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Abstract. Association rule mining is an important branch of data mining re-
search that aims to extract important relations from data. In this paper, we develop
a new framework for mining association rules based on minimal predictive rules
(MPR). Our objective is to minimize the number of rules in order to reduce the
information overhead, while preserving and concisely describing the important
underlying patterns. We develop an algorithm to efficiently mine these MPRs.
Our experiments on several synthetic and UCI datasets demonstrate the advan-
tage of our framework by returning smaller and more concise rule sets than the
other existing association rule mining methods.

1 Introduction

The huge amounts of data collected today provide us with an opportunity to better un-
derstand the behavior and structure of many natural and man-made systems. However,
the understanding of these systems may not be possible without automated tools that
enable us to extract the important patterns in the data and present them in a concise and
easy to understand form.

Rule induction methods represent a very important class of knowledge discovery
tools. The advantage of these methods is that they represent the knowledge in terms of
if-then rules that are easy to interpret by humans. This can facilitate the process of dis-
covery and utilization of new practical findings. As an example, consider a knowledge
discovery problem in medicine. Assume a rule mining algorithm identifies a subpopula-
tion of patients that respond better to a certain treatment than the rest of the patients. If
the rule clearly and concisely defines this subpopulation, it can speed up the validation
process of this finding and its future utilization in patient-management.

Association rule mining is a very popular data mining technique to extract rules
from the data. The original framework [1] has been extended to mine patterns from var-
ious domains [28, 4, 16]. The key strength of association rule mining is that it searches
the space of rules completely by examining all patterns that occur frequently in the
data. However, the main disadvantage is that the number of association rules it finds is
often very large. Moreover, many rules are redundant because they can be naturally ex-
plained by other rules. This may hinder the discovery process and the interpretability of
the results. The objective of this work is to filter out these redundant rules and provide
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the user with a small set of rules that are sufficient to capture the essential underlying
structure of the data.

In this work, we focus on the problem of mining association rules that target a
specific class variable of interest. We call these rules the class association rules. To
achieve our goal, we first introduce the concept of the minimal predictive rules (MPR)
set that assures a good coverage of the important patterns with very small number of
rules. After that, we propose an algorithm for mining these rules. Briefly, our method
builds the MPR set by examining more general rules first and gradually testing and
adding more specific rules to the set. The algorithm relies on a statistical significance
test to ensure that every rule in the result is significantly better predictor than any of its
generalizations.

2 Methodology

In this section, we first define basic terminology used throughout the paper. After that,
we present an example illustrating the challenges of rule mining and the limitations of
existing methods. Next, we propose the minimal predictive rules (MPR) framework to
address them. Finally, we present an algorithm for mining the MPRs.

2.1 Definitions

Our work focuses on mining relational databases, where each record is described by a
fixed number of attributes. We assume that all attributes have discrete values (numeric
attributes must be discretized [14]). We call an attribute value pair an item and a con-
junction of items a pattern (sometimes patterns are also called itemsets). If a pattern
contains k items, we call it a k-pattern (an item is a 1-pattern). We say that pattern P ′

is a subpattern of pattern P if P ′⊂ P (P is a superpattern of P ′). A rule is defined as
R: A⇒c, where A is a pattern and c is the class label that R predicts. We say that rule
R′: A′⇒c′ is a subrule of rule R: A⇒c if c′=c and A′⊂ A.

A pattern P can be viewed as defining a subpopulation of the instances (records)
that satisfy P . Hence, we sometimes refer to pattern P as group P . If P ′ is a subpattern
of P , then P ′ is a supergroup of P . Note that the empty pattern Φ defines the entire
population. The support of pattern P , denoted as sup(P ), is the ratio of the number of
records that contain P to the total number of records: sup(P ) ≈ Pr(P ). The confidence
of rule R: A⇒c is the posterior probability of class c in group A: conf (R) = sup(A ∪
c)/sup(A) ≈ Pr(c|A). Note that confidence of the empty rule is the prior probability of
the class: conf (Φ⇒c) ≈ Pr(c) .

2.2 Example

Assume our objective is to identify populations which are at high risk of developing
coronary heart disease (CHD). Assume that our dataset contains 200 instances and that
the CHD prior is Pr(CHD)=30%. We want to evaluate the following 3 rules:

R1: Family history=yes⇒ CHD
[sup=50%, conf =60%]
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R2: Family history=yes ∧ Race=Caucasian⇒ CHD
[sup=20%, conf =55%]

R3: Family history=yes ∧ Race=African American⇒ CHD
[sup=20%, conf =65%]

From the above rules, we can see that a positive family history is probably an im-
portant risk factor for CHD because the confidence of R1 (60%) is two times higher
than CHD prior (30%). However, the problem is that we expect many rules that contain
a positive family history in their antecedents to have a high confidence as well. So how
can we know which of these rules are truly important for describing the CHD condition?

The original association rules framework [1] outputs all the frequent rules that have
a higher confidence than a minimum confidence threshold (min conf ). For instance, if
we set min conf =50%, all of three rules will be returned to the user.

In order to filter out some of the uninteresting associations, the original support-
confidence framework is sometimes augmented with a correlation measure. Commonly,
a χ2 test is used to assure that there is a significant positive correlation between the
condition of the rule and its consequent [8, 24, 21, 18]. However, because the posteriors
of all three rules are much higher than the prior, we expect all of them to be statistically
significant! Moreover, these rules will be considered interesting using most existing
interestingness measures [15]. The main problem with this approach is that it evaluates
each rule individually without considering the relations between the rules. For example,
if we are given rule R2 by itself, we may think it is an important rule. However, by
looking at all three rules, we can see that R2 should not be reported because it is more
specific than R1 (applies to a smaller population) and has a lower confidence.

To filter out such redundant rules, [6] defined the confidence improvement con-
straint:

imp(A⇒ c) = conf (A⇒ c)− max
A′⊂A

{conf (A′ ⇒ c)} > min imp

In practice, it is not clear how to specify this min imp parameter. So the common con-
vention is to set to zero ([18, 17]). This means that we only report the rules that have a
higher confidence than all of their subrules. If we applied the confidence improvement
constraint to our working example, rule R2 will be removed and rule R3 will be retained.
However, R3 may also be unimportant and its observed improvement in the confidence
can be due to chance rather than actual causality. In fact, there is a high chance that
a refinement of a rule, even by adding random items, leads to a better confidence. We
will see later in the analysis in section 2.4 and in the experimental evaluation that the
confidence improvement constraint can still output many spurious rules. So should we
report rule R3? To answer this question, we define the minimal predictive rules concept.

2.3 Minimal Predictive Rules (MPR)

Definition 1. A rule R: A⇒c is a minimal predictive rule (MPR) if and only if R
predicts class c significantly better than all its sub-rules.

This definition implies that every item in the condition (A) is an important contrib-
utor to the predictive ability of the rule. We call these rules minimal because removing
any non-empty combination of items from the condition would cause a significant drop
in the predictability of the rule. An MPR can be viewed as defining a “surprising”
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subpopulation, where the posterior probability of class c in the group A (Pr(c|A)) is
unexpected and cannot be explained by any convex combinations of A’s subpatterns.

The MPR significance test: In order to check if a rule is significant with respect to
its subrules, we use the binomial distribution as follows: Assume we are interested in
testing the significance of ruleR:A⇒c. Assume that groupA containsN instances, out
of which Nc instances belong to class c. Assume Pc represents the highest confidence
achieved by any subrule of R: Pc = maxA′⊂A Pr(c|A′). The null hypothesis presumes
that Nc is generated from N according to the binomial distribution with probability Pc.
The alternative hypothesis presumes that the true underlying probability that generated
Nc is significantly higher than Pc. Hence, we perform a one sided significance test (we
are interested only in increases in the proportion of c) and calculate a p-value as follows:

p = Prbinomial(x ≥ Nc|N,Pc)

If this p-value is significant (smaller than a significance level α), we conclude that R
significantly improves the predictability of c over all its subrules, hence is an MPR.

Fig. 1. The MPR significance test for rule R3

Example: Going back to our CHD example, rule R3 covers 40 instances, out of
which 26 have CHD. For R3 to be an MPR, it should be significantly more predictive
than all its simplifications, including rule R1. By applying the MPR significance test we
get: Prbinomial(x ≥ 26|40, 0.6) = 0.317. As illustrated in Figure 1, we can see that
R3 is not an MPR at significance level α = 0.05. On the other hand, if we use the same
binomial significance test to evaluate each rule individually against the CHD prior (by
always setting Pc=Pr(CHD)), the p-values we get for R1, R2 and R3 are respectively,
5.13e-10, 8.54e-4 and 5.10e-6, meaning that all three rules are (very) significant!.

2.4 Spurious patterns and redundant rules

In this section, we discuss and analyze the serious problem of redundancy in association
rules. This problem is due to the manner in which large numbers of spurious rules
are formed by adding irrelevant items to the antecedent of other rules. We show the
deficiencies of the current approaches to dealing with this problem. Finally, we show
how MPR can overcome the problem.
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Fig. 2. Illustrating the redundancy problem in association rules

Consider a Bayesian belief network example in Figure 2, where we have a causal
relation between variableX1 and the class variableC. Assume that itemX1=1 is highly
predictive of class c1, so that Pr(C=c1 | X1=1) is significantly larger than Pr(C=c1).
Assume we have another variable X2 that is completely independent of C: X2 ⊥⊥ C. If
we add any instantiation v2 of variable X2 to item X1=1, the posterior distribution of
c1 is Pr(C=c1 | X1=1 ∧ X2=v2) ≈ Pr(C=c1 | X1=1), i.e., conf (X1=1 ∧ X2=v2 ⇒ c1)
≈ conf (X1=1⇒ c1).

More generally, if we have many irrelevant variables such that Xi ⊥⊥ C: i ∈ {2..n},
the network structure implies that Pr(C=c1 | X1=1 ∧ X2=v2 ... ∧ Xn=vn) ≈ Pr(C=c1
| X1=1) for every possible instantiation Xi=vi. Clearly, the number of such spurious
rules can become huge, which can easily overwhelm the user and prevent him from
understanding the real patterns and causalities in the data.

Even by requiring the complex rules to have a higher confidence [6, 17, 18] or lift
score [9] than their simplifications, the problem still exists and many of these redundant
rules can easily satisfy this constraint. In fact, if Xi is a binary variable and conf (X1=1
∧Xi=0⇒ c1) < conf (X1=1⇒ c1), then we know for sure that conf (X1=1 ∧Xi=1⇒
c1) > conf (X1=1⇒ c1). The same situation happens if we use the lift score instead of
the confidence! Post-pruning the rules individually based on their correlations with the
class (e.g. using the χ2 test [8, 24, 21, 18]) or based on their difference from the prior
(e.g. using our binomial test) is not going to not help in this case.

Our frameworks tackles this problem because every item in an MPR should sig-
nificantly contribute to improving the predictability of the rule. This means that if rule
R: Xq1=vq1 ... ∧ Xqk=vqk⇒C=c is an MPR, then there should exist a path from each
variable Xqi to the class C that is not blocked (d-separated) by the other variables in
the rule: Xqi not⊥⊥ C | {Xq1 , Xqi−1

, ... , Xqi+1
, Xqk }. Therefore, redundant rules are

likely to be filtered out.

2.5 The Algorithm
In this section we explain our algorithm for mining the MPR set. The algorithm is
outlined in Figure 3. Briefly, the algorithm explores the space by performing a level
wise Apriori-like search. At each level (l), we first remove the candidate l-patterns that
do not pass the minimum support threshold (line 6). Then we extract all MPRs from
these frequent l-patterns (line 7). Finally, we generate the candidates for the next level
(line 8).

Extracting MPRs The process of testing if a rule P ⇒ c is an MPR is not trivial
because the definition requires us to check the rule against all its proper subrules. This
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Algorithm 1: Mine all MPRs
Input: dataset: D, minimum support: min sup
Output: minimal predictive rules: MPR

// global data structure
01: MPR=Φ, tbl max conf =hashtable()

// the prior distribution of the classes
02: tbl max conf [h(Φ)]=calculate class distribution(Φ, D)
03: Cand=generate 1 patterns()
04: l = 1
05: while (Cand 6= Φ)

// remove candidates that are not frequent
06: FP[l]=prune infrequent(Cand, D, min sup)

// find all MPRs at level l
07: extract MPR(FP[l], D)

// generate candidate (l+1) patterns
08: Cand=generate candidates(FP[l])
09: l = l + 1
10: MPR=FDR correction(MPR)
11: return MPR

Fig. 3. The algorithm for mining MPRs from a dataset

would require to check 2l subpatterns if P has length l. Our algorithm avoids this ineffi-
ciency by caching the statistics needed to perform the check within the (l-1)-subpatterns
from the previous level. This part of the algorithm is outlined in Figure 4.

To explain the method, it is useful to envision the progress of the algorithm as grad-
ually building a lattice structure level by level, starting from the empty pattern Φ. An ex-
ample lattice is shown in Figure 5. Every frequent l-pattern P is a node in the lattice with
l children: one child for each of its (l-1)-subpatterns. The key idea of our algorithm is to
store in each node P the maximum confidence score for every class that can be obtained
in the sublattice with top P (including P itself):max confP [c]=max(Pr(c | P ′)): ∀ P ′ ⊆
P . These max conf values are computed from the bottom up as algorithm progresses.
Initially, max confΦ for the empty pattern is set to be the prior distribution of the
class variable. In order to compute max confP for pattern P , we first compute confP
(line 2), the distribution of the class variable in group P : confP [c]=Pr(c | P ). Then
we use the max conf values of P ’s direct children to compute max conf childrenP
(line 3) so that max conf childrenP [c]=max(Pr(c | P ′)): ∀ P ′ ⊂ P . Finally, we
compute max confP by taking the element-wise maximum of two arrays: confP and
max conf childrenP (line 4).

After assigning the max conf value for pattern P , we want to check if P forms an
MPR. So for each class label c, we perform the MPR significance test to check if P
predicts c significantly better than max conf childrenP [c]. If the test is positive, we
add the rule P ⇒ c to the set of MPRs (line 8).

Please note that in our pseudo-code, we do not explicitly build the lattice. Instead,
we use a hash table tbl max conf (Figure 3: line 1) to provide direct access to the
max conf values, so that tbl max conf [h(P )]=max confP , where h is a hash function.
Also note that none of the functions (calculate class distribution, is MPP and loss-
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Algorithm 2: extract MPR (FP[l], D)
//add pattern P ∈ FP[l] to MPR (a global variable) if P is
significantly more predictive than all its subpatterns
1: for each P ∈ FP[l]
2: conf =calculate class distribution(P, D)
3: max conf children=max {tbl max conf [h(Sl−1)]} : Sl−1⊂P
4: max conf =max{ conf, max conf children }
5: tbl max conf [h(P )]=max conf
6: for each class label c
7: if ( is MPR(P, c, max conf children, D) )
8: MPR=MPR ∪ (P ⇒ c)
9: lossless pruning(P, max conf, D, FP[l])

Function is MPR(P, c, max conf children, D)
//return true if P predicts c significantly better than all its subpatterns
N=count(P , D)
Nc=count(P ∪ c, D)
p value=Prbinomial(x ≥ Nc | N , max conf children[c])
if(p value < α)

return true
return false

Function lossless pruning(P, max conf, D, FP[l])
//prune P if it cannot produce any MPR
for each class label c
Nc=count(P ∪ c, D)
p value=Prbinomial(x ≥ Nc | Nc, max conf [c])
//exit if P can potentially produce an MPR for any class c
if(p value < α)

return ;
//Prune P
remove(P , FP[l])

Fig. 4. The algorithm for extracting MPRs from the frequent patterns at level l

less pruning) requires another scan on the data because we can collect the class specific
counts during the same scan that counts the pattern.

Figure 5 illustrates the algorithm using a small lattice on a dataset that contains 200
instances from class c1 and 300 instances from class c2. For each pattern P (node), we
show the number of instances in each class, the distribution of the classes (conf ) and
the maximum confidence from P ’s sublattice (max conf ). Let us look for example at
pattern I1 ∧ I2. This pattern is predictive of class c2: conf (I1 ∧ I2⇒ c2) = 0.75. How-
ever, this rule is not an MPR since it does not significantly improve the predictability
of c2 over the subrule I2 ⇒ c2: Prbinomial(x ≥ 75|100, 0.7) = 0.16 (not significant at
α=0.05). The MPRs from this example are: I1 ⇒ c1, I2 ⇒ c2 and I1 ∧ I3⇒ c1.

Mining at low support It is well know that the performance of the Apriori algorithm
highly depends on the minimum support (min sup) parameter. However, setting this
parameter is not straightforward because the optimal min sup can vary greatly across
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Fig. 5. An illustrative example showing the lattice associated with frequent pattern I1 ∧ I2 ∧ I3.
The MPRs are shaded.

different datasets. In fact, [11, 9] argued that it is sometimes of interest to mine low
support patterns. Therefore, in order not to miss any important pattern, the user may
choose a low min sup value. However, low min sup raises two important concerns.
First, the algorithm may return a huge number of rules, most which are very complex.
Second, the algorithm may take very long time to finish.

In the following we argue that the MPR framework and our algorithm address both
of these concerns. First, by requiring each MPR to be significantly better than all its
subrules, the algorithm is biased towards choosing simple rules over more complex
rules. Moreover, the MPR significance test incorporates the pattern’s support because
the chance of passing the test is lower for low support patterns. This acts as if the
min sup filter was built into the statistical significance test. Hence, very low support
patterns are likely to be filtered out unless they are extremely predictive (with a very
surprising distribution).

Second, the MPR significance test can help us to prune the search space. This early
pruning is implemented by the lossless pruning function in Figure 4. The idea is that we
can prune pattern P if we guarantee that P cannot produce any MPR. However, because
the pruning is applied while generating the patterns, we do not know what subgroups P
will generate further in the lattice. To overcome this, let us define the optimal subgroup
P ∗ci in group P with respect to class ci to be the subgroup that contains all the instances
from ci and none of the instances from any other classes. Clearly, P cannot generate
any subgroup better than P ∗ci for predicting class ci. Now, we prune P if for every class
ci, P ∗ci is not significant with respect to the best confidence so far max conf [ci]. Please
note that this pruning technique does not miss any MPR because the lossless pruning
test is anti-monotonic.
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As an example, consider pattern P = I1 ∧ I2 ∧ I3 in Figure 5. This pattern contains
15 examples, 5 from class c1 and 10 from class c2. Both P ∗c1 and P ∗c2 are not signifi-
cant with respect to the current best predictions 0.6 and 0.75 (respectively). Therefore,
there is no need to further explore P ’s subgroups and the entire sublattice can be safely
pruned.

Correcting for multiple testing When multiple rules are tested in parallel for signifi-
cance, it is possible to learn a number of false rules by chance alone. This is a common
problem for all techniques that rely on statistical tests. For example, assume we have
10,000 random items (independent of the class variable). If we test the significance of
each of them with a significance level α=0.05, then we expect about 500 items to be
significant just by chance!

One approach to deal with the multiple hypothesis testing problem is to adjust the
significance level at which each rule is tested. The most common way is the Bonfer-
roni correction [25], which divides the significance level (α) by the number of tests
performed. This approach is not suitable for rule mining because the number of rules
tested is usually very large, resulting in an extremely low α and hence very few rules
discovered. The other more recent approach, directly controls the false discovery rate
(FDR) [7]: the expectation of the proportion of false discoveries in the result. We adopt
the FDR correction method because it is less stringent and more powerful (has a lower
Type II error) than the Bonferroni correction. We apply FDR as a post-processing step
(Figure 3: line 10). It takes as input all potential MPRs with their p-values and outputs
a subset of MPRs that satisfy the FDR criteria.

3 Experiments

In this section we present our experimental evaluation, first on synthetic datasets with
known underlying patterns, and after that on several UCI classification datasets [2]. The
experiments compare the performance of MPR against the following methods:

– complete: The set of all rules that cover more than min sup examples in the data.
We filter out useless rules by only including the ones that positively predict the
class label (with a lift score [15] higher than one).

– closed: A subset of complete that corresponds to non-redundant rules based on the
concept of closed frequent patterns [3].

– corr chi: A subset of complete that contains the rules with significant positive cor-
relations between the condition and conclusion according to the χ2 test [8, 24, 21].

– prior binom: A subset of complete that contains the rules that are significantly
different from the prior according to the binomial statistical test (section 2.3).

– prior FDR: A subset of prior binom that is post-processed using the false discov-
ery rate (FDR) technique [7] to correct for the multiple testing problem.

– conf imp: A subset of complete that satisfies the confidence improvement con-
straint [6, 18, 17]: each rule should have a higher confidence than all its subrules.

For all methods, we set the minimum support threshold (min sup) to 10% the num-
ber of records in the dataset (unless otherwise stated). For the methods that use a statis-
tical test: corr chi, prior binom, prior FDR and MPR, we use the conventional signifi-
cance level α = 0.05.
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3.1 Experiments on synthetic data

The experiments on synthetic data (generated from pre-defined patterns) allow us to
judge more objectively the quality of the algorithms’ outputs by comparing the original
and recovered patterns.

Fig. 6. Three Bayesian belief networks used to generate synthetic datasets: syn rand, syn1 and
syn2 (from left to right)

Data description The synthetic data were generated from the three Bayesian belief
networks (BBNs) in Figure 6. Each network consists of 20 random binary variables
{X1, ..., X20} and two class labels c1 and c2. The three networks are:

– syn rand: In this network, all the attribute variablesXi and the class variable C are
independent (syn rand does not contain any pattern).

– syn1: In this network, X1=1 is more frequent in class c1: Pr(X1=1 | C=c1)=0.8
> Pr(X1=1 | C=c2)=0.4 and item X2=1 is more frequent in class c2: Pr(X2=1 |
C=c2)=0.7 > Pr(X2=1 | C=c1)=0.3. Besides, the distribution of the class variable
C is more biased towards c2: Pr(C=c2)=0.6. The attributes {X3, ..., X20} are inde-
pendent of each other and the class variable C.

– syn2: The main pattern in syn2 is a conjunction of X1=1 and X2=1 that predicts
class c1: Pr(C=c1 | X1=1 and X2=1)=0.8. For all other values of X1 and X2, the
two classes (c1 and c2) are equally likely. The attributes {X3, ..., X20} are indepen-
dent of each other and the class variable C.

The datasets we analyze consist of 1000 examples randomly generated from these three
networks.

Results: Table 1 summarizes the number of rules that each method produces on the
three synthetic datasets. First notice that the number of rules in complete and closed
are the same for all these datasets (since very few correlations exist). Also notice that
corr chi and prior binom have similar results. This shows that the choice of the statis-
tical test does not matter much and that the real problem with these approaches is that
they evaluate each rule separately without considering the nested structure of the rules.

Let us look first at the results on the syn rand dataset, which we know does not
contain any pattern. MPR does not output any rule which is what we expect given that
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Dataset complete closed corr chi prior binom prior FDR conf imp MPR
syn rand 9,763 9,763 516 651 0 4,748 0

syn1 9,643 9,643 2,989 3,121 2,632 4,254 6
syn2 9,868 9,868 1,999 2,225 422 3,890 5

Table 1. The number of rules for the different methods on the synthetic datasets

the class is independent of all attributes. On the other hand, conf imp returns a huge
number of rules. In fact, conf imp returns almost half the total number of associations.
This result agrees with our analysis in section 2.4. prior FDR correctly removes all
false positives from prior binom on this random data.

Now consider the syn1 dataset. Our algorithm extracts the following 6 MPRs: {X1=1
⇒ c1, X1=0⇒ c2, X2=1⇒ c2, X2=0⇒ c1, X1=0 ∧ X2=1⇒ c2, X1=1 ∧ X2=0⇒
c1}1. In comparison, all other methods extract a vast number of rules. For example,
even by using the FDR correction, the number of rules is 2,632 rules!

MPR prior binom conf imp
X1=1 ∧ X2=1⇒ c1 X1=1 ∧ X2=1⇒ c1 X1=1 ∧ X2=1 ∧ X8=0⇒ c1

[ sup=26.5%, conf =81.1% ] [ sup=26.5%, conf =81.1% ] [ sup=12.3%, conf =85.4% ]

X2=1⇒ c1 X1=1 ∧ X2=1 ∧ X14=0⇒ c1 X1=1 ∧ X2=1 ∧ X14=0⇒ c1
[ sup=50.1%, conf =66.7% ] [ sup=14.5%, conf =84.8% ] [ sup=14.5%, conf =84.8% ]

X1=1⇒ c1 X1=1 ∧ X2=1 ∧ X13=1⇒ c1 X1=1 ∧ X2=1 ∧ X13=1⇒ c1
[ sup=51.2%, conf =63.9% ] [ sup=13.4%, conf =84.3% ] [ sup=13.4%, conf =84.3% ]

X2=0⇒ c2 X1=1 ∧ X2=1 ∧ X9=1⇒ c1 X1=1 ∧ X2=1 ∧ X9=1⇒ c1
[ sup=49.9%, conf =51.5% ] [ sup=14.1%, conf =83.7% ] [ sup=14.1%, conf =83.7% ]

X1=0⇒ c2 X1=1 ∧ X2=1 ∧ X8=0⇒ c1 X1=1 ∧ X2=1 ∧ X18=0⇒ c1
[ sup=48.8%, conf =49.0% ] [ sup=12.3%, conf =85.4% ] [ sup=13.9%, conf =83.5% ]

Table 2. The syn2 dataset: on the left is the set of all MPRs, in the middle is the top 5 prior binom
rules (out of 2,225 rules) and on the right is the top 5 conf imp rules (out of 3,890 rules)

.
Finally, let us look more closely at the results on the syn2 dataset. Table 2 shows

all MPRs (left), the top 5 ranked rules for prior binom (same for prior FDR) according
to the p-values (center) and the top 5 ranked rules for conf imp according to the confi-
dence (right). Notice that prior binom correctly ranks the real pattern (X1=1 ∧ X2=1)
at the top. However, the following rules are redundant. For conf imp, the real pattern is
buried inside many spurious rules. This example clearly shows the deficiencies of these
methods in concisely representing the actual patterns. On the contrary, by investigating
the small number of MPRs, we can easily recover the structure of the underlying BBN.

3.2 Experiments on UCI datasets

Data description To further test the different methods, we use 9 public datasets from
the UCI Machine Learning repository [2]. We discretize the numeric attributes into

1 The last 2 rules combine the evidence of the two main patterns, hence improve the predictabil-
ity. For example, Pr(c1|x1=1 ∧ x2=0) > Pr(c1|x1=1).
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intervals by minimizing the entropy based on the minimum description length principle
[14] (supervised discretization). Table 3 shows the main characteristics of the datasets.
The number of items in column 3 is the number of all distinct attribute value pairs.

dataset # attributes # items # records # classes
Adults 14 154 32,561 2

Heart disease 13 33 303 2
Lymphography 18 57 142 2
Pima diabetes 8 19 768 2
Breast cancer 9 41 286 2
Dermatology 12 47 366 6

Wine 13 39 178 3
Glass 10 22 214 2
Credit 15 69 690 2

Table 3. UCI Datasets characteristics

Results Table 4 shows the number of rules for each method on the 9 UCI datasets.
First notice that evaluating the rules individually based on their statistical significance
(corr chi, prior binom and prior FDR) does not help much in reducing the number of
rules (even by using the FDR correction). It is clear from the table that the number of
MPRs is much smaller than the number of rules in the other approaches. On average,
MPRs are about two orders of magnitude smaller than complete and about one order of
magnitude smaller than conf imp.

Dataset complete closed corr chi prior binom prior FDR conf imp MPR
Adults 2,710 2,042 2,616 2,620 2,619 374 152

Heart disease 5,475 5,075 4,820 4,825 4,784 1,021 79
Lymphography 31,594 5,840 15,740 15,032 11,627 978 24
Pima diabetes 466 448 345 350 337 144 36
Breast cancer 420 379 122 124 44 158 10
Dermatology 5,350 3,727 3,820 3,717 3,544 2,076 96

Wine 1,140 1,057 975 971 968 520 116
Glass 2,327 1,141 2,318 2,311 2,311 97 20
Credit 8,504 3,271 6,885 6,964 6,839 926 49

Average 6,443 2,553 4,182 4,102 3,675 699 65

Table 4. The number of rules for the different algorithms on several UCI datasets

Now we need a way to check if this small set of MPRs can adequately describe
the datasets. However, we do not know what are the real patterns for these datasets.
Hence, to evaluate the usefulness of the rules, we use the classification accuracy of the
corresponding rule based classifier. We define two simple classifiers:

– Weighted confidence classification (w conf ): To classify instance x, we weight each
rule that satisfy x by its confidence and we choose the class that maximizes this
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weighted sum:
w conf (x) = argmax

ci
{

∑
x⊆A

conf (A⇒ ci) }

– Highest confidence classification (h conf ): We classify instance x according to the
highest confidence rule that satisfy x (this method is used in [20]):

h conf (x) = argmax
ci
{ max
x⊆A

conf (A⇒ ci) }

We compare the classification accuracies obtained by using all association rules, us-
ing conf imp rules (this approach was used in [17] for classification), and using MPRs2.
All of the reported results are obtained using 5-folds cross validation. Remember that
the lift score for all rules is bigger than one (the condition and consequent of each rule
are positively correlated). Hence, w conf consults only predictive rules.

complete conf imp MPR
Dataset w conf h conf w conf h conf w conf h conf
Adults 77.3 75.9 80.6 75.9 80.8 75.9

Heart disease 80.9 80.5 80.2 80.5 82.2 81.5
Lymphography 81.2 83.6 71.8 83.6 86.2 85.9
Pima diabetes 71.4 74.4 72.8 74.4 71.8 72.9
Breast cancer 73.8 72.0 74.1 72.0 72.4 73.4
Dermatology 68.0 69.4 58.2 69.4 63.4 65.6

Wine 88.8 93.3 86.4 93.3 88.2 92.8
Glass 94.4 100 93.5 100 95.8 100
Credit 80.4 85.4 76.7 85.4 77.8 85.4

Average 79.6 81.6 77.1 81.6 79.8 81.5

Table 5. The classification accuracies (%) for complete, conf imp and MPR using two rule clas-
sification techniques: weighted confidence classification (w conf ) and highest confidence classi-
fication (h conf )

From Table 5, we can see that MPR does not sacrifice the classification accuracy.
On average, all approaches produce comparable results for both w conf and h conf. An
important benefit of using the compact set of MPRs for classification is that the clas-
sification time is very fast. For example, consider the Lymphography dataset. Instead
of consulting 31,594 rules to classify each instance, MPR summarizes the classifier in
only 24 rules. It is interesting to see that these 24 rules outperform the complete set of
rules for both w conf and h conf.

Please note that we are not claiming that our approach can outperform the state-of-
the-art frequent pattern-based classifiers [13, 10]. Our objective is just to show that even
though MPRs provide a huge compression of the association rules, they can still capture
the essential underlaying patterns in the data by providing comparable classification
performance to using all association rules.

2 corr chi, prior binom and prior FDR gave similar classification results as complete, hence we
excluded them from this table to save space.
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Mining at low support In this section, we study the performance and the output of the
different methods under different support thresholds. Due to the space limitation, we
only show the results on the Heart disease dataset.

(a) (b)

Fig. 7. The execution times (a) and the number of rules (b) of the algorithms on the heart disease
dataset for different support thresholds

Figure 7:a shows the execution times using a Dell Precision T7500 machine with an
Intel Xeon 3GHz CPU and 16GB of RAM. All algorithms are implemented in matlab.
The “without pruning” chart corresponds to the execution of the Apriori algorithm that
relies only on the support of the patterns to prune the search space. The “with pruning”
chart corresponds to the execution of the algorithm that applies the additional MPR
pruning technique in section 2.5.

We can see that the execution time of Apriori exponentially blows up for low support
values. On the other hand, the MPR pruning controls the complexity and the execution
time increases very slowly for low support values. For example, when the absolute
support threshold is 15, which corresponds to min sup = 5% on this dataset, applying
the MPR pruning makes the algorithm about 6 times faster.

Figure 7:b shows the number of rules generated by the different methods. To im-
prove the visibility, we did not include closed, prior binom and corr chi in this graph.
We can see that the output of MPR does not change much when min sup is very low.
For example, by changing min sup from 10% (absolute support = 30) to 5% (absolute
support=15), the number of MPRs increases from 79 to 83 rules. In comparison, the
same change causes the number of all association rules to increase from 5,475 to about
20,000 rules! Clearly, this large number of rules is overwhelming the user.

To summarize, our framework relieves the user from the burden of deciding the
optimal min sup by allowing him to conservatively set the support very low without
drastically affecting the performance or the results of the algorithm.

4 Related Research

Several research attempts have been made to reduce the large number of association
rules in order to make the results more suitable for knowledge discovery. Constrained
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associations rules methods [22] allow the user to define his own constraints and retrieve
the rules that match these constraints. An opposite approach [23] mines the rules that
are most different from the user’s expectations. Maximal frequent itemsets [19] is a
lossy compression of the frequent itemsets and cannot be used to generate rules. The
profile based approach [27] is another lossy compression method.

The work in [6] aimed to reduce the number of class association rules by defining
the confidence improvement constraint. This constraint was adopted by [18, 17]. As we
showed in the analysis and experiments, this approach can still generate many redundant
rules. [21] defined the concept of direction setting (DS) rules in order to make browsing
the class association rules easier for the user. However, their objective is different from
ours because non-DS rules can indeed be significant MPRs. [5] extends the problem
of association rule mining to the problem of mining contrasting sets. [26] defines a
measure to rank the patterns by predicting the support of a pattern from the support of its
subpatterns and measuring the deviation between the actual support and the prediction.

5 Conclusion

In this paper, we have developed a new framework for mining association rules based on
the minimal predictive rules (MPR) concept. We showed that our method can produce
a small set of predictive rules. Most importantly, each rule in the result is important
because it concisely describes a distinct pattern that cannot be explained by any other
rule in the set.

Motivated by our results, we plan to investigate the benefits of MPR for classifi-
cation. In particular, we plan on incorporating the MPRs as additional features with
the SVM classifier and comparing it against the state-of-the-art classifiers [13, 10]. In
addition, we plan to apply our method for anomaly detection in categorical data [12].
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