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Proof of Lemma 1:

Proof. Let Tk = {T1, T2, . . . , Tk} be a partition of the
variables in V and q(V ) =

∏k
i=1 pi(Ti). Now assume

x = [x1, x2, . . . , xk]T and y = [y1, y2, . . . , yk]T are two
random vectors partitioned according to Tk (note that
xi’s and yi’s are sub-vectors). Then we will have:

aε(x, y) =
k∏

i=1

aε(xi, yi)

and therefore,

at(x, y) = lim
ε→0

aε,t/ε(x, y) = lim
ε→0

k∏
i=1

aε,t/ε(xi, yi)

=
k∏

i=1

at(xi, yi)

Now let ψt(x) =
∏k

i=1 ψ
t
i,mi

(xi) and λ(t) =
∏k

i=1 λ
(t)
i,mi

where At
pi

[ψt
i,mi

(xi)] = λ
(t)
i,mi

ψt
i,mi

(xi), then we will
have:

At
q[ψt(x)] =

∫
at(x, y)ψt(y)q(y)dy

=
k∏

i=1

∫
at(xi, yi)ψt

i,mi
(yi)pi(yi)dyi

=
k∏

i=1

λ
(t)
i,mi

ψt
i,mi

(xi) = λ(t)ψt(x)

Therefore, ψt(x) is an eigenfunction of At
q with eigen-

value λ(t).

Proof of Lemma 2:

Proof. Suppose ψ is the m-th eigenfunction of At
p asso-

ciated with the m-th largest eigenvalue λ constructed
using Lemma 1. That is, we have that ψ =

∏k
i=1 ψi

and λ =
∏k

i=1 λi where ψi is an eigenfunction of At
pi

in the subspace Ti associated with eigenvalue λi. Now

suppose, ψ consists of eigenfunctions from only ` < k
subspaces; that is, only ` of the eigenfunctions in
the product above are non-constant (non-trivial) with
eigenvalues strictly less than 1, while the rest of them
are constant with eigenvalues equal to 1. Now if any
of these ` eigenfunctions is replaced by the constant
eigenfunction (and its corresponding eigenvalue with
1) we will have a new valid pair of eigenvalue and eigen-
function 〈λ′, ψ′〉 for At

pi
where λ′ > λ. Using this re-

placement method, we can generate 2` new pairs with
eigenvalues all greater than λ. However, since λ is the
m-th largest eigenvalue of At

p, we must have m ≥ 2`

or equivalently ` ≤ dlgme. On the other hand, the
number involved subspaces ` cannot be greater than k
which means that ` ≤ min(k, dlgme).

Proof of Theorem 1:

Proof. From [2], we have that:

‖ψt
p,m − ψt

q,m‖22 ≤
16
δ2m
‖At

p −At
q‖2 (1)

where

‖At
p −At

q‖2 = sup
‖f‖≤1

‖At
p[f(x)]−At

q[f(x)]‖22 =

sup
‖f‖≤1

∥∥∥∥∫ at(x, y)f(y)p(y)dy −
∫
at(x, y)f(y)q(y)dy

∥∥∥∥2

2

= sup
‖f‖≤1

∥∥∥∥∫ at(x, y)f(y)[p(y)− q(y)]dy
∥∥∥∥2

2

=

sup
‖f‖≤1

∫ (∫
at(x, y)f(y)[p(y)− q(y)]dy

)2

p(x)dx ≤

sup
‖f‖≤1

∫ (∫
|at(x, y)||f(y)||p(y)− q(y)|dy

)2

p(x)dx

= sup
‖f‖≤1

∫ (∫
|p(y′)− q(y′)|dy′×∫

|at(x, y)||f(y)| |p(y)− q(y)|∫
|p(y′)− q(y′)|dy′

dy

)2

p(x)dx
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≤ sup
‖f‖≤1

∫ (( ∫
|p(y′)− q(y′)|dy′

)2×∫
a2

t (x, y)f2(y)
|p(y)− q(y)|∫
|p(y′)− q(y′)|dy′

dy

)
p(x)dx

≤
∫ (( ∫

|p(y′)− q(y′)|dy′
)2×∫

2`2
|p(y)− q(y)|∫
|p(y′)− q(y′)|dy′

dy

)
p(x)dx

=
∫
2`2‖p− q‖21p(x)dx = 2`2‖p− q‖21 (2)

On the other hand we have the following inequality [1]:

‖p− q‖1 ≤
√

2 ln 2 ·DKL(p‖q) (3)

Therefore, we have:

‖ψt
p,m − ψt

q,m‖22 ≤
16
δ2m
‖At

p −At
q‖2 ≤

16
δ2m

2`2‖p− q‖21

≤ 32 ln 2
δ2m

2`2 ·DKL(p‖q) (4)

Proof of Theorem 2:

Proof. Let Tk = {T1, T2, . . . , Tk} be a partition of the
variables in V into k subspaces. Also, let Λt

i = {λ(t)
i,m |

1 ≤ m ≤ ∞} be the set of eigenvalues of the marginal
diffusion operator At

pi
on subspace Ti for all 1 ≤ i ≤ k.

Assume the members of Λt
i are sorted in the decreasing

order with the first (the largest) eigenvalue λ(t)
i,1 = 1

associated with the constant eigenfunction ψt
i,1 = 1.

Using Lemma 1, the eigenvalues (and their associated
eigenfunctions) of At

q are constructed by picking one
eigenvalue from each set Λt

i for all 1 ≤ i ≤ k and
multiply them together; that is, the λ(t)

q,m =
∏k

i=1 λ
(t)
i,ji

is the m-th largest eigenvalue of At
q. For each m, we

can find the index tuple (j1, . . . , jk) indicating which
eigenvalue is exactly picked in each subspace to con-
struct the m-th largest eigenvalue of At

q. If we know
the index tuple (j1, . . . , jk) for the m-th eigenfunction,
we can find the upper bound on the estimation error
as follows:

‖ψt
q,m − ψ̂t

q,m‖22 =
∥∥ k∏

i=1

ψt
i,ji
−

k∏
i=1

ψ̂t
i,ji

∥∥2

2

≤ 2
∥∥ k∏

i=1

ψt
i,ji
− ψt

1,j1

k∏
i=2

ψ̂t
i,ji

∥∥2

2

+ 2
∥∥ψt

1,j1

k∏
i=2

ψ̂t
i,ji
−

k∏
i=1

ψ̂t
i,ji

∥∥2

2

= 2
∥∥ψt

1,j1

( k∏
i=2

ψt
i,ji
−

k∏
i=2

ψ̂t
i,ji

)∥∥2

2

+ 2
∥∥(ψt

1,j1 − ψ̂
t
1,j1)

k∏
i=2

ψ̂t
i,ji

∥∥2

2

≤ 2`2 ·
∥∥ k∏

i=2

ψt
i,ji
−

k∏
i=2

ψ̂t
i,ji

∥∥2

2

+ 2`2(k−1) · ‖ψt
1,j1 − ψ̂

t
1,j1‖

2
2 (5)

Using the above derivation recursively, we get:

‖ψt
q,m − ψ̂t

q,m‖22 ≤ `2(k−1)
k∑

i=1

2i‖ψt
i,ji
− ψ̂t

i,ji
‖22

= `2(k−1)
k∑

i=1
ji 6=1

2i‖ψt
i,ji
− ψ̂t

i,ji
‖22 (6)

The second equality in Eq. (6) comes from the fact
that for ji = 1, ψt

i,ji
= ψ̂t

i,ji
= 1. Since we don’t

know the true eigenvalues in each subspace, we cannot
identify the index tuple (j1, . . . , jk) for a given index
m. As a result the above bound is replaced by the
worst case scenario across all possible index tuples,
that is:

‖ψt
q,m− ψ̂t

q,m‖22 ≤ max
(j1,...,jk)

`2(k−1)
k∑

i=1
ji 6=1

2i‖ψt
i,ji
− ψ̂t

i,ji
‖22

However, because ψt
q,m is associated with the m-th

largest eigenvalue of At
q (i.e. λ

(t)
i,1), not all combina-

tions for the index tuple should be considered in tak-
ing the maximum. More precisely, if we replace any
of the indices ji in the index tuple (j1, . . . , jk) with
a smaller index j′i < ji, the resulted multiplicative
eigenvalue will become larger; this is because of the
fact that smaller indices in each set Λt

i correspond
to larger eigenvalues. The total number of such re-
placements for the index tuple (j1, . . . , jk) is

∏k
i=1 ji.

This means that if the index tuple for the m-th largest
eigenvalue of At

q is (j1, . . . , jk), m must be greater than∏k
i=1 ji. In other words, the valid index tuples for the

m-th largest eigenvalue must satisfy
∏k

i=1 ji < m. If
Sm denotes the set of such tuples, we can improve the
bound as:

‖ψt
q,m−ψ̂t

q,m‖22 ≤ max
(j1,...,jk)∈Sm

`2(k−1)
k∑

i=1
ji 6=1

2i‖ψt
i,ji
−ψ̂t

i,ji
‖22

Now, using Eq. (5) in the paper we get:

‖ψt
q,m − ψ̂t

q,m‖22

= OP

(
max

(j1,...,jk)∈Sm

`2(k−1)
k∑

i=1
ji 6=1

2it
√
di

µ
(t)
i,ji

[
log n
n

]2/(di+8))
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Moreover, using Lemma 2, there at most
min(k, dlgme) non-constant eigenvectors contributing
in constructing ψt

q,m which means the sum in the
above bound has at most min(k, dlgme) terms.
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