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Abstract. Electrocardiogram (EKG/ECG) is a key diagnostic tool to
assess patient’s cardiac condition and is widely used in clinical applica-
tions such as patient monitoring, surgery support, and heart medicine re-
search. With recent advances in machine learning (ML) technology there
has been a growing interest in the development of models supporting au-
tomatic EKG interpretation and diagnosis based on past EKG data. The
problem can be modeled as multi-label classification (MLC), where the
objective is to learn a function that maps each EKG reading to a vector
of diagnostic class labels reflecting the underlying patient condition at
different levels of abstraction. In this paper, we propose and investigate
an ML model that considers class-label dependency embedded in the
hierarchical organization of EKG diagnoses to improve the EKG classi-
fication performance. Our model first transforms the EKG signals into a
low-dimensional vector, and after that uses the vector to predict different
class labels with the help of the conditional tree structured Bayesian net-
work (CTBN) that is able to capture hierarchical dependencies among
class variables. We evaluate our model on the publicly available PTB-
XL dataset. Our experiments demonstrate that modeling of hierarchical
dependencies among class variables improves the diagnostic model per-
formance under multiple classification performance metrics as compared
to classification models that predict each class label independently.
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1 Introduction
Electrocardiogram (EKG/ECG) is a key diagnostic tool to assess patient’s car-
diac condition and is widely used in patient monitoring, surgery support, and
heart medicine research. Until recent years, most EKG processing depends largely
on domain knowledge from experts and requires signal filtering and enhancing.
Thanks to advances in machine learning (ML) methodologies and the increasing
quantity and quality of EKG data, recent years has seen increased interest in
the development of data driven solutions that can automatically interpret EKG
signals and use it for the diagnosis of the underlying patient conditions. Such
conditions are often labelled using standardized EKG vocabulary that is orga-
nized into a diagnostic class hierarchy [20]. For example, the ILMI (inferolateral
myocardial infarction) and IPMI (inferoposterior myocardial infarction) labels
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are aggregated in the IMI (inferior myocardial infarction) class at a lower level
and the MI (myocardial infarction) class at a higher level of the hierarchy. On
the other hand, the ASMI (anteroseptal myocardial infarction) is a member of
AMI (anterior myocardial infarction) class which in turns also belongs to the
same MI (myocardial infarction) class.

The problem of assigning class labels to EKG signals can be cast as a multi-
label classification (MLC) problem. Unlike the multi-class classification problem
where each instance belongs to exactly one class, in MLC each instance can have
multiple class labels. In general, class labels that are assigned to individual EKGs
can be at the same or the different level of abstraction. For example, a specific
EKG can be assigned ILMI (inferolateral myocardial infarction), IMI (inferior
myocardial infarction) as well MI (myocardial infarction) labels. The majority
of the previous works on EKG classification does not consider hierarchical de-
pendencies among class labels [14, 1, 19] and hence may result in inconsistent
predictions at different levels. For example, the model may predict a class to be
true while its parent class being false, or a class to be true while all its children
classes are false.

In this paper, we propose and investigate an ML model that can perform
MLC of EKG signals based on the hierarchical organization of EKG diagnoses
and their corresponding class label dependencies. The proposed model starts
from EKG signals that are transformed via ML architectures into a lower di-
mensional vector representation of EKG, and after that, it relies on a hierar-
chical organization of classes to make class label predictions. The hierarchical
class dependencies our model relies on are implemented in a conditional tree
structured Bayesian network (CTBN) [2] where the tree structure encodes the
class hierarchy. We use multiple logistic regression models as classifiers of the
CTBN, where each logistic regression model comes with its own set of trainable
parameters. The trained CTBN model can make multi-label predictions in time
linear in the number of classes, by computing the most probable assignment of
all class variables using the tree structure of the CTBN.

We evaluate our CTBN model on the PTB-XL [20] EKG dataset that anno-
tates each EKG using a mix of class labels at the different levels of abstraction.
We show that by explicitly including the label dependencies we can improve
the EKG classification performance in terms of both the exact match accuracy
(EMA) and conditional log likelihood loss (CLL-loss), two criteria commonly to
evaluate the MLC predictions. To prove the robustness of the CTBN model for
the MLC problem we test its benefits by combining it with (five) different EKG
signal transformations solutions: multilayer perceptron (MLP), recurrent neural
network (RNN), long short-term memory (LSTM), gated recurrent unit (GRU),
and fully convolutional network (FCN).

2 Related Work

In this section we briefly review the work related to our methodology, in particu-
lar, the work on ML models for EKG annotation, and multi-label and hierarchical
classification tasks.
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EKG labeling. Many efforts have been made to organize an extensive
amount of EKG data into datasets [20, 10, 11] that consist of EKG waveform and
diagnostic labels. Early research on EKG labeling required domain knowledge
from experts, complex preprocessing on EKG signals [5, 23, 3] and hand-crafted
features. More recent research efforts have explored modern ML solutions based
on neural networks [1, 22] and deep learning [14, 4, 15] models to implement EKG
processing and suitable EKG low-dimensional representations. Although this re-
search does not share a common set of prediction targets, it leads to many
promising results that demonstrate the potential of ML in automatic EKG la-
beling and diagnosis.

Multi-label classification. Specifically to the PTB-XL dataset, [17] ex-
amines several ML models including a five-layer one-dimensional convolutional
neural network, a channel-wise SincNet-based [12] network architecture, and a
convolutional neural network with hand picked entropy features calculated for
every channel, and reports results on pair-wise classification tasks and 5- and 20-
class MLC. [18] uses both the entropy features from [17] and features generated
from R-wave detection methods, and performs MLC using aggregated models
with different combinations of features. [19] provides a comprehensive collection
of ML methods including Wavelet with shallow neural network [16], LSTM [7],
FCN [21], ResNet [6], Inception [8] models and their variants. These models
are benchmarked in various MLC tasks on different targets such as diagnosis,
forms, and rhythms. Note that all the works mentioned above perform MLC
without class-label hierarchy, and no dependency is considered when training
and evaluating the models.

Hierarchical classification. The ML approach of hierarchical classification
can be applied to the medical field by learning a collection of diagnostic clas-
sification models explicitly related via hierarchy. Malakouti and Hauskrecht [9]
proposes a set of predictive models for multiple diagnostic categories organized
in a hierarchy, and uses the hierarchy to guide the transfer of model parameters.
The algorithm uses a two passes approach: the first pass follows the hierarchy in
top-down fashion where the model parameters are transferred from higher-level
diagnostic categories to lower-level ones; the second pass transfers the infor-
mation bottom-up by adapting model parameters from lower level to their im-
mediate parents. Their results shows improved performance when compared to
independently learned models, especially for diagnosis with low priors and well-
defined parent categories. [2] introduces conditional tree-structured Bayesian
network (CTBN), a probabilistic approach that models conditional dependen-
cies between classes in an effective yet computationally efficient way. Parameters
of the CTBN model are captured in probabilistic prediction functions, and the
structure is learned automatically from the data by maximizing the conditional
log likelihood. The model makes predictions by finding the MAP assignment of
class variables, with complexity linear to the number of class variables due to
its tree structure. This dependency structure of class variables produces reliable
probabilistic estimates and allows better performance of CTBN when comparing
to other probabilistic methods.
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3 Methodology
Our proposed model consists of: i) a model for generating low-dimensional sum-
maries of the EKG inputs, and ii) an MLC model based on the CTBN supporting
MLC tasks with label dependencies. The dependencies reflect the hierarchical
organization of EKG classes at different levels of abstraction.

3.1 Low-dimensional EKG representation

The EKG is defined by a complex high-frequency time-series signal. Hence, the
key challenge is to summarize this signal more compactly so that it can be
linked to different MLC frameworks working with vector-based inputs. In this
work, we consider modern neural network architectures to perform this step and
generate low-dimensional representation of the EKG signals. Briefly, given an
input instance X, formed by time-series of measurements, the model defines a
function g that maps X to a lower-dimensional vector space X ′ = g(X). In the
case of EKG the input signal X is a tensor of shape (c, l), where c is the number
of EKG channels and l is the length of the signal. The output is a k-dimensional
real-valued vector X ′ = (x1, ..., xk) that reduces the temporal dimension of the
original EKG signal and aims to capture the key information needed to support
the classification task.

The transformation of the EKG signal to a specific low-dimensional rep-
resentation can be defined and learned with the help of different ML archi-
tectures. Here we consider: multilayer perceptron (MLP), fully convolutional
network (FCN), and recurrent neural network (RNN). All of them have been
applied to time series classification and prediction tasks, some specifically to
EKG classification [15, 19] and have shown decent performance.

3.2 Multi-label classification model

The low-dimensional vector-based representations X ′ of EKG support MLC
tasks. Briefly, we are interested in learning a model f : X ′ → Y where X ′

is a low-dimensional representation of EKG, and Y is a binary vector of m class
labels. One way to define and train an MLC model f : X ′ → Y is to express it
in terms of conditional probability P (Y |X ′). The best assignment of labels to
the input vector X ′ is then obtained by calculating Y ∗ = argmaxY P (Y |X ′).

There are different ways to represent and train P (Y |X ′). One solution is to
rely on a set of independent classification models, one model per class variable,
to define P (Y |X ′) =

∏
i P (Yi|X ′). However, using an independent set of classi-

fiers to support the MLC may fail to represent the dependencies among classes.
This is important especially for EKG classification where typical multi-label an-
notation combines classes at the different level of abstraction. To alleviate the
problem, one can resort to different MLC methods such as those defined by
classifier chains [13]. Briefly, a classifier chain model decomposes the conditional
probability P (Y |X ′) over class labels into a product of conditional probabili-
ties over components of Y using the chain rule: P (Y |X ′) =

∏
i P (Yi|pa(Yi), X

′)
where class label Yi depends on a subset of so called parent class variables pa(Yi)
that Yi depends on.
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In general, selecting and optimizing the parent subsets defining the chain
classifier is a hard task. In this work we resort to tree structured label de-
pendency model where each individual label may depend on at most one other
class label. The model we adopt is the Conditional Tree Structure Bayesian Net-
work (CTBN) model proposed by Batal et al [2]. It consists of a set of binary
probabilistic classifiers for the transformed EKG vector X ′ and the value of at
most one other class label. The classifiers are organized in a tree structure where
the parent class denotes the class the variable depends on. Figure 1 illustrates a
CTBN model with three binary class variables.

Y1

Y2 Y3

P(Y1 | X)

P(Y3 | Y1 = 0, X)

X'

P(Y3 | Y1 = 1, X)
P(Y2 | Y1 = 0, X)
P(Y2 | Y1 = 1, X)

Fig. 1. An example of a CTBN with three binary class variables. The dash lines indicate
the input and the solid lines model the hierarchy. Class variable Y1 can be modeled
with only one classifier, whereas Y2 and Y3 each requires two classifiers.

The advantages of the CTBN model are: (i) the tree structure can fit the
hierarchy of class labels often used to annotate EKG, see section 4.1, and (ii)
the optimal assignment of the classes for the transformed input X ′ can be found
efficiently in the time linear in the number of classes [2]. Following Batal et al [2]
we use logistic regression classifiers to define the individual classification models
in the CTBN model, that is: P (Yi = 1|pa(Yi) = j,X ′ = x′) = σ(wT

i,jx
′) where

σ is the logistic function and wi,j are learnable weight vectors parameterizing
individual models.

3.3 Training Models
The model that consists of the low-dimensional transformation g of the EKG
signal and the CTBN implementing the MLC with dependencies among labels
can be trained jointly using standard neural network optimization frameworks.
Briefly, the CTBN part concurrently optimizes the weights of multiple logistic
regression models implementing the different classifiers, where tree-based depen-
dencies among the class variables are used to automatically select (via masking)
all logistic regression models responsible for the specific training instance. We
use average binary cross-entropy (BCE) loss and the AdamW optimizer with
weight decay to optimize the models.

3.4 Making Predictions
The trained model allows us to transfer the original EKG signal x to its low-
dimensional vector representation x′, which in turn let us estimate P (Yi =
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1|pa(Yi), x
′) for all class labels. To make a prediction we want to identify the

best possible assignment of class labels to all class variable, or in other words,
the assignment that maximizes y∗ = argmaxy P (Y = y|X ′ = x′).

For the CTBN models, this optimization can be carried out efficiently across
the tree-structure [2]. More specifically, we use a variant of the max-sum/max-
product algorithm that runs in two passes with complexity linear to the number
of class variables. In the first pass, information is sent upward from the leaves to
the root, where each node compute the product of its local conditional probabil-
ity and all probabilities sent from its children, and maximize and send the result
over its value to its parent node. In the second pass, information is sent down-
ward from the root to the leaves, where each node find its optimal assignment
base on the assignment of its parent (if any) and its local conditional probability,
and propagates the optimal assignment to its leaves.

4 Experiments
4.1 Data

We evaluate the proposed model on the EKG diagnostic task with 2 hierarchy
levels using the publicly available PTB-XL dataset. The dataset consists of 21837
10-second long 12-lead EKGs from 18885 patients. This data is evenly distributed
in terms of gender, with age covering a wide range of 0 to 95 years old. The
EKG waveform is collected at a 500Hz sampling rate with 16 bit precision, and
is down-sampled to 100Hz frequency. Each EKG instance is annotated by up
to two cardiologists and labelled with 71 different EKG statements, using the
SCP-ECG standard that covers diagnostic, form, and rhythm statements. We
use the 44 diagnostic interpretations, and map them into 5 superclasses and 23
subclasses, as shown in Figure 2. Each EKG signal can be assigned multiple class
labels, even at the same hierarchy level. In addition to EKG readings, PTB-XL
dataset provides extensive metadata on demographics, but we do not use them
in our classification models.

4.2 Methods

Our experiments compare the performance of the CTBN model to the baseline
multi-label classifier that relies on a set of independent classification models
where each class is predicted from a low-dimensional EKG summary vector x′.
We compare these two models on five different EKG transformation approaches:
MLP, RNN, LSTM, GRU, and FCN. For the MLP approach, we flatten the
EKG signal input over the temporal dimension, and apply 5 fully connected
layers with activation, using a hidden size of 4096 perceptrons per layer. For the
recurrent approaches (RNN, LSTM, GRU), we use one unidirectional recurrent
layer with hidden dimension 128. For the FCN approach, we use 5 convolution
layers with activation and max pooling, followed by an adaptive average pooling
layer to reduce the temporal dimension.

All models are built to make joint predictions on 28 class labels that consist of
all 5 superclass and 23 subclass labels. Since superclass labels are binary and each
subclass variable has exactly one superclass, two logistic regressions are needed to
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Fig. 2. A hierarchy of diagnostic classes describing the EKG readings in the PTB-
XL dataset [20]. Diagnostic superclasses correspond to labels in the inner circle and
subclasses to labels in the outer circle.

cover the predictions of each subclass in CTBN. However, since no EKG instance
can belong to a subclass without belonging to its parent superclass label we can
simplify the CTBN by considering just one logistic regression model for each
subclass variable, that is, predicting probability conditioned on its parent class
being true. This reduces the total number of logistic regression classifiers used
in our CTBN model to 28, which is the same number of as used for the baseline
MLC model that predicts each class independently.

4.3 Metrics

We consider three different metrics to evaluate the models: exact match accuracy
(EMA), conditional log likelihood loss (CLL-loss), and macro F1. Briefly, the
exact match accuracy (EMA) computes the percentage of the instances whose
predicted class vectors are exactly the same as their true class vector, i.e. all
class variables are correctly predicted. The conditional log likelihood loss (CLL-
loss) is defined for probabilistic methods as: CLL-loss = −

∑n
k=1 logP (y(k)|x(k)).

The CLL-loss for a test instance x(k) is small if the predicted probability of the
true class vector y(k) is close to 1, and the CLL-loss is large if the predicted
probability of y(k) is close to 0. Finally, the macro F1 score is the unweighted
arithmetic mean of all the per-class F1 scores, which for each individual class
variable is calculated as the harmonic mean of its precision and recall.

EMA evaluates the success of the models in finding the conditional joint
distribution for all class variables P (Y|X) and thus is appropriate in our MLC
setting. CLL-loss evaluates how much probability mass the model assigns to the
true class vector and is a useful measurement for probabilistic methods. For two
models that both misclassify an instance according to EMA, CLL-loss will still
favor the one that assigns higher probability to the correct output. We report
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the F1 score of the models, but note that it is not a very suitable metric for the
MLC problem, since it is calculated separately for each class variable and then
aggregated, and thus does not consider the dependencies between classes.

4.4 Results
All experimental results are obtained using 10-fold cross validation that is kept
the same for all evaluated models. All the splits are obtained via stratified sam-
pling while respecting patient assignments such that all records of the same
patient are assigned to the same fold. As recommended in the PTB-XL dataset,
we use folds 1-8 as training set, and folds 9 and 10 that underwent at least one
human evaluation with high label quality as validation set and test set.

Baseline (non-CTBN) CTBN
Transformation EMA CLL macro F1 EMA CLL macro F1

MLP 0.368 13.0 0.168 0.385 10.4 0.153
RNN 0.237 6.7 0.045 0.332 4.2 0.043
LSTM 0.367 5.1 0.188 0.419 3.3 0.248
GRU 0.393 4.6 0.248 0.473 3.0 0.301
FCN 0.448 4.0 0.337 0.498 2.6 0.329

Table 1. Performance of the CTBN model vs non-CTBN baseline for five different
EKG transformations on the PTB-XL dataset. The MLC problem is defined on the
superclass and subclass labels.

Table 1 compares the performance of our CTBN model to the non-CTBN
baseline defined by a set independent logistic regression models, one model per
class variable. For all five EKG transformations representing three types of neural
networks (fully connected, recurrent, convolutional), the CTBN model outper-
form its non-CTBN counterpart in terms of EMA and CLL-loss. We observe
bigger improvements in EMA when using more complex EKG transformations,
like the recurrent and convolutional neural networks. The results on F1 score
are not consistent, as we see improvements when using LSTM and GRU, but
not on MLP or FCN. This can be explained by the property of F1 score that it
does not capture label dependencies and thus shows no advantage of CTBN.

95% CI of ∆metric (lower, mean, upper)
Transformation ∆EMA (higher the better) ∆CLL (lower the better)

MLP (0.002, 0.016, 0.031) (-3.497, -2.834, -2.154)
RNN (0.070, 0.094, 0.117) (-2.584, -2.488, -2.395)
LSTM (0.043, 0.056, 0.075) (-1.884, -1.761, -1.640)
GRU (0.061, 0.080, 0.102) (-1.801, -1.672, -1.540)
FCN (0.031, 0.050, 0.067) (-1.504, -1.402, -1.306)

Table 2. Performance of the CTBN model vs non-CTBN baseline evaluated with pair-
wise statistical significance testing using 95% confidence interval.

Table 2 evaluates the performance of our CTBN model and the non-CTBN
baseline using pair-wise statistical significance testing. We generate (with re-
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placement) 1000 random bootstrap samples of sample size 1024 from the test
set, and for each sample we evaluate our CTBN models and non-CTBN baselines
using the desired metrics. We define ∆metric = metricctbn −metricbaseline and
report the mean, upper bound, and lower bound of the 95% confidence interval
of all 1000 samples. We conjecture that our CTBN models are statistically sig-
nificantly better than corresponding baselines since the model consistently out-
performs the baseline within an acceptable confidence interval, i.e. when ∆EMA
is positive and ∆CLL is negative.

5 Conclusion
In this paper, we propose an ML model that improves EKG classification by
leveraging the hierarchical class label dependencies. The model generates low-
dimensional summaries of EKG instances with ML methods, and performs MLC
using CTBN [2] that captures the dependencies between class variables. Our
model uses logistic regression as probabilistic classifiers for the CTBN model,
and can perform exact inference with complexity linear in the number of class
variables. Our experimental evaluation on the PTB-XL [20] dataset shows that
our approach outperforms the same ML architectures that do not incorporate
class dependencies, and produces more reliable probabilistic estimates.
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