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Abstract. Gene ontology (GO) is a major source of biological knowl-
edge that describes the functions of genes and gene products using a
comprehensive set of controlled vocabularies or terms organized in a hi-
erarchical structure. Automatic annotation of biological texts using gene
ontology (GO) terms gained attention of the scientific community as it
helps to quickly identify relevant documents or parts of text related to
specific biological function or process. In this paper, we propose and in-
vestigate a new GO-term annotation strategy that uses a non-parametric
k-nearest neighbor model that relies on various vector-based representa-
tions of training documents and GO-terms linked to these documents.
Our vector representations are based on machine learning and natural
language processing (NLP) models that include singular value decompo-
sition, word2vec and topics-based scoring. We evaluate the performance
of our model on a large benchmark corpus using a variety of standard
and hierarchical evaluation metrics.
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1 Introduction

Gene Ontology (GO) is the largest and most diverse open-source repository of
structured and standardized vocabulary that describes complex biological func-
tions of genes and gene products across different organisms. The GO knowledge
base is developed and maintained by the Gene Ontology (GO) Consortium. It
defines vocabulary and its structure using functional attributes known as GO
terms, and links these to different genes and gene products. GO ontology can
be used for a variety of purposes. One important problem is the annotation of
documents or text with GO terms which can help researchers to identify articles
based on important biological relations mentioned in the articles.

The early GO annotation efforts of text were based on manual annota-
tions. Unfortunately, such annotations were time-consuming and required well-
established guidelines to avoid inconsistencies and errors [5,3]. The focus of recent

∗Supported by the Defense Advanced Research Projects Agency (DARPA) through
Cooperative Agreement D20AC00002 awarded by the U.S. Department of the Interior,
Interior Business Center. The content of the article does not necessarily reflect the po-
sition or the policy of the Government, and no official endorsement should be inferred.



2 J. Jui and M. Hauskrecht

GO-annotation effort has been gradually shifting towards automatic methods
based on Natural Language Processing (NLP) and machine learning (ML) solu-
tions. BioCreAtIvE text mining competitions were among the first attempts to
design solutions to facilitate automatic annotations of genes and their products
[2,8]. Different methods have been devised. These span pattern-based approaches
that fit text to predefined patterns with specific keywords matches driving the
annotation to more advanced machine learning models relying on gene concepts
and language based features [4,6,7].

In this work, we develop and explore GO-term annotation solutions of bio-
logical text that rely on the state-of-the-art NLP and ML techniques. Briefly,
the annotation problem can be seen as a supervised multi-label classification
problem with GO terms defining the class labels. To predict the labels we rely
on non-parametric methods where documents are featurized and represented
using various NLP vector-based models: Singular value decomposition (SVD),
Word2Vec, and topic-based models in which classes are modeled as collections of
class attributes or topics. To evaluate our solution we used a benchmark dataset
with article abstracts and their GO annotations.

2 Methods

Corpus: We have created a benchmark corpus with the latest GO annotations
for our model training and assessment. Using the Gene Ontology Annotation
(GOA) database from Uniprot1 (Uniprot-GOA), we retrieved all human GO
annotations with references to PubMed articles. After updating the old Uniprot-
GOA annotations with the latest GO functional attributes, our final corpus had
∼42k articles with 14707 unique GO annotations. We randomly split the dataset
into the disjoint train and test sets with a 90:10 ratio resulting in ∼38k train and
∼4k test documents. The distribution of the three GO categories in the dataset
are available in a supplementary document2. The dataset used in this study is
available on GitHub3.
Text Processing and Vectorization: We performed text processing of all
documents in the corpus using the scyspaCy4 python package built for biomed-
ical, clinical, and scientific text analysis. We utilized scispaCy’s “en core sci md”
model to conduct Named Entity Recognition (NER). We removed all words from
the documents that were not recognized as NER entities in order to shorten the
documents and computed Term frequency-inverse document frequency (TF-iDF)
of each document. Using document TF-iDFs, we computed two vector represen-
tations of each document: SVD and Word2Vec. SVD is a popular dimensionality
reduction technique for data with a large number of features. We computed 100-
dimensional SVDs of the sparse document TF-iDFs such that maximum vari-
ation is captured within the first 100 components. Pre-trained Word2Vec word
embeddings were extracted directly from scispaCy’s “en core sci md” model.

1https://www.ebi.ac.uk/GOA/index
2https://github.com/juijayati/GOA-AIME2023.git
3https://github.com/juijayati/GOA-AIME2023.git
4https://allenai.github.io/scispacy/
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Word2Vec vectors were weighted using the Tf-iDF weights of the words to gen-
erate document embeddings.
Prediction model: To label the text, we employ a non-parametric method
that models the relationships between documents and GO terms with the help
of documents’ vector representations. More specifically, vector representations
of documents in the training data and their associated GO-labels are used to
make prediction on the test documents using the k-nn approach applied to their
vector representations. Our method can be summarized as follows :

For a test article Q
– Compute vector representations of Q and assign topics to Q
– Extract k most similar documents from the training set using the k Nearest

Neighbor (k-NN) strategy.
– Build a set of GO terms G by combining all GO annotations from the top-k

articles extracted from the training set.
– Calculate document-based similarity score ϕD(Q, t) and topic-based similar-

ity score ϕT (Q, t) for each GO-term t ∈ G
– For each term t in G, calculate annotation likelihood of term t given Q as:

l(t|Q) = ϕD(Q, t) ∗ ϕT (Q, t) (1)

– Annotate Q with top n terms in G based on the highest likelihoods.

Topic Assignment: For assigning topics to a query article, we used scispaCy’s
“Gene Ontology” linker that links NER entities to a set of UMLS5 concepts re-
lated to GO functional attributes. The topics of the test articles were determined
by direct mapping of the UMLS concept names to GO terms.
Document-based score: Document-based similarity score for a GO term t ∈ G
given a query article Q is calculated using the documents in the list KQ of top-k
most similar documents that annotates t.

ϕD(Q, t) =

1 +
∑

d∈KQ:t annotates d

sim(Q, d)

2

(2)

Topic-based score: Topic-based similarity score for a GO term t ∈ G given a
query article Q is calculated based on the maximum semantic similarity between
the term t and any topics of Q that is in the same path of the GO hierarchy as
the term t. The semantic similarity between two go terms is defined as:

sim(t1, t2) =


1 if t1 = t2

1
dist(t1,t2)

if t2 ∈ ancestors(t1) ∪ children(t1)

0 otherwise

(3)

where dist(t1, t2) denotes the semantic distance between the terms t1 and t2
and is defined as the shortest distance between t1 and t2 in GO hierarchy. The

5https://www.nlm.nih.gov/research/umls/index.html
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Table 1. Model performances on the benchmark test corpus

Vectorization
Vector

Dimension
GO

Scoring
R10

TREC BioCreAtIve
MMR10 hP10 hR10 hF10

SVD 100 Doc 0.41 0.44 0.19 0.65 0.25
Word2Vec 200 Doc 0.43 0.45 0.19 0.67 0.26

SVD 100 Doc + Topic 0.43 0.45 0.21 0.66 0.27
Word2Vec 200 Doc + Topic 0.45 0.46 0.21 0.69 0.28

topic-based score is then calculated to reflect the maximum semantic similarity
between a candidate GO term t and the topic set TQ of a query Q.

ϕT (Q, t) =

(
1 + max

tQ∈ TQ

sim(t, tQ)

)2

(4)

3 Results and Discussion

We evaluated our models on the test corpus consisting of 4034 articles, and 4191
unique GO annotations among which 343 annotations were not present in the
training corpus. For evaluation, we used evaluation metrics developed for hierar-
chical biological ontologies. In particular, we considered Mean Reciprocal Rank
(MRRn) used in TREC question answering track and hierarchical measures of
precision (hPn), recall (hRn) and F-scores (hFn) introduced at BioCreAtIve IV
competition [9,1]. We also considered Recall at rank n (Rn) that measures the
exact recall achieved by the model’s top n predictions. The detailed explanations
of the evaluation metrics are available in a supplementary document3.

The classification performance of the proposed machine learning models are
summarized in Table 1. All statistics were based on the top 10 GO terms pre-
dicted by the models. As can be seen from the results, the Word2Vec model
combined with document and topic-based GO terms scoring achieved best per-
formance across all five evaluation metrics. It is interesting to see that applying a
dimensionality reduction technique like SVD on the TF-iDFs was able to achieve
comparable performance to Word2Vec models. In contrast to TF-iDF or SVD,
Word2Vec captures the context of words and the semantic relationship between
words. We note that scispaCy’s word vectors were trained on biomedical and
clinical corpora and offers vector representations of key biological words and
concepts. Since the corpus introduced in this study is built using biological texts,
the Word2Vec models provide a better representation of the articles than term
frequencies. The Word2Vec models also strictly outperform SVD models except
for hierarchical precision metric. Furthermore, it can be seen that incorporating
topic-based similarity scores in addition to document-based similarities enabled
improved scoring of the gold standard GO terms. It shows that a rough set of
terms related to the actual protein functions can be identified via direct word
mentions or textual cues from the NER entity tokens.

Both SVD and Word2Vec models achieved high hierarchical recall (hR10) on
the training data. This indicates that the ancestor sets of the predicted terms and
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the true annotations have a high overlap. Higher hR10 were achieved by topic-
based models because topic-based similarity scores prioritize semantic similarity
between two terms with ancestor-descendent relationship. However, the hierar-
chical precision of the models remained very low. Hierarchical precision favors
predictions of more general GO terms with fewer ancestors. This is contradic-
tory to providing the most specific terms for annotation it a poor metric for such
ontologies. According MRR10, the first prediction of a true annotation occurs
within the top three predicted terms. Finally, 45% of the true annotations were
typically included in the top-10 predictions, as indicated by the R10 statistics.
Additional results regarding the performance of the top Word2Vec model across
three GO categories are available in a supplementary document3.

4 Conclusions

We have proposed and investigated an automated approach for the annotation
of biomedical articles with GO terms that represent molecular functions, under-
lying biological processes, and cellular components mentioned in the text. The
annotation of a test article uses k-nearest neighbor matching of training articles
using their vector representation. In the future, we plan to investigate additional
modern text vectorization methods offered, for example, by BERT or ELMO ar-
chitectures for biological domains, as well as featurization based on gene or gene
products mentioned in the articles.
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