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Abstract 

Modern hospitals and health-care institutes collect 

huge amounts of clinical data. Those who deal with 

such data know that there is a widening gap between 

data collection and data comprehension. Thus, it is 

very important to develop data mining techniques 

capable of automatically extracting useful knowledge 

to support clinical decision-making in various 

diagnostic and patient-management tasks.  In this 

paper, we develop a new framework for rule mining 

based on minimal predictive rules (MPR). Our goal 

is to minimize the number of rules in order to reduce 

the information overhead, while preserving and 

concisely describing the important underlying 

patterns. We develop an algorithm to efficiently mine 

these MPRs and apply it to predict Heparin Platelet 

Factor 4 antibody (HPF4) test orders from electronic 

health records.  

Introduction 

The increasing availability of medical data in modern 

hospitals and health-care institutions prompts the 

development of appropriate data mining techniques 

to extract relevant information and patterns from this 

wealth of data. An important aspect of a successful 

medical data mining method is its ability to interact 

with medical experts in a human-friendly way by 

presenting the discovered knowledge in a concise and 

easy to understand form. 

Rule induction methods represent a very important 

class of knowledge discovery tools. The advantage of 

these methods is that they represent the knowledge in 

terms of if-then rules that are easy to interpret by 

humans. This facilitates the process of discovery and 

utilization of new practical findings. As an example, 

assume a rule mining algorithm identifies a 

subpopulation of patients that respond better to a 

certain treatment than the rest of the patients. If the 

rule clearly and concisely defines this subpopulation, 

it can speed up the validation process of this finding 

(through subsequent clinical trials) and its future 

utilization in patient-management. 

Association rule mining
1
 is a popular data mining 

technique to extract rules from the data. Association 

rules gained a lot of popularity in the medical data 

mining research
2,3,4,5

. The key strength of association 

rule mining is that it searches the space of rules 

completely by examining all patterns that occur 

frequently in the data. Its disadvantage is that the 

number of association rules it finds is often very 

large. Moreover, many rules are redundant because 

they can be explained by other rules. This may hinder 

the discovery process and the interpretability of the 

results. The objective of this work is to filter out 

these redundant rules and provide the user with a 

small set of rules that are sufficient to capture the 

essential underlying patterns in the data.  

To achieve our goal, we first introduce the concept of 

the minimal predictive rules (MPR) set that assures a 

good coverage of all important patterns with a small 

number of rules. After that, we describe an algorithm 

for mining such rules. Briefly, the algorithm builds 

the MPR set by examining more general rules first 

and gradually testing and adding more specific rules 

to the set. The algorithm relies on a statistical 

significance test to ensure that every rule in the result 

is significantly better predictor than any of its 

generalizations. Finally, we present a more efficient 

version of the algorithm that mines a subset of the 

MPR set and can scale much better to larger datasets.  

We test our methods by analyzing data patterns for 

predicting orders of the Heparin Platelet Factor 4 

antibody (HPF4) test from electronic health records. 

This test is prescribed when the patient is at risk of 

Heparin induced thrombocytopenia (HIT)
6
. We show 

the advantage of our framework by returning a 

smaller and more concise rule set than the other 

existing methods. 

Methodology 

In this section, we first define basic terminology used 

throughout the paper. Then we present an example 

illustrating the challenges of rule mining. Next, we 

propose the minimal predictive rules (MPR) concept. 

Finally, we present an algorithm for mining the MPR 

set and a very efficient algorithm for mining a more 

restricted version of MPR. 

I. Definitions 

Rule induction methods assume that the attributes 

take a discrete set of values. Hence, when the data 

contain numeric attributes, these attributes should 

first be discretized
7
. We call an attribute value pair an 
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item and a conjunction of items a pattern. A rule is 

defined as R: A ⇒c, where A is a pattern and c is the 

class label that R predicts. We say that pattern P′ is a 

subpattern of pattern P if P′ ⊂ P (P is a superpattern 

of P′). We say that rule R′: A′⇒c′ is a subrule of rule 

R: A⇒c if c′=c and A′⊂ A. 

A pattern P can be viewed as defining a 

subpopulation of the instances (e.g. patients) that 

satisfy P. Hence, we sometimes refer to pattern P as 

group P. If P′ is a subpattern of P, then P′ is a 

supergroup of P (group P′ contains group P). 

The support of pattern P, denoted as sup(P), is the 

ratio of the number of records that contain P to the 

total number of records: sup(P) ≈ Pr(P). The 

confidence of rule R: A ⇒ c is the posterior 

probability of class c in group A: conf(R) ≈ Pr(c|A). 

Note that confidence of the empty rule is the prior 

probability: conf (ϕ ⇒ c) ≈ Pr(c). 

II. Example 

Assume our objective is to identify subpopulations of 

patients that are at high risk of developing coronary 

heart disease (CHD). Assume our dataset contains 

200 instances and that CHD prior is Pr(CHD)=30%. 

We want to evaluate the following 3 rules: 

 R1: Family history=yes ⇒ CHD 

[sup=50%,  conf=60%] 

 R2: Family history=yes ∧ Race=Caucasian ⇒ CHD 

[sup=20%, conf=55%] 

 R3: Family history=yes ∧ Race=Black ⇒ CHD 

[sup=20%, conf=65%] 

We can see that a positive family history is probably 

an important risk factor for CHD because the 

confidence of R1 (60%) is two times higher than 

CHD prior (30%). However, we expect many rules 

that contain a positive family history in their 

antecedents to have a high confidence as well. So 

how can we know which of these rules are truly 

important for describing the CHD condition? 

The original association rules framework
1
 outputs all 

frequent rules that have a higher confidence than a 

minimum confidence threshold (min_conf). For 

instance, if we set min_conf=50%, all three rules will 

be returned to the user. 

In order to filter out some of the uninteresting 

associations, the original support-confidence 

framework is sometimes augmented with a 

correlation measure. Commonly, a χ
2
 test is used to 

assure that there is a significant positive correlation 

between the condition of the rule and its consequent
9
. 

However, because the posteriors of all three rules are 

much higher than the prior, we expect all of them to 

be statistically significant! Moreover, these rules will 

be considered interesting using most existing 

interestingness measures
8
. 

The main problem with this approach is that it 

evaluates each rule individually without considering 

the relations between the rules. For example, if we 

are given rule R2 by itself, we may think it is an 

important rule. However, by looking at all three rules, 

we see that R2 should not be reported because it is 

more specific than R1 (applies to a smaller 

population) and has a lower confidence. Even rule R3 

may not be important and its observed improvement 

in the confidence over R1 can be due to chance rather 

than actual causality. So should we report rule R3? 

To answer this question, we define the minimal 

predictive rules concept. 

III. Minimal Predictive Rules (MPR) 

Definition: A rule R: A ⇒ c is a minimal predictive 

rule (MPR) if and only if R predicts class c 

significantly better than all its subrules. 

This definition implies that every item in the 

condition (A) is an important contributor to the 

predictive ability of the rule. We call these rules 

minimal because removing any non-empty 

combination of items from the condition would cause 

a significant drop in the predictability of the rule.  

The MPR significance test: In order to check if a 

rule is significant with respect to its subrules, we use 

the binomial distribution as follows: Assume we are 

interested in testing the significance of rule R: A ⇒ c. 

Assume that group A contains N instances, out of 

which Nc instances belong to class c. Assume Pc 

represents the highest confidence achieved by any 

subrule of R: 𝑃𝑐 = 𝑚𝑎𝑥𝐴′ ⊂ A Pr(𝑐|𝐴′ ). The null 

hypothesis presumes that Nc is generated from N 

according to the binomial distribution with 

probability Pc. The alternative hypothesis presumes 

that the true underlying probability that generated Nc 

is significantly higher than Pc. Hence, we perform a 

one sided significance test and calculate a p-value:  

𝑝 = 𝑃𝑟𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙  𝑥 ≥ 𝑁𝑐 𝑁, 𝑃𝑐) 

If this p-value is significant (smaller than a 

significance level α), we conclude that R significantly 

improves the predictability of c over all its 

simplifications, and hence R is an MPR. 

Example: Going back to our CHD example, rule R3 

covers 40 instances, out of which 26 have CHD. For 

R3 to be an MPR, it should be significantly more 

predictive than all its simplifications, including rule 

R1. By applying the MPR significance test we get: 

𝑃𝑟𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙  𝑥 ≥ 26 40, 0.6) = 0.317. This rule is not 

an MPR at significance level α = 0.05. On the other 

hand, if we evaluate each rule individually against the 
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CHD prior (by always setting Pc = Pr(CHD)), the p-

values we get for R1, R2 and R3 are respectively: 

5.13e-10, 8.54e-4 and 5.10e-6, meaning that all three 

rules are (very) significant!. 

IV. The Mining Algorithm 

The algorithm takes as input a dataset (D) and a 

minimum support threshold (min_sup). It outputs all 

MPRs in D that have a support higher than min_sup. 

Our algorithm is gracefully incorporated in the 

Apriori algorithm
1
 and explores the space by 

performing a level-wise search. The progress of the 

algorithm can be seen as building a lattice structure 

level by level starting with the empty pattern ϕ (see 

Figure 1 for an example). For each generated pattern 

P (a node in the lattice), the algorithm checks if P 

forms an MPR. However, the MPR definition 

requires examining all of P’s subpatterns, which is 

very inefficient (a pattern with l items contains 2
l
 

subpatterns). We avoid this inefficiency by cashing at 

each pattern P the maximum confidence score for 

every class that can be obtained in the sublattice with 

top P (including P itself): 

max_𝑐𝑜𝑛𝑓𝑃 c = maxP′⊆ P{Pr c P′ }. 

These max_conf values are computed from the 

bottom up as algorithm progresses. Now, in order to 

perform the MPR test for pattern P, we need only to 

access the max_conf values of P’s direct children, as 

opposed to accessing all of P’s descendents.  

 

Figure 1: An illustrative example showing the lattice 

associated with pattern X∧Y∧Z.  

Figure 1 illustrates the algorithm using a small lattice 

on a dataset that contains 200 instances from class c1 

and 300 instances from class c2. For example, c1 can 

represent the cases (patients with a specific 

condition) and c2 can represent the controls. X, Y and 

Z represent different items (attribute-value pairs). For 

each pattern P (node), we show the number of 

instances in group P in each class, the distribution of 

the classes (conf) and the maximum confidence 

achieved by any node of P's sublattice (max_conf). 

Let us look for example at pattern X ∧ Z. This pattern 

is predictive of class c1 because Pr(c1| X ∧ Z)=0.7 > 

Pr(c1)=0.4. The best predictive subrule of rule          

X ∧ Z⇒c1 is Z⇒c1 with confidence 0.55. By applying 

the MPR test: 𝑃𝑟𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙   𝑥 ≥ 105 150, 0.55) =
0.00012, we conclude that X ∧ Z ⇒ c1 is an MPR. 

The MPRs from this example are: X⇒c1, Y⇒c2,        

Z ⇒c1 and    X ∧ Z ⇒ c1. 

V. Efficient Mining using RMPR 

The mining algorithm presented above relies on the 

Apriori algorithm to mine the MPR set. It is known 

that the efficiency of Apriori heavily depends on the 

min_sup parameter: The higher the min_sup, the 

faster the algorithm runs. However, most datasets we 

encounter in the medical domain are highly 

unbalanced with a very small number of cases 

compared to the number of controls. Therefore, in 

order to capture the important patterns in the cases, 

we have to set a low value to min_sup, which makes 

the mining algorithm very slow. In order to scale up 

our algorithm, we propose a stricter definition of 

MPR, which we call recursive minimal predictive 

rules (RMPR). 

Definition: A rule R is a recursive minimal predictive 

rule (RMPR) if R is MPR and all its subrules, 

excluding the empty rule, are MPRs.  

For example, rule X ∧ Z ⇒ c1 in Figure 1 is RMPR 

because it is an MPR and both of its subrules X⇒c1 

and Z⇒c1 are MPRs. Note that the RMPR set is 

always contained in the MPR set.  

The RMPR definition allows us to perform a very 

aggressive pruning on the search space as follows: if 

pattern P does not produce an MPR, it can be pruned 

since all of its superpatterns are guaranteed not to 

produce RMPRs. For example, since patterns X ∧ Y 

in Figure 1 is not an MPR, it is pruned and we do not 

have to generate and test pattern X ∧ Y ∧ Z.  

Experimental Evaluation 

In this section, we test and present results of our 

approach on clinical data by predicting the orders of 

the Heparin Platelet Factor 4 antibody (HPF4) test. 

This test is important for detecting and confirming 

Heparin-induced thrombocytopenia (HIT)
6
. HIT is a 
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pro-thrombotic disorder induced by Heparin exposure 

with subsequent thrombocytopenia and associated 

thrombosis. HIT is a life-threatening condition if it is 

not detected and managed properly.  

Our objective is to automatically learn from the data 

when an HPF4 test should be ordered for a patient on 

Heparin. In other words, given a specific point in 

time (we call the anchor point) for a specific patient, 

we want to detect whether this patient starts to exhibit 

the HIT symptoms, which requires an order of HPF4.  

Dataset: We use a database of 4,281 records of post 

cardiac surgical patients treated at one of the 

University of Pittsburgh Medical Center (UPMC) 

hospitals. In this database, we have 220 patients for 

which the HPF4 test was ordered. We set the anchor 

point for these patients to the time HPF4 was 

ordered. The other 4,061 patients are also treated by 

Heparin, but did not have an HPF4 test. We set their 

anchor points randomly by the arrival of a new 

platelet result, a key feature used in HIT detection
6
.  

Features: For each patient, we consider the 

following 6 lab tests: platelet counts (PLT), activated 

partial thromboplastin time (APTT), prothrombin 

time (PT), hemoglobin (Hgb), red blood cell count 

(RBC), and white blood cell count (WBC).  

For a specific patient, each of these labs is a 

represented by time series starting from the patient 

hospitalization up to the anchor point. We preprocess 

the data using temporal abstractions
10

 to obtain a 

qualitative description of these series. We use two 

types of abstractions:  

 Trend abstractions: represent the lab series in 

terms of its local trends and can take one of the 

values: {decreasing (D), steady (S), increasing (I)}.  

 Value abstractions: can take one of the values:       

{low (L), normal (N), high (H)}, depending on 

whether the result is below, within, or above the 

normal range. 

The most recent lab values are usually the most 

important for predicting the patient’s state at a 

specific time
11

. Therefore, we use the most recent 

trend and the most recent abstract value of each of 

the 6 labs to be our data features. In addition to these 

12 features, we use an indicator feature that is set to 

one if Heparin was administered to the patient in the 

last 24 hours. Hence, the number of different items 

(attribute-value) to consider is 12*3+2=38 items. 

Experiment settings: In our experiments, we 

compare the performance of MPR and RMPR with 

the following rule induction methods:  

 complete: The set of all association rules (all 

frequent patterns). 

 corr_chi: A subset of complete that contains rules 

with significant positive correlations between the 

condition and conclusion according to the χ2 test
9
. 

 corr_chi_FDR: A subset of corr_chi that is post-

processed using the false discovery rate (FDR)
12

 

technique, which is used to reduce the number of 

false positives in multiple hypothesis testing. 

For the methods that use a statistical test: corr_chi, 

corr_chi_FDR, MPR and RMPR, we set the 

significance level to the conventional α= 0.05. For all 

methods, we set the min_sup threshold to 5% the 

number of instances in the dataset. 

In order to objectively evaluate the usefulness of the 

rules in the different methods, we use the 

classification accuracy of the corresponding rule-

based classifier. We define the classifier as follows: 

To classify instance x, we weight each rule that 

satisfy x in the result by its confidence and calculate 

the following odds ratio: 

𝑅 =
 𝑐𝑜𝑛𝑓(𝐴 ⇒ 𝐻𝑃𝐹4)𝑥⊆A

 𝑐𝑜𝑛𝑓(𝐴 ⇒ 𝑁𝑂𝑇 𝐻𝑃𝐹4)𝑥⊆A

 

Results: Table 1 shows the number of rules and the 

area under the ROC curve (AUC) for the different 

methods. These results are averaged using the 5-folds 

cross validation scheme.  

Method Number of rules AUC 

Complete 10,680 0.819 

corr_chi 7,530 0.820 

corr_chi_FDR 2,502 0.774 

MPR 71 0.812 

RMPR 63 0.818 

Table 1: The number of rules and the classification 

performance (AUC) for the different rule induction 

methods on the HIT dataset. 

First notice that evaluating the rules individually 

based on their statistical significance (corr_chi and 

corr_chi_FDR) does not help much in reducing the 

number of rules (even by using the FDR correction). 

It is clear from the table that the number of MPRs 

and RMPRs is much smaller than the number of rules 

in the other approaches (MPRs are about two orders 

of magnitude smaller than all associations). 

We can see that MPR does not sacrifice the 

classification accuracy. An important benefit of using 

the compact set of MPRs for classification is that the 

classification time is very fast. So instead of 

consulting 10,680 rules to classify each instance, 

MPR summarizes the classifier in only 71 rules. 

Table 2 shows the top 5 rules found by both MPR 

and RMPR according to the J-measure
8
.  The first 

four rules predict HPF4 orders, while the fifth rule 
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predicts that no HPF4 order should be made. Rules 1 

and 4 describe conditions used in detecting HIT
6
. 

Rule 2 (that refines Rule 1) found that the chance of 

ordering HPF4 increases if the APTT value is high. 

The relation between the HIT and APTT is discussed 

in
13

. Finally Rule 3 suggests the HPF4 order (hence 

the risk of HIT) is more likely if WBC values are 

high, which is an interesting finding and would 

require further validation.  

Rule Sup conf 

1. D[PLT] ∧ L PLT  ⇒ HPF4 20% 18% 

2. D[PLT] ∧ L PLT  ∧ H APTT  ⇒HPF4 8.5% 25% 

3. D[PLT] ∧ L PLT  ∧ H WBC   ⇒ HPF4 8% 26% 

4. D[PLT] ∧ L PLT  ∧ On_Hep ⇒ HPF4 9.8% 22% 

5. N[PLT] ⇒ NOT HPF4 55% 99% 

Table 2: The top 5 MPRs according to the                 

J-measure
8
. {L, N, H} denote {low, normal, high} 

and {D, S, I} denote {decrease, steady, increase}. 

On_Hep is true if the patient took Heparin within the 

last 24 hours. The HPF4 prior is Pr(HPF4)=0.05. 

MPR vs. RMPR: Notice that the RMPR method is 

able to recover most of the MPRs (63 out of 71) and 

produce a good classifier. In order to show the 

efficiency of RMPR mining, we compare the number 

of patterns (nodes in the lattice) that each method has 

to generate and test in order to find the results. 

Methods that rely only on Apriori pruning (complete, 

corr_chi, corr_chi_FDR and MPR) had to examine 

22,661 different candidate patterns, while RMPR had 

to examine only 387 candidate patterns. Hence, 

RMPR was able to prune almost 98% of the search 

space, offering a great savings in the execution time. 

To further test the scalability of RMPR, we repeated 

the experiments by adding 9 more labs to the original 

6 labs. This creates 92 distinct items to consider. We 

kept the min_sup level at 5%. We tried to run Apriori 

on this expanded dataset, but the algorithm ran for 

several days without finishing. The inefficiency in 

Apriori is due to the exponential growth in the 

number of generated candidate patterns when the 

support is low. On the other hand, the RMPR set was 

mined in less than 2 minutes, producing a good 

classifier with AUC=0.834. 

Conclusion 

Rule mining methods are very important in the 

medical domain because they represent the 

knowledge in terms of if-then rules that are easy to 

interpret by clinicians. This paper proposes a novel 

rule mining technique based on the concept of 

minimal predictive rules. Our experiments show that 

the small set of MPRs can concisely represent the 

important patterns in the data by producing 

classification models comparable with the models 

obtained using the complete set of association rules. 

We also propose a very efficient algorithm to 

approximately mine the MPR set, making the 

approach more suitable to large scale medical data.  
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