
Factorized Diffusion Map Approximation

Saeed Amizadeh Hamed Valizadegan Milos Hauskrecht
Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA 15213

Department of Computer Science
University of Pittsburgh

Pittsburgh, PA 15213

Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15213

Abstract

Diffusion maps are among the most powerful
Machine Learning tools to analyze and work
with complex high-dimensional datasets. Un-
fortunately, the estimation of these maps
from a finite sample is known to suffer from
the curse of dimensionality. Motivated by
other machine learning models for which the
existence of structure in the underlying dis-
tribution of data can reduce the complexity of
estimation, we study and show how the fac-
torization of the underlying distribution into
independent subspaces can help us to esti-
mate diffusion maps more accurately. Build-
ing upon this result, we propose and develop
an algorithm that can automatically factor-
ize a high dimensional data space in order to
minimize the error of estimation of its diffu-
sion map, even in the case when the under-
lying distribution is not decomposable. Ex-
periments on both the synthetic and real-
world datasets demonstrate improved esti-
mation performance of our method over the
standard diffusion-map framework.

1 Introduction

The emergence of complex high-dimensional datasets
in recent years has spurred the interest of the ma-
chine learning community in manifold analysis and
spectral algorithms. Laplacian-based methods, espe-
cially diffusion maps, are amongst the most popular
approaches to analyze such data. A diffusion map de-
fines a lower dimensional embedding of the data that
preserves the cluster structure of the data at different
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resolutions. This methodology has been successfully
applied to a variety of clustering and semi-supervised
learning tasks [1, 17,18,23–27].

Recent theoretical studies have shown that under some
reasonable regulatory conditions, the data-based dif-
fusion (Laplacian) matrix asymptotically converge to
certain operators defined based on the true distribu-
tion of data [10,13,19,24]. In fact, the eigenfunctions
of these asymptotic operators encode the cluster struc-
ture of the underlying density of data. An important
question is how well we can estimate these eigenfunc-
tions from a finite sample. Unfortunately it has turned
out that the rate of convergence of the finite-sample
approximations to true eigenfunctions is exponential
in the dimension of the data, hence the problem suf-
fers from the curse of dimensionality [13].

One possible way to alleviate the curse of dimensional-
ity problem is based on the factorization of the input
space into independent subspaces. Nadler et al. [15]
showed that when the underlying distribution is de-
composable, it leads to the decomposition of the diffu-
sion eigenfunctions. This idea was later used by Fergus
et al. [8] to implement scalable semi-supervised learn-
ing in large-scale image datasets. However, the scope
of that work is somewhat limited. First, it assumes
fully decomposable distributions. Second, it does not
provide any insight on the quality of eigenfunctions
built using the decomposition.

The objective of this paper is to study how the factor-
ization of the underlying distribution into independent
subspaces can help us to approximate the true eigen-
functions from a finite sample more accurately. We
show that if the underlying distribution is factorizable,
we can get significant reductions in the error bound
for estimating the major eigenfunctions. In fact, this
is analogous to machine learning criteria and models
that rely on the underlying distribution structure to
compensate for the insufficient sample size.

To clarify this idea, consider the synthetic 3D dataset
shown in Figure 1 with four clusters. The first row
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in the figure shows the four major diffusion eigenfunc-
tions of a sample with 1000 points where the color code
shows the sign of the eigenfunctions. Each eigenfunc-
tion effectively separates the clusters from a different
angle so that as a whole these eigenfunctions discovers
the overall cluster structure in the data. Now, if we
decrease the sample size to a half, the eigenfunctions
and therefore the clustering result will be perturbed
(as shown in the second row). However, this specific
dataset is generated in a way that the Z coordinate is
independent of X and Y . If we incorporate this infor-
mation using the framework proposed in this paper,
we get the same result as the first row but now only
with 500 points (as shown in the third row).

As the above example shows, having a factorizable
underlying distribution can speed up the convergence
of the empirical eigenvectors to true eigenfunctions.
However, the distributions of real-world data may not
factorize into independent subspaces. In this case, the
key question is how much error on diffusion eigenfunc-
tions is introduced if we impose such independence as-
sumptions upon non-decomposable distributions. This
idea is similar to imposing structural assumptions for
model selection in order to decrease the parameter
learning complexity. In this paper, we study the trade-
off between the estimation error of diffusion eigenfunc-
tions and the approximation error introduced by im-
posing the independence assumptions on the under-
lying distribution. We propose and develop a greedy
algorithm which considers different independence as-
sumptions on the distribution in order to find a factor-
izable approximation that minimizes the error in esti-
mates of diffusion eigenfunctions. To show the merits
of our framework, we test it on clustering tasks using
both synthetic and real-world datasets.

2 Related Work

Our work is related to a large body of existing work
that utilize the Laplacian-based spectral analysis [5]
of the similarity matrix of the data to find a low di-
mensional embedding of data. Such methods cover
a wide range of learning tasks such as dimensionality
reduction [2, 12], data clustering [1, 11, 17, 18, 24, 25],
and semi-supervised learning [23, 26, 27]. While the
focus of early works was more on developing new al-
gorithms based on the spectral analysis of similarity
metric [1,11,17,18,23–27], more recent works study the
theoretical aspects of such analysis [3,10,13,15,19,20],
leading to the development of the new algorithms [4,8].

Laplacian-based methods can be categorized into two
major groups: locality-preserving methods [2] and dif-
fusion maps [15], both of them are based on a similar-
ity graph of data. These two groups differ in how they

use the similarity metric. Locality-preserving methods
aim at finding a mapping of data points to real val-
ues by minimizing the local variations of the mapping
around the points. These methods can be considered
as special cases of kernel PCA [13]. Diffusion maps
are based on the random walk on the similarity graph
of data and can be considered as non-linear version of
Multidimensional Scaling (MDS) [7] technique. Many
of these methods are built upon a similarity graph on
the datapoints in the input space which has to be con-
structed based on the distance metric in the input
space. One popular method to build the similarity
graph is to transform the Euclidean distances into the
similarity weights using the Gaussian similarity kernel
with some bandwidth ε.

Several authors study the convergence rate of the
laplacian-based methods, either by assuming that data
lie exactly on a lower dimensional Riemannian man-
ifold in the original space [3, 10, 19], or consider-
ing a general underlying distribution that generates
data [8,13,24]. Our framework is built upon the result
of the later group. For a fixed kernel bandwidth ε,
von Luxburg et. al. [24] showed that the normalized
Laplacian operator converges with rate O(1/

√
n). Lee

and Wasserman [13] study the rate of convergence for
ε → 0 and large sample size n and showed that the
optimal rate is dependent on d, the dimension of data.
This result, i.e. the dependency of the convergence
rate to d, is the main inspiration for our work.

3 Diffusion Framework

In this section, we overview the basic concepts of the
diffusion map and its estimation complexity; interested
readers may refer to [12,13,15] for further details.

Let the dataset D = {x(1), . . . , x(n)} be the instances
of the random variables V = {X1, . . . , Xd} sampled iid
from the distribution P with compact support X ⊂
Rd with a bounded, non-zero density p. Define the
similarity kernel kε(x, y) = exp(−‖x − y‖22/4ε) on X .
The discrete-time diffusion operator Ap,ε : L2(X ) 7→
L2(X ) (where L2(X ) is the class of functions f defined
on X s.t.

∫
f2(x)dP (x) <∞) is defined as :

Ap,ε[f(x)] =

∫

X
aε(x, y)f(y)p(y)dy, (1)

with asymmetric kernel aε(x, y) =
kε(x, y)/

∫
kε(x, z)p(z)dz. Ap,ε is a compact,

positive operator with the largest eigenvalue λε,1 = 1
corresponding to the constant eigenfunction ψε,1 = 1.
Alternatively, Ap,ε can be represented using its eigen
decomposition as Ap,ε =

∑∞
i=1 λε,iΠi where Πi is the

orthogonal projection on ψε,i. Moreover, aε(x, y) can
be written as aε(x, y) =

∑∞
i=1 λε,iψε,i(x)ϕε,i(y) where
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Figure 1: The synthetic 3D dataset with coordinate Z independent of X and Y

ϕε,i is the eigenfunction of A∗p,ε, the adjoint of Ap,ε.

It is known that the principal eigenfunctions of Ap,ε

with the largest eigenvalues encode the manifold struc-
ture of data and therefore can be used for low dimen-
sional embedding of the original data [12]. In fact, this
is the basic motivation for introducing diffusion map
φε : Rd 7→ Rr for r < d:

x 7→ φε(x) = [λε,1ψε,1(x), . . . , λε,rψε,r(x)]T (2)

The underlying structure of data can be studied at dif-
ferent scales (like in hierarchical clustering). This gives
rise to the notion of m-step discrete-time diffusion op-
erator defined by exponenting the eigenvalues of Ap,ε

to the power of m as Am
p,ε =

∑∞
i=1

(
λε,i
)m

Πi. Subse-
quently, the asymmetric kernel for Am

p,ε is derived as

aε,m(x, y) =
∑∞

i=1

(
λε,i
)m
ψε,i(x)ϕε,i(y). Am

p,ε also in-
duces the diffusion map φmε (·) which maps the original
data to a coarser cluster structure as m increases. Fur-
thermore, one can extend the discrete scale of Am

p,ε (i.e.
m steps of length ε) to the continuous scale t = mε
(with ε→ 0) by defining the continuous-time diffusion
operator At

p : L2(X ) 7→ L2(X ) [13]:

At
p[f(x)] = lim

ε→0
At/ε

p,ε [f(x)] =

∫

X
at(x, y)f(y)p(y)dy,

(3)
where, at(x, y) = limε→0 aε,t/ε(x, y). The eigenvalues

and the eigenfunctions of At
p are computed as: λ

(t)
p,i =

limε→0 λ
t/ε
ε,i and ψt

p,i = limε→0 ψε,i, respectively.

The diffusion map induced by the eigen decomposi-
tion of At

p is a powerful tool for data embedding at
different continuous scales t. However, in practice,
we have to estimate the eigen decomposition of At

p

from the finite sample D by computing the matrix
[Âε]n×n = [kε(x

(i), x(j))/
∑n

l=1 kε(x
(i), x(l))]n×n with

the eigen decomposition Âεûε,i = λ̂ε,iûε,i. The empir-
ical eigenfunctions are then computed from the eigen-
vectors ûε,i using the Nyström approximation [13]:

ψ̂ε,i(x) =

∑n
j=1 kε(x, x

(j))ûε,i(x
(j))

λ̂ε,i
∑n

j=1 kε(x, x
(j))

(4)

The eigenvalues and eigenfunctions of Âε estimate
their counterparts for Ap,ε by estimating P with the

empirical distribution p̂ = 1/n (denoted by Âε → Ap,ε

as n→∞) [13]. Since Â
t/ε
ε → A

t/ε
p,ε as n→∞ , we can

estimate the eigenspaces of At
p by those of Â

t/ε
ε . An

important concern is how fast the rate of convergence
is as n→∞. To answer this question, von Luxburg et.
al. [24] showed that the normalized Laplacian opera-
tor converges with rate O(1/

√
n) given that ε is fixed.

This result can be easily extended to the diffusion op-
erator as well. The good thing about this rate is that it
does not depend on the dimension d. However, to find
the optimal trade-off between bias and variance, we
need to let ε → 0 as the sample size n increases. Lee
and Wasserman [13] showed that the optimal rate for
ε is (log n/n)2/(d+8) and therefore the eigenfunctions
converge as [9, 13]:

‖ψt
p,i − ψ̂ε,i‖22 = OP

(
t
√
d

µ
(t)
i

[
log n

n

]2/(d+8))
(5)

where, µ
(t)
i = min2≤l≤i log(λ

(t)
p,l−1/λ

(t)
p,l) is the multi-

plicative eigengap of At
p and ‖f‖22 =

∫
X f

2(x)p(x)dx.
Unfortunately, this rate depends on the dimension ex-
ponentially which makes it a hard problem to esti-
mate the eigenfunctions of At

p from a finite sample.
Throughout the rest of this paper, we drop the sub-
script ε for the empirical operators assuming it is im-
plicitly computed using the optimal rate above.

4 Factorized Diffusion Maps

4.1 The Factorized Approximation

Let Tk = {T1, T2, . . . , Tk} be a partition of the vari-
ables in V into k disjoint subsets. Each Ti defines a
subspace of V with dimension di = |Ti|. With a little
abuse of notation, we also use Ti to refer to the sub-
space induced by the variables in Ti. We define the
marginal diffusion operator At

pi
: L2(X ) 7→ L2(X ):

At
pi

[gz(x)] =

∫

Ti

at(x, y)gz(y)pi(y)dy,

x, y ∈ Ti, z ∈ V \Ti (6)

where gz(x) = f([x z]T ) assumes the variables in z are
constants and pi is the marginal distribution over the
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subspace defined by Ti. In other words, At
pi

treats the
input variables of f(·) which do not belong to Ti as
constants. Furthermore, the partition Tk defines the
factorized distribution qTk =

∏k
i=1 pi. To simplify the

notation, for a fixed Tk, we refer to qTk simply by q.
We also define the factorized diffusion operator At

q the
same as Eq. (3) with the true distribution p is replaced
by the factorized distribution q. We have:

Lemma 1. Let Λt
i = {λ(t)i,m | 1 ≤ m ≤ ∞} and Ψt

i =

{ψt
i,m | 1 ≤ m ≤ ∞} be the set of eigenvalues and

eigenfunctions of At
pi

, respectively. Then the sets:

Λt
q =

{ k∏

i=1

ξi | ξi ∈ Λt
i

}
,Ψt

q =

{ k∏

i=1

ϕi | ϕi ∈ Ψt
i

}

are respectively the eigenvalues and eigenfunctions of
the factorized diffusion operator At

q.

Lemma 1 explicitly relates the eigenvalues and the
eigenfunctions of the factorized diffusion operator At

q

to eigenvalues and the eigenfunctions of the marginal
diffusion operators At

pi
. We refer to the eigenvalues

and the eigenfunctions based on the factorization as
multiplicative eigenvalues and eigenfunctions.

The above decomposition also gives a recipe for com-
puting the eigenfunctions of At

q from eigenfunction es-
timates in each subspace Ti. In particular, we can esti-
mate the eigenfunctions in each subspace Ti indepen-
dently and then multiply the results over all subspaces.
This construction procedure is of special practical sig-
nificance if p, in fact, factorizes according to Tk; that
is, p = q. In that case, the principal eigenfunctions of
At

p (with largest eigenvalues) can be estimated from a
finite sample D (more accurately), if we make use of
the fact that p is factorizable.

The multiplicative eigenvalue and eigenfunction esti-
mates on the full variable space using q come with
the following properties. First, the largest eigenvalue

λ̂
(t)
i,1 in each subspace Ti is λ̂

(t)
i,1 = 1 and is associ-

ated with the constant eigenfunction ψ̂t
i,1 = 1. There-

fore, the largest multiplicative eigenvalue of At
q (ac-

cording to Lemma 1) will be λ̂q,1(t) =
∏k

i=1 1 = 1

with a constant eigenfunction ψ̂t
q,1 =

∏k
i=1 1 = 1.

Next, the second largest multiplicative eigenvalue of

At
q will be λ̂

(t)
q,2 = λ̂j,2 ×

∏
i 6=j 1 with the eigenfunction

ψ̂t
q,2 = ψ̂t

j,2×
∏

i 6=j 1 where j = arg maxr λ̂
(t)
r,2. That is,

the second eigenfunction of At
q can be obtained from

only one subspace (i.e. Tj) with a reduced dimension-
ality (dj). Finally, the m-th multiplicative eigenvalue

and eigenfunction λ̂m(t) and ψ̂t
m will be estimated us-

ing at most lgm marginal eigenfunctions on subspaces.

Lemma 2. Suppose p factorizes according to Tk and
the eigen decomposition of At

p is constructed using the

procedure suggested by Lemma 1 then the m-th eigen-
function of At

p associated with its m-th largest eigen-
value is the multiplication of the marginal eigenfunc-
tions from “at most” min(k, dlgme) subspaces in Tk.

From the estimation point of view, this result has a
significant implication in that the estimation error of
the m-th eigenfunction over the whole space can be
reduced to the estimation error from at most lgm sub-
spaces, each of which has a smaller dimension. To il-
lustrate this, consider the second principal eigenfunc-
tion ψ̂t

q,2 described above. Since it depends only on
one of the subspaces (with a reduced dimensionality),
its rate of convergence, according to [13], should be
faster. Hence its estimation error bound is reduced
and equal to the error bound for that subspace. This
observation further motivates the analysis of error for
estimating the factorized diffusion map.

4.2 Error Analysis

In the previous subsection, we saw that if the underly-
ing distribution p is factorizable, then we can decrease
the estimation error bound of the m-th principal eigen-
function using the factorization to independent sub-
spaces. However, in reality, p may not factorize at all;
then, the question is how much error is introduced if
we approximate p with q, and under which problem
settings we get smaller error bounds by enforcing such
a factorization. Suppose Ât

q is the estimated factor-
ized diffusion operator from a sample of size n with
the factorization according to Tk. Let ψt

p,m, ψt
q,m and

ψ̂t
q,m represent the m-th eigenfunction of At

p, At
q and

Ât
q, respectively. We want to approximate ψt

p,m with

ψ̂t
q,m and to study the error ‖ψt

p,m − ψ̂t
q,m‖22. We have

the following inequality:

Etotal(q,m, t) , ‖ψt
p,m − ψ̂t

q,m‖22 ≤
2‖ψt

p,m − ψt
q,m‖22 + 2‖ψt

q,m − ψ̂t
q,m‖22 (7)

The first term on the right-hand side is the approxima-
tion error or bias which is due to approximating ψt

p,m

(i.e. p) with ψt
q,m (i.e. q). Clearly, in case p = q, the

approximation error is 0 and the inequality becomes
an equality. Note that the approximation error is also
a lower bound on Etotal(q,m, t). The second term on
the right-hand side is the estimation error of the fac-
torized eigenfunction from the finite sample. We can
bound these errors from above as follows:

Theorem 1. Upper bound on the approxima-
tion error: Let supf :‖f‖2≤1 ‖f‖∞ = ` < ∞,

supx,y at(x, y) =  <∞ and δm = λ
(t)
p,m − λ(t)p,m+1 then

Eapp(q,m, t) , ‖ψt
p,m − ψt

q,m‖22 ≤
C ·DKL(p‖q) , Uapp(q,m, t) (8)
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where C = 322`2 ln 2/δ2m and DKL(·‖·) denotes the
Kullback-Leibler divergence.

Theorem 1 translates the distance between the true
and the approximated eigenfunction to the distance
between the true underlying distribution and its fac-
torized approximation.

Theorem 2. Upper bound on the estima-
tion error: Let q factorizes according to Tk and
supf :‖f‖2≤1 ‖f‖∞ = ` < ∞. Define Sm ={

(j1, . . . , jk) | ∀i ∈ [1..k] : 1 ≤ ji ≤
m and

∏k
i=1 ji ≤ m

}
and the multiplicative eigengap

µ
(t)
i,j = min2≤l≤j log(λ

(t)
i,l−1/λ

(t)
i,l ) then we have:

Eest(q,m, t) , ‖ψt
q,m − ψ̂t

q,m‖22

≤ max
(j1,...,jk)∈Sm

`2(k−1)
k∑

i=1

2i‖ψt
i,ji − ψ̂t

i,ji‖22

= OP

(
max

(j1,...,jk)∈Sm

`2(k−1)
k∑

i=1
ji 6=1

2it
√
di

µ
(t)
i,ji

[
log n

n

]2/(di+8))

, Uest(q,m, t) (9)

where n is the sample size and di is the dimensionality
of the subspace Ti. Furthermore, the sum in the last
equality is over at most min(k, dlgme) sub-spaces.

Roughly speaking, the above result states that in esti-
mating the m-th eigenfunction of the factorized oper-
ator At

q, the error is bounded by sum of the estimation
errors in at most dlgme subspaces each of which has
a reduced dimensionality from d to di.

The main implication of the above theorems can be
summarized as follows: suppose the underlying distri-
bution p is equal or close to the factorized distribu-
tion q. If the procedure in Lemma 1 is used to es-
timate the principal eigenfunctions of At

p, the upper
bound on the approximation error of these eigenfunc-
tions will be small because p and q are close (Theorem
1). Moreover, the upper bound on the estimation error
will involve only a few independent subspaces induced
by q each of which has a reduced dimensionality and
therefore has an exponentially faster convergence rates
(Theorem 2). As a result, we get smaller total error up-
per bound Utotal(q,m, t) = Uapp(q,m, t)+Uest(q,m, t)
compared to the error bound for the standard diffusion
map (Note that using the trivial partition T1 = {V }
is equivalent to the standard diffusion map).

4.3 Finding The Best Partition

So far, we have assumed that for the given problem
a good partition of variables is known. This is a rea-
sonable assumption in those problems where the (un-
conditional) independencies among the variables are

known in advance. For instance, in object recognition
problem, one may consider the edge and the texture
features of the input images to be almost independent.
However, in many other problems, the independencies
and week dependencies among variables (and therefore
the optimal partitioning) are not a priori known and
need to be discovered from the data. To this end, we
need an optimization criterion to evaluate the good-
ness of different partitions w.r.t. the task in hand. In
this paper, we use the estimated total error for esti-
mation of the major eigenfunctions to find a nearly
optimal partition of the variables for factorized dif-
fusion mapping. More formally, given an unlabeled
dataset D, we want to find the partition that mini-
mizes Etotal(q,m, t). However, we face the following
two big challenges to solve this optimization problem.
First, since we do not know the true eigenfunctions,

Algorithm 1 Greedy Partitioning

1: input: dataset D with features V
2: output: the optimal partitioning T ∗
3: k ← 1, T1 ← V
4: loop
5: for all Ti ∈ Tk do
6: {T̃i1, Ti\T̃i1} ← Qu(D, Ti)
7: ∆i ← ∆total({T̃i1, Ti\T̃i1} | Tk)
8: end for
9: j ← arg max1≤i≤k ∆i

10: if ∆j > 0 then
11: Tk ← Tk\{Tj} ∪ {Tj1, Tj2}
12: k ← k + 1
13: else
14: T ∗ ← Tk; stop
15: end if
16: end loop

we cannot directly compute the total error and need
to estimate it. One approach to estimation of Etotal
is to use the upper bound Utotal as a proxy for Etotal.
However, the problem with this solution is we need to
estimate the constants for error bounds in Theorems
1 and 2 as well as the true multiplicative eigengaps
which is not easy in general for real problems; let alone
the fact that these bounds are not tight anyway. To
get around these problems, in our framework, we use
a bootstrapping algorithm to estimate Etotal(q,m, t).
More precisely, from the given sample D of size n, we
draw b bootstrap subsamples D1, . . . ,Db of size n/2
each. Then the total error for the given partition Tk

is estimated as:

Êtotal(q,m, t) =
1

b

b∑

i=1

‖ûtp,m,D − ûtq,m,Di
‖22 (10)

Here, ûtp,m,D is the estimated eigenvector over the sam-

ple D using no partitioning whereas ûtq,m,Di
denotes
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the estimated multiplicative eigenvector over the boot-
strap subsample Di if the partitioning Tk is applied.

Second, even after estimating the total error, we still
need to find the optimal partition that minimizes the
estimated error which is an NP-hard problem. To ad-
dress this issue, we develop a greedy algorithm that re-
cursively splits the variable set V into disjoint subsets
and and stops when Êtotal(q,m, t) cannot be decreased
anymore. Let us start with the following definitions:

Definition 1. Denoted by T ′k+1 �i Tk, T ′k+1 is de-
fined to be an immediate refinement of Tk on the subset
Ti ∈ Tk if

T ′k+1 = Tk\{Ti} ∪ {Ti1, Ti2}

where Ti1, Ti2 6= φ, Ti1 ∪ Ti2 = Ti and Ti1 ∩ Ti2 = φ.

Definition 2. Suppose T ′k+1 �i Tk with the split
{Ti1, Ti\Ti1} of Ti. The error gain of the split
{Ti1, Ti\Ti1} applied on Tk is defined as:

∆total({Ti1, Ti\Ti1} | Tk) ,
Êtotal(qTk ,m, t)− Êtotal(qT ′

k+1
,m, t) (11)

Furthermore, the optimal error gain of splitting Ti in
Tk is defined to be:

∆∗total(Ti | Tk) , ∆total({T ∗i1, Ti\T ∗i1} | Tk) (12)

where

T ∗i1 = arg max
Ti1⊂Ti

∆total({Ti1, Ti\Ti1} | Tk) (13)

For now, suppose we can efficiently compute ∆∗total(Ti |
Tk) for all Ti ∈ Tk. Then given the current partition
Tk, the greedy algorithm picks the subset Ti ∈ Tk

with the maximum gain ∆∗total(Ti | Tk) to be split
into {T ∗i1, Ti\T ∗i1} and generates T ′k+1 for the next
iteration. The algorithm stops when the gains for
all subsets in the current partition are negative. Of
course, this algorithm is based on the assumption that
∆∗total(Ti | Tk) is efficiently computable which is not
the case because of the intractable set maximization
problem in Eq. (13). To address this problem, first
we define the gain for the approximation error upper
bound obtained from splitting Ti into {Ti1, Ti\Ti1} as:

∆U
app({Ti1, Ti\Ti1} | Tk)

, Uapp(qTk ,m, t)− Uapp(qT ′
k+1

,m, t)

= −C ·MI(Ti1, Ti\Ti1) (14)

where MI(X,Y ) denotes the mutual information be-
tween the random vectors X and Y and C is the con-
stant defined in Theorem 1. The equality in Eq. (14)

can be obtained from the result of Theorem 1 using
some basic algebra. We propose to use ∆U

app instead

of ∆total in Eq. (13) to find the split {T̃i1, Ti\T̃i1} as
an approximation to {T ∗i1, Ti\T ∗i1}; that is,

T̃i1 = arg max
Ti1⊂Ti

∆U
app({Ti1, Ti\Ti1} | Tk)

= arg min
Ti1⊂Ti

MI(Ti1, Ti\Ti1) (15)

Using this heuristic, finding the best splitting inside
each subset reduces to finding the most independent
bi-split of the subset. The benefit of using this heuris-
tic is that the optimization function in Eq. (15) is
a symmetric submodular function which can be mini-
mized using the Queyranne algorithm in O(|Ti|3) [16].
The disadvantage is, at the level of finding the best
split inside each subset, we do not exactly maximize
the estimated total error anymore. However at one
level higher, when the algorithm decides which subset
in the current partition should be split, it looks at the
estimated total error, which is the original objective
function we aim to minimize.

Once the split {T̃i1, Ti\T̃i1} is found, we can plug it
in Eq. (12) to compute ∆̃total(Ti | Tk) as an ap-
proximation to ∆∗total(Ti | Tk) for all Ti ∈ Tk. Algo-
rithm 1 above summarizes the greedy partitioning al-
gorithm. Note that Qu(D, Ti) in Algorithm 1 denotes
the Queyranne algorithm which finds the splitting of
Ti into {T̃i1, Ti\T̃i1} that minimizes ∆U

app.

There are a couple of points regarding the proposed
algorithm in this section to be clarified.

(1) Although the estimation error Eest is not used in
finding the best splitting of each Ti, it is implicitly
included in ∆∗total and therefore is used to decide
which Ti should be split in the next iteration.

(2) ∆U
app(Ti | Tk) only depends on the subsets Ti1 and

Ti\Ti1 inside Ti and does not change if we refine
other Tj ’s. However, this isn’t true for ∆∗total(Ti |
Tk); that is, ∆∗total(Ti | Tk) depends on the whole
partition Tk and will change if any members of
Tk is split. Because of this, we cannot apply the
splitting in all Ti’s at the same time; in fact, any
new split will change ∆∗total(Ti | Tk) for all Ti’s.

(3) In practice we need a robust method to estimate
the mutual information between different subsets
of continuous random variables from the sample
D. One candidate is the Maximum Likelihood
Density Ratio method [21] which roughly has the

convergence rate of Op(n−
1
2 ) [22].

(4) Depending on the size of problem and the method
used for estimating mutual information, the opti-
mization in Eq. (15) might be still too slow. To
alleviate this problem in practice, one can sub-
stitute line 6 in Algorithm 1 with any method
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that finds nearly independent partitions of vari-
ables (e.g. partitioning of the covariance matrix).

(5) One needs to decide for which eigenfunction (i.e.
which m) Êtotal(q,m, t) should be minimized in
the greedy partitioning algorithm. In our experi-
ments, we have used a weighted average error over
the first four principal eigenfunctions.

5 Experimental Results

Synthetic Data: In the first experiment, our goal
is to cluster the synthetic 3D dataset in Figure 1
(two balls surrounded by two rings) using spectral
clustering. In particular, we applied K-means in the
embedded spaces induced by the factorized diffusion
map and the standard diffusion map. The dimen-
sion of the embedded spaces for both mappings is 3
using the first three non-trivial eigenvectors of the
corresponding operators. Assuming the independence
X,Y ⊥ Z is known in advance, we passed the par-
tition T2 = {{X,Y }, {Z}} to the factorized diffusion
mapping algorithm (induced by Lemma 1). To assess
the performance of mappings, we measure the diver-
gence of the clustering result in each case from the
true cluster labels. To do so, we have used the nor-
malized variation of information which is a distance
metric between two clusterings [14]. This metric mea-
sures the conditional entropy of cluster labels given
the true labels and vice versa (the smaller this metric
is, the closer two clusterings are). Figure 2(A) shows
the variation of information for the two methods with
the true cluster labels as the sample size changes. We
also show the performance of standard K-means with-
out any spectral embedding (the black curve). The
curves are averages over 20 repetitions with the error
bars showing the 95% confidence intervals.

As the results show, for small sample sizes there is no
difference between the performance of the two spectral
methods. However, as we increase the sample size,
our method starts to outperform the standard diffu-
sion map leading to significantly smaller variation of
information with the true cluster labels. As we con-
tinue increasing the sample size, the difference between
the two methods starts decreasing with both meth-
ods eventually reaching the perfect clustering given the
sample size is sufficiently large (700 for our method).
According to these observations, we conclude that the
extra knowledge regarding the underlying distribution
of data (i.e. the independence relation) is particularly
useful for mid-range sample sizes and can significantly
improve the results of spectral clustering. However,
for very small or very large sample sizes, this extra
piece of information may not make a significant dif-
ference. Also, the standard K-means performed very
poorly compared to the spectral methods.

n k∗ Baseline α Factorized α
140 5 0.727 ± 0.007 0.755 ± 0.007
280 3 0.707 ± 0.006 0.748 ± 0.007
700 2 0.704 ± 0.005 0.764 ± 0.006

Table 1: Results of Greedy Partitioning on image data set
for different sample sizes

Image Data: In the second experiment, we have
applied our framework on the image segmentation
dataset 1. This dataset consists of 2310 instances.
Each instance was drawn randomly from a database
of seven outdoor categories. The image, a 3 × 3 re-
gion, was hand-segmented to create a classification for
each region. The seven classes are brickface, sky, fo-
liage, cement, window, path, and grass. Each of the
seven categories is represented by 330 instances. The
extracted features are 19 continuous attributes that
describe the position of the extracted image, line den-
sities, edges, and color values. We have treated this
classification problem as a clustering task with each
class regarded as one cluster. The main reason for
choosing this dataset is the features conceptually seem
to be divided into nearly independent subsets (e.g. the
position vs. the edge features). Figure 2(B) also shows
the empirical covariance matrix of this dataset with
nearly blocked structure which again indicates the ex-
istence of independent feature subsets. However, there
might still exist some non-linear dependencies among
features and therefore we cannot completely trust on
the block structure suggested by the covariance matrix
as the true partitioning. This observation motivates
utilizing the proposed Greedy Partitioning algorithm
to automatically find the best partition for factorized
diffusion mapping of the data.

Figure 2(C) shows the optimization paths of the
Greedy Partitioning algorithm for different sample
sizes (the plots are averaged over 10 runs). The x-
axis shows the number subsets in the partitioning on
the variables while the y-axis is the total error esti-
mated using bootstrapping in the log-scale (with the
minimums marked on the plots). As the figure shows,
all of the plots have the same general trend: namely
as we start partitioning the features, there is a signif-
icant drop on the estimated total error until the total
error reaches a minimum. We attribute this behavior
to the decrease in the estimation error while introduc-
ing very small approximation error. However, if we
continue refining the partitioning, the increase in the
approximation error will dominate the decrease in the
estimation error and therefore the total error starts in-
creasing again. It is also apparent from the plots that
as the sample size increases the estimated total er-
ror decreases for a fixed number of partitions. Finally,

1http://archive.ics.uci.edu/ml/datasets
/Image+Segmentation
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Figure 2: (A) Clustering results on synthetic data (B) Covariance matrix (C) The bootstrapping error for different
partitions on the image data of features in the image data set

note that the position of minimum is shifted to the left
(i.e. toward smaller partition numbers) as we increase
the sample size. This observation, in fact, shows that
for smaller sample sizes, the algorithm automatically
regularizes more by imposing more independence as-
sumptions (i.e. more refined partitioning) in order to
get more accurate estimation of eigenfunctions.

Having found the optimal partitioning and used it for
the factorized diffusion mapping, we can feed the re-
sulted mapping to K-means to find the clusters. To
evaluate the result of clustering given the true cluster
labels, one option is to use the variation of informa-
tion score as before. However, we observed that the
results of K-means were more sensitive to initial cen-
ters in this real-world problem. To alleviate this issue,
we develop a new evaluation metric called separation
which assesses how separated the true cluster are in
the embedded space, independent of the initial clus-
ter positions for K-means. To compute this metric:
given the new coordinates of data in the embedded
space {z(1), . . . , z(n)} and the true cluster labels, we
compute the center µi for cluster Ci in the embedded
space. Each Ci has ni data points; we define wi to
be the number of data points among the ni closest
points to µi which actually belong to the cluster Ci

(using the true labels). The separation is computed as
α =

∑
i wi/n which is a number in [0, 1]. For α = 1,

we have the perfect separation meaning that given a
good set of initial points, K-means can completely sep-
arate the clusters based on the true labels. In fact, this
metric is equivalent to clustering purity metric when
K-means generates the ideal clustering by finding clus-
ters centered at µi’s. Table 1 summarizes the optimal
number of partitions k∗ found for each sample size as
well as the separation α (and its 95% CI) for both stan-
dard and factorized diffusion maps. All the results are
the average over 10 runs. As the results show, using
factorized diffusion embedding, the separation of clus-
ters in the embedded space is significantly improved.

6 Conclusions

In this paper, we utilized the existence of indepen-
dence structure in the underlying distribution of data
to estimate diffusion maps. In particular, we stud-
ied the reduction on the estimation error of diffusion
eigenfunctions resulting from a factorized distribution.
We showed that if the underlying space is factorized
into independent subspaces, the estimation error of
the major eigenfunctions can be decomposed into er-
rors in only a subset of these subspaces each of which
has a much smaller dimensionality than the original
space. Since in many real problems, the factorized
distribution either does not exist or is not known in
advance, we studied how much bias is introduced if
we impose the factorized distribution assumption. To
find the optimal trade-off between the approximation
bias and the estimation error, we developed a greedy
algorithm for finding a factorization that minimizes
the estimated total error. The experimental results
showed that the factorized approximation can signif-
icantly improve the results of spectral clustering on
both the synthetic and image data sets.

The fundamental intuition underlying this work is that
the density estimation problem and the spectral anal-
ysis of data are closely related. Hence, the same struc-
tural assumptions that can help us to reduce the com-
plexity of learning for density estimation purposes, can
also help us for the empirical spectral analysis.
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