of the classes given
the features P (Y|X) without wasting effort on modeling the
features (a discriminative model). As a result, learning MBC
structure from data is much harder than learning CTBN1.
Furthermore, MBC can only handle discrete features, while
CTBN can handle both numeric and discrete features. Note
that CTBN is also related to the classifier chains (CC) ap-
proach [11, 5, 16, 15] as both use classifiers that incorporate
other classes as input. However, the classification process is
very different: CC-based methods apply an ad-hoc heuris-
tic by simply propagating class predictions along the chain,
while CTBN performs proper probabilistic inference to find
the optimal output.

2. PROBLEM DEFINITION
Multi-Dimensional Classification (MDC) [1] are classifi-

cation problems in which each data instance is associated
with d discrete-valued class variables Y1, ..., Yd. We are given
labeled training data D = {x(k),y(k)}nk=1, where x(k) =

(x
(k)
1 , ..., x

(k)
m ) is the m-dimensional feature vector of the

k-th instance (the input) and y(k) = (y
(k)
1 , ..., y

(k)
d ) is its d-

dimensional class vector (the output). The goal is to learn
from D a function h that assigns to each instance, repre-
sented by a vector of m features, a vector of d class values:

h : Rm → Ω(Y1)× ...× Ω(Yd)

where Ω(Yi) denotes the sample space of class variable Yi
and Ω(Y1)× ...×Ω(Yd) denotes the space of joint configura-
tions of all class variables.

Note that Multi-Label Classification (MLC) can be seen
as a special case of MDC. In the MLC setting, each instance
is associated with a subset of labels from a set of d labels.
By using the notation above, each instance x(k) would be
associated with a binary class vector y(k) ∈ {0, 1}d, where

y
(k)
i = 1 if x(k) is associated with the i-th label and y

(k)
i = 0

otherwise.
Developing a probabilistic approach to MDC requires mod-

eling and learning the conditional joint distribution P (Y|X),
where Y = (Y1, ..., Yd) is a random variable for the class vec-

1The search space of MBC (increases with the dimensional-
ity of the input m) is much larger than that of CTBN (does
not depend on m).

tor and X is a random variable for the feature vector. Under
the 0-1 loss function, the Bayes optimal classifier h∗ should
assign to instance x the most probable assignment of the
class variables, known as the maximum a posterior (MAP)
estimation:

h∗(x) = arg max
y1,...,yd

P (Y1 =y1, ..., Yd=yd|X=x) (1)

In general, solving Equation 1 has exponential complexity
because it requires evaluating all possible value assignments
to the class variables.

The goal of this paper is to develop a parametric model
that allows us to effectively estimate P (Y|X) from data and
to perform MAP inference (i.e., classification) in a compu-
tationally efficient way.

Notation: From hereafter, we will sometimes abbreviate
the expressions by omitting variable names, for example we
write P (Y1 =y1, ..., Yd=yd|X=x) simply as P (y1, ..., yd|x).

3. WHY NOT LEARNING INDEPENDENT
CLASSIFIERS

The simplest solution to MDC is to learn an independent
classifier for each class variable [2, 4, 12], which is known
as the binary relevance (BR) approach. More specifically,
BR learns a separate classifier to predict each class Yi : i ∈
{1, ..., d} and determines the output of a new instance x by
simply aggregating the predictions of all classifiers.

Probabilistically, BR relies on the simplifying assumption
that all class variables are conditionally independent of each
other given x:

P (y1, ..., yd|x) =

d∏
i=1

P (yi|x)

Under this assumption, the optimal prediction of BR (solv-
ing Equation 1) is simply the class vector that has the high-
est conditional marginal probability for each element:

hBR(x) =
(

arg max
y1

P (y1|x), ..., arg max
yd

P (yd|x)
)

(2)

However, this simple approach does not always produce
correct results, as we show in the following example.

Example 1. Assume the conditional joint distribution of
class variables Y1 and Y2 for a specific instance x is shown
in Table 1. The optimal classification for x (according to
Equation 1) is h∗(x) = (Y1 =1, Y2 =0). However, the result
of BR (according to Equation 2) is hBR(x) = (Y1 =0, Y2 =0).

P (Y1, Y2|X=x) Y1 = 0 Y1 = 1 P (Y2|X=x)
Y2 = 0 0.2 0.45 0.65
Y2 = 1 0.35 0 0.35

P (Y1|X=x) 0.55 0.45

Table 1: The joint distribution of class variables
Y1 and Y2 conditioned on instance x. The optimal
(MAP) prediction is h∗(x) = (Y1 =1, Y2 =0).

In the following, we propose the Conditional Tree-structured
Bayesian Network (CTBN) model to allow more elaborate
conditional dependency relations between the class variables.

4. THE CONDITIONAL TREE-STRUCTURED
BAYESIAN NETWORK MODEL



In the CTBN model, the feature vector X is defined to be
a common parent for all class variables (similar to BR). In
addition to X, each class variable can have at most another
class variable as a parent (without creating a cycle). That is,
the conditional dependency relations between class variables
follow a directed tree. We chose to restrict the dependency
structure to a tree for the following reasons:

1. The optimal structure can be learned using a simple
and efficient learning algorithm.

2. The prediction can be done efficiently using exact in-
ference.

4.1 Representation and Parametrization
Representation: Let T be a CTBN model and let π(i, T )

be the parent class of class Yi in T (by convention, π(i, T ) =
φ if Yi does not have a parent class). The joint distribution
of class vector (y1, ..., yd) conditioned on feature vector x is
now expressed as follows:

P (y1, ..., ydx) =

d∏
i=1

P (yi|x, yπ(i,T ))

In Figure 1, we showed an example CTBN with four class
variables (Y1, Y2, Y3, Y4). The conditional joint distribution
of class assignment (y1, y2, y3, y4) given x according to this
network is defined as follows:

P (y1, y2, y3, y4|x) = P (y3|x)·P (y2|x, y3)·P (y1|x, y2)·P (y4|x, y2)

Parametrization: The parametrization of the CTBN
model corresponds to specifying the conditional probabil-
ity distribution (CPD) of each class variable Yi conditioned
on its parents: P (Yi|X, Yπ(i,T )). The standard parametriza-
tion of Bayesian networks uses conditional probability tables
(CPT) to define the distribution of each variable conditioned
on every possible configuration of its parents. However, the
CPT style parametrization is not feasible for the CTBN
model. The reason is that the feature vector X, which is a
common parent for all variables, can be a high-dimensional
vector of continuous values, discrete values or a mixture of
both (we cannot enumerate all possible configurations of X).

To overcome this difficulty, we represent the CPDs using
probabilistic prediction functions. More specifically, for each
class Yi : i ∈ {1, ..., d}, we approximate its CPD by learning
a different probabilistic classifier fiv(X) for each possible
value v of the parent class:

P̃ (Yi|X=x, Yπ(i,T ) =v) = fiv(x) (3)

Note that we can use several standard probabilistic clas-
sifiers in the CTBN model, such as logistic regression, näıve
Bayes or the maximum entropy model. In our experiments,
we use logistic regression with L2 regularization.

4.2 Learning the Structure
In the previous section, we described the CTBN model

and how to learn its parameters when the structure is known.
In this section, we describe how to automatically learn the
structure from data.

Our objective is to find the tree structure that best ap-
proximates the conditional joint distribution P (Y|X), which
corresponds to the tree that maximizes the conditional log
likelihood (CLL) of the data. To do this, we partition the
data into two parts: training data Dt and hold-out data Dh.
Given a CTBN T , we use Dt to train its parameters and we

use Dh to compute its score, which corresponds to the CLL
of Dh given T (adopting the standard iid assumption):

Score(T ) =
∑

(x(k),y(k))∈Dh

d∑
i=1

log
(
P̃ (y

(k)
i |x

(k), y
(k)

π(i,T ))
)
(4)

In the following, we provide an algorithm to efficiently
obtain the optimal CTBN T ∗ (the model that has the max-
imum score) without having to explicitly evaluate all of the
exponentially many possible tree structures.

We start by defining a weighted directed graph G = (V,E)
as follows:

• There is one vertex Vi for each class variable Yi.

• There is a directed edge Ej→i from each vertex Vj to
each vertex Vi (G is complete). Furthermore, each
vertex Vi has a self loop Ei→i.

• The weights of the edges are defined as follows: The
weight of edge Ej→i, denoted as Wj→i, is the CLL of
class Yi conditioned on X and Yj :

Wj→i =
∑

(x(k),y(k))∈Dh

log
(
P̃ (y

(k)
i |x

(k), y
(k)
j )
)

if i 6= j

The weight of self-loop Ei→i, denoted as Wφ→i, is the
CLL of Yi conditioned only on X.

By using this definition of edge weights and switching the
order of the summations in Equation 4, we can rewrite the
score of T simply as the sum of its edge weights (by conven-
tion, a node without a parent has a self loop):

Score(T ) =

d∑
i=1

Wπ(i,T )→i

Now we have transformed the problem of finding the op-
timal CTBN into the problem of finding the directed tree in
G that has the maximum sum of edge weights. The solution
can be obtained by solving the maximum branching (ar-
borescence) problem [13], which finds the maximum weight
directed tree in a weighted directed graph.

Complexity: Computing the edge weights for the com-
plete graph G requires estimating P̃ (Yi|X, Yj) for all d2 pairs
of classes. Finding the maximum branching inG can be done
in O(d2) using Tarjan’s implementation [13]. Therefore, the
overall complexity is O(d2) times the complexity of learning
the probabilistic classifiers (e.g., logistic regression).

4.3 Prediction
In order to make a prediction for a new instance x, we

should find the MAP assignment of class variables according
to the CTBN model (solve Equation 1). This problem is
NP-hard for general structure Bayesian networks. However,
since we have restricted our structure to a tree, we can solve
the problem efficiently using exact inference.

In particular, we perform inference using a variant of the
max-sum algorithm [9] that we design for the CTBN model.
This algorithm first computes the local CPTs for each node
Yi by applying the corresponding classifier for each possible
value of the parent class (see Equation 3). After that, it
performs two phases to obtain the optimal prediction. In the
first phase, the algorithm sends messages upward (from the
leaves to the root) where each node Yi applies the following
steps: i) it computes the sum of the logarithm of its local



CPT and all messages sent from its children, ii) maximizes
the result over its value and iii) sends it to the parent node.
In the second phase, the algorithm propagates the optimal
assignments downward.

Complexity: The inference algorithm described above
runs in O(d), where d is the number of class variables.

Example 2. Consider the example in Figure 2, where we
show the conditional probability tables of a CTBN model for
a specific instance x (obtained by applying the classifiers on
x). The optimal prediction for x is (Y3 = 0, Y2 = 1, Y1 =
0, Y4 = 0) (has a probability of 0.2016), which can be obtain
by our exact inference algorithm. On the other hand, if we
apply a CC-based method [11, 16, 15] using the topological
order of classes in the tree, we get the suboptimal prediction
(Y3 = 1, Y2 = 0, Y1 = 1, Y4 = 0) (has a probability of 0.1512).
The reason CC fails is that it starts incorrectly by predicting
Y3 = 1 and propagates this error down the tree.

Figure 2: An example showing the CPTs of a CTBN

model for a specific instance x.

5. EXPERIMENTS

5.1 Data
We use ten publicly available datasets that are obtained

from different domains such as music recognition (emotions),
biology (yeast), semantic image labeling (scene) and text
classification (enron, TMC 2007 and RCV1 datasets). The
RCV1 datasets are obtained from manually categorized news
articles made available by Reuters. The characteristics of
the datasets are summarized in Table 2. For each dataset,
we show the number of instances, number of feature vari-
ables (input dimensionality), number of class variables (out-
put dimensionality). In addition, we show two statistics: 1)
label cardinality (LC), which is the average number of class
variables per instance that have value one and 2) distinct
label set (DLS), which is the number of all distinct configu-
rations of classes that appear in the data.

5.2 Methods
We compare the performance of CTBN to several recently

proposed methods:

• Binary Relevance (BR) [2, 4]. This simple baseline
method learns to classify each class variable indepen-
dently from the other class variables.

• Classification with heterogeneous features (CHF) [6].
This method stacks the two-levels of classifiers. The
first level learns to classify each class using the original
features (same as BR), while the second level learns to

classify each class using the original features plus the
output of the first level.

• Classifier chains (CC) [11]. This method defines a
chain of classifiers, such that each classifier incorpo-
rates the predictions of all previous classifiers in the
chain. As in [11], we set the order of classes to Y1 <
Y2, ... < Yd and perform classification by propagating
predictions along the chain (see Example 2).

• Multi-label k-nearest neighbor (MLKNN) [18]. This
method learns a classifier for each class by combining
KNN with Bayesian inference. As suggested in [18],
the number of neighbors is set to 10 and Euclidean
distance is used to measure similarity of instances.

• Instance-based learning by logistic regression (IBLR)
[3]. This method combines instance-based and model-
based classification by using class information of the
neighbors as additional features for logistic regression.
Similar to MLKNN, the number of neighbors is set to
10 and Euclidean distance is used.

• Maximum margin output coding (MMOC) [20]. This
method is the state-of-the-art in multi-label output
coding. MMOC applies a maximum margin formu-
lation to encode the output, which promotes both dis-
criminative and predictable codes. The decoding pa-
rameter λ is set to 1 as suggested by the authors.

Note that BR, CHF, CC, IBLR and CTBN are all con-
sidered meta-learners because they can apply different clas-
sifiers (e.g., different probabilistic classifiers can be used to
estimate the CPDs in CTBN). So to eliminate additional ef-
fects that may bias the results, we use L2-penalized logistic
regression for all of these methods and choose the regular-
ization parameters by cross validation.

5.3 Evaluation measures
We consider three different measures to evaluate the suc-

cess of MDC:

• Exact match accuracy (EMA) computes the percent-
age of the instances whose predicted class vector is
exactly the same as the true class vector (all classes
are predicted correctly).

• Conditional log likelihood loss (CLL-loss) is only de-
fined for probabilistic methods as follows:

CLL-loss =

n∑
k=1

log

(
1

P (y(k)|x(k))

)
We can see that the “loss” for a test instance x(k) is
small if the predicted probability of the true class vec-
tor y(k) is close to 1; and the loss is large if the prob-
ability of y(k) is close to 0.

• Micro F1 computes the number of the true positives,
false positives and false negatives for each class vari-
able independently and then aggregates them using
micro-averaging to compute an overall F1 score.

Note that EMA is appropriate in the MDC settings be-
cause it evaluates the success of the method in finding the
mode of the conditional joint distribution P (Y|X) (see Sec-
tion 2). However, EMA may become overly stringent when
the output dimensionality is large. CLL-loss is very use-
ful for probabilistic methods because it evaluates how much
probability mass the method assigns to the true class vec-
tor. For example, if two methods misclassify an instance



Dataset #Instances #Features #Classes LC DLS Domain
Emotions 593 72 6 1.87 27 music

Yeast 2,417 103 14 4.24 198 biology
Scene 2,407 294 6 1.07 15 image
Enron 1,702 1,001 53 3.38 753 text

TMC 2007 28,596 30,438 22 2.16 1,102 text
RCV1 top10 (S1) 6,000 8,394 10 1.31 69 text
RCV1 top10 (S2) 6,000 8,304 10 1.21 70 text
RCV1 top10 (S3) 6,000 8,328 10 1.22 74 text
RCV1 top10 (S4) 6,000 8,332 10 1.22 79 text
RCV1 top10 (S5) 6,000 8,367 10 1.31 76 text

Table 2: Datasets characteristics (LC: label cardinality, DLS: distinct label set)

Dataset BR CHF CC MLKNN IBLR MMOC CTBN
Emotions 0.266 ∗ 0.315 0.272 ∗ 0.283 ∗ 0.332 0.336 0.335

Yeast 0.147 ∗ 0.162 ∗ 0.194 0.179 ∗ 0.204 0.214 ~ 0.195
Scene 0.521 ∗ 0.610 ∗ 0.633 0.629 0.644 0.684 ~ 0.626
Enron 0.162 0.169 0.173 0.078 ∗ 0.163 - 0.168

TMC 2007 0.315 ∗ 0.322 ∗ 0.323 ∗ 0.165 ∗ 0.316 ∗ - 0.329
RCV1 top10 (S1) 0.278 ∗ 0.357 ∗ 0.429 ∗ 0.205 ∗ 0.279 ∗ - 0.448
RCV1 top10 (S2) 0.420 ∗ 0.466 ∗ 0.517 ∗ 0.288 ∗ 0.417 ∗ - 0.531
RCV1 top10 (S3) 0.442 ∗ 0.485 ∗ 0.540 ∗ 0.327 ∗ 0.446 ∗ - 0.561
RCV1 top10 (S4) 0.494 ∗ 0.532 ∗ 0.579 ∗ 0.354 ∗ 0.491 ∗ - 0.590
RCV1 top10 (S5) 0.412 ∗ 0.457 ∗ 0.497 ∗ 0.276 ∗ 0.411 ∗ - 0.538
#win/#tie/#loss 9/1/0 8/2/0 7/3/0 9/1/0 6/4/0 0/1/2

Table 3: Performance of each method on the benchmark datasets in terms of exact match accuracy. Marker ∗/~ indi-

cates whether CTBN is statistically superior/inferior to the compared method (using paired t-test at 0.05 significance

level). The last row shows the total number of win/tie/loss for CTBN against the compared method (e.g, #win is how

many times CTBN significantly outperforms that method).

Dataset BR CHF CC MLKNN IBLR CTBN
Emotions 154.2 ∗ 146.6 ∗ 170.8 ∗ 151.7 ∗ 143.4 ∗ 136.2

Yeast 1,497 ∗ 1,491 ∗ 2,284 ∗ 1,464 ∗ 1,434 ∗ 1,112
Scene 342.1 ∗ 316.8 ∗ 386.5 ∗ 310.9 ∗ 284.5 ~ 291.2
Enron 1,290 ∗ 1,272 ∗ 1,295 ∗ 1,301 ∗ 1,285 ∗ 1,239

TMC 2007 8,685 ∗ 8,809 ∗ 8,808 ∗ 13,249 ∗ 8,651 ∗ 8,388
RCV1 top10 (S1) 1,386 ∗ 2,201 ∗ 1,684 ∗ 1,873 ∗ 1,379 ∗ 960
RCV1 top10 (S2) 1,181 ∗ 2,221 ∗ 1,418 ∗ 1,687 ∗ 1,172 ∗ 894
RCV1 top10 (S3) 1,177 ∗ 2,157 ∗ 1,500 ∗ 1,674 ∗ 1,171 ∗ 941
RCV1 top10 (S4) 1,051 ∗ 1,722 ∗ 1,273 ∗ 1,532 ∗ 1,036 ∗ 794
RCV1 top10 (S5) 1,240 ∗ 2,272 ∗ 1,426 ∗ 1,795 ∗ 1,234 ∗ 925
#win/#tie/#loss 10/0/0 10/0/0 10/0/0 10/0/0 9/0/1

Table 4: Performance of each method on the benchmark datasets in terms of conditional log likelihood loss.

Dataset BR CHF CC MLKNN IBLR MMOC CTBN
Emotions 0.646 ∗ 0.674 0.623 ∗ 0.656 ∗ 0.690 0.687 0.684

Yeast 0.636 0.638 0.629 ∗ 0.646 0.662 ~ 0.649 ~ 0.642
Scene 0.682 ∗ 0.724 0.697 ∗ 0.736 0.757 ~ 0.724 0.725
Enron 0.566 0.570 0.577 ~ 0.449 ∗ 0.567 - 0.568

TMC 2007 0.688 0.698 ~ 0.690 ~ 0.505 ∗ 0.689 ~ - 0.687
RCV1 top10 (S1) 0.451 ∗ 0.516 0.511 0.298 ∗ 0.459 ∗ - 0.519
RCV1 top10 (S2) 0.550 ∗ 0.584 0.586 0.317 ∗ 0.546 ∗ - 0.590
RCV1 top10 (S3) 0.561 ∗ 0.592 ∗ 0.593 0.364 ∗ 0.566 ∗ - 0.598
RCV1 top10 (S4) 0.609 ∗ 0.637 0.640 0.404 ∗ 0.608 ∗ - 0.635
RCV1 top10 (S5) 0.565 ∗ 0.596 0.596 0.314 ∗ 0.566 ∗ - 0.596
#win/#tie/#loss 7/3/0 1/8/1 3/5/2 8/2/0 5/2/3 0/2/1

Table 5: Performance of each method on the benchmark datasets in terms of micro F1.

(according to EMA), CLL-loss still favors the one that as-
signs higher probability to the correct output. Finally, note
that micro F1 is not very suitable for MDC because it does
not consider the correlations between classes (see [5, 16]).
However, we report it in our results as it has been used in
several other papers such as [20, 21].

5.4 Results
All experimental results (Tables 3 to 5) are obtained us-

ing ten-fold cross validation. To evaluate the statistical sig-

nificance of performance difference, we apply paired t-tests
at 0.05 significance level. We use markers ∗/~ to indicate
wether CTBN is significantly better/worse than the com-
pared method.

Table 3 shows the EMA of the methods. We show the re-
sults of MMOC for only three datasets (emotions, yeast and
scene) because it did not finish on the remaining data2. We

2MMOC did not finish one round of the learning within a
24 hours time limit.



Dataset BR CHF CC MLKNN IBLR MMOC CTBN
Emotions 0.4 0.9 0.4 0.4 4.8 744.1 2.0

Yeast 7 16 7 7 89 5,405 43
Scene 12 25 12 10 133 2,718 39
Enron 33 80 35 21 152 - 517

TMC 2007 785 1,874 890 12,859 66,698 - 5,596
RCV1 top10 (S1) 185 375 176 3,476 14,769 - 744
RCV1 top10 (S2) 181 374 180 3,460 14,173 - 759
RCV1 top10 (S3) 176 385 179 3,563 14,267 - 756
RCV1 top10 (S4) 193 391 184 3,460 14,244 - 808
RCV1 top10 (S5) 159 355 167 3,019 13,135 - 691

Table 6: Learning time (in seconds) of each method on the benchmark datasets.

can see that CTBN outperforms the other methods for most
datasets. For example, CTBN is significantly better than
CC on seven datasets, significantly better than MLKNN
on nine datasets and significantly better than IBLR on six
datasets (see the last row of Table 3). The only exception
is the MMOC method, which outperforms CTBN on Yeast
and Scene datasets. Although very accurate, MMOC is com-
putationally very expensive (see Table 6) and does not scale
up to large data.

Table 4 shows the CCL-loss of the methods. Note that we
could not compute CLL-loss for MMOC because it is not a
probabilistic method. We can see that CTBN clearly outper-
forms all other methods in terms of CLL-loss. The reason is
that CTBN is learned to optimize the conditional log likeli-
hood. Furthermore, it applies proper probabilistic inference
for prediction, which produces very accurate probabilistic
estimates. On the other hand, CC performs very poorly (it
provides a bad estimate of the conditional distribution as
noted by [5]) because of its ad-hoc classification heuristic.
Table 5 shows that CTBN also produces competitive results
in terms of the micro F1 score.

Lastly, Table 6 shows the learning times of the different
methods. BR, CC and CHF are all very fast because they
do not involve any structure learning. CTBN is also efficient
and it can scale up to large data. We can see that on all of
the RCV1 top10 datasets, CTBN is more than four times
faster than MLKNN and fifteen times faster than IBLR. Fi-
nally, although very accurate, MMOC has a very high com-
putational cost even on the smallest datasets (on the first
three datasets, CTBN is around two orders of magnitude
faster than MMOC).

6. CONCLUSION
In this paper, we proposed a novel probabilistic approach

to multi-dimensional classification. Our approach encodes
the conditional dependence relations between classes using a
special tree-structured Bayesian network, whose conditional
distributions are defined using probabilistic classifiers. We
presented an efficient algorithm to learn the tree structure
that maximizes the conditional log likelihood. Furthermore,
we presented an efficient exact inference algorithm that has
a linear complexity in the number of class variables. Our ex-
perimental evaluation on a broad range of datasets showed
that our approach outperforms several state-of-the-art meth-
ods and produces much more reliable probabilistic estimates.
Moreover, it is efficient and can scale up to large data.

7. ACKNOWLEDGMENT
This research work was supported by grants 1R21LM009102-

01A1 and 1R01LM010019-01A1 from the NIH. Its content is solely
the responsibility of the authors and does not necessarily repre-

sent the official views of the NIH.

8. REFERENCES
[1] C. Bielza, G. Li, and P. Larrañaga. Multi-dimensional

Classification with Bayesian Networks. International
Journal of Approximate Reasoning, 52(6):705–727, 2011.

[2] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning
Multi-label Scene Classification. Pattern Recognition,
37(9):1757–1771, 2004.

[3] W. Cheng and E. Hüllermeier. Combining Instance-based
Learning and Logistic Regression for Multilabel
Classification. Machine Learning, 76(2):211–225, 2009.

[4] A. Clare and R. D. King. Knowledge Discovery in
Multi-label Phenotype Data. In PKDD, 2001.

[5] K. Dembczynski, W. Cheng, and E. Hüllermeier. Bayes
Optimal Multilabel Classification via Probabilistic
Classifier Chains. In ICML, 2010.

[6] S. Godbole and S. Sarawagi. Discriminative Methods for
Multi-labeled Classification. In PAKDD, 2004.

[7] D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label
Prediction via Compressed Sensing. In NIPS, 2009.

[8] H. Kazawa, T. Izumitani, H. Taira, and E. Maeda.
Maximal margin labeling for multi-topic text
categorization. In NIPS, 2005.

[9] D. Koller and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009.

[10] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, T. Mei, and H.-J.
Zhang. Correlative Multi-label Video Annotation. In the
International Conference on Multimedia, 2007.

[11] J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier
Chains for Multi-label Classification. In ECML, 2009.

[12] R. Schapire and Y. Singer. Improved Boosting Algorithms
Using Confidence-rated Predictions. Machine Learning,
pages 80–91, 1999.

[13] R. E. Tarjan. Finding Optimum Branchings. Networks,
7:22–35, 1977.

[14] L. van der Gaag and P. de Waal. Multi-dimensional
Bayesian Network Classifiers. In Probabilistic Graphical
Models, 2006.

[15] J. H. Zaragoza, L. E. Sucar, E. F. Morales, C. Bielza, and
P. Larrañaga. Bayesian Chain Classifiers for
Multidimensional Classification. In IJCAI, 2011.

[16] M.-L. Zhang and K. Zhang. Multi-label Learning by
Exploiting Label Dependency. In SIGKDD, 2010.

[17] M.-L. Zhang and Z.-H. Zhou. Multilabel Neural Networks
with Applications to Functional Genomics and Text
Categorization. IEEE Transactions on Knowledge and
Data Engineering, 18(10):1338–1351, 2006.

[18] M.-L. Zhang and Z.-H. Zhou. ML-KNN: A Lazy Learning
Approach to Multi-label Learning. Pattern Recognition,
40(7):2038–2048, 2007.

[19] Y. Zhang and J. Schneider. Multi-label Output Codes using
Canonical Correlation Analysis. In AISTATS, 2011.

[20] Y. Zhang and J. Schneider. Maximum Margin Output
Coding. In ICML, 2012.

[21] S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-labelled
Classification using Maximum Entropy Method. In SIGIR,
2005.


