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Abstract. Recent years have witnessed an increased interest in the
biomedical research community in developing machine learning mod-
els and methods that can automatically assign diagnostic codes (ICD)
to patient stays based on the information in their Electronic Health
Records(EHR). However, despite the recent advances, accurate auto-
matic classification of diagnostic codes continues to face challenges, espe-
cially for low-prior diagnostic codes. To alleviate the problem, we propose
to leverage information in the diagnostic hierarchy and better utilize the
dependencies among diseases in this hierarchy. We develop a new hierar-
chical deep multi-task learning method that learns classification models
for multiple diagnostic codes at the different levels of abstraction in the
disease hierarchy while allowing the transfer of information from high-
level nodes, more general diagnoses codes to the low-level ones, more
specific diagnostic codes. After that, we refine the initial hierarchical
model by utilizing the relations and information that can discriminate
better between competing diseases. Our empirical results show that our
new method and its refinement outperform baseline machine learning
architectures that do not leverage the hierarchical structure of target
diagnoses tasks or disease-disease relationships.

Keywords: Hierarchical Multi-task Learning · Patient Diagnoses Clas-
sification · International Classification Diseases.

1 Introduction

The widespread adoption of electronic health records (EHRs) has introduced
the opportunity to process and extract valuable knowledge from massive data
warehouses of real-time and diverse clinical data recorded during patient’s hos-
pitalizations. One interesting problem is the automatic assignment of diagnostic
codes to patients’ hospital stays. If the problem is solved successfully, it can
help to improve a number of hospital workflows related to both clinical decision-
making and administration of healthcare systems. First, diagnostic codes such
as the International Classification of Diseases (ICD) are commonly used for hos-
pital reimbursement. The codes are currently assigned to patients by a human
annotator (a trained nosologist) after discharge. An effective solution can help
to speed up the annotation process and alleviate its cost. Second, an automated
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diagnostic system could help physicians by providing a concise, automated, and
easily accessible summary of patients’ conditions and problems not only at the
time of discharge but also during the patient’s hospital stay. Hence, it can act as
a decision support tool that can recommend and bring to the attention of physi-
cians possible patient diagnoses that have not yet been considered. Therefore,
recent years have witnessed an increased interest in developing machine learning
methods that can automatically assign diagnoses to patient stays based on the in-
formation in their electronic health records(EHR) [19, 20, 18]. However, despite
recent advancements, multiple challenges making the solutions more practical
remain to be solved.

The problem of assigning diagnostic codes to a patient covers is a multi-label
or multi-task problem that covers many different diseases. These are organized
in various hierarchies or lattice structures, abstracting individual low-level diag-
noses into subcategories. This hierarchical structure plays a significant role in the
human diagnostic process. Briefly, clinicians are likely able to recognize or reject
a high-level diagnostic category much earlier and with a higher certainty than
more specific diseases that reside on the lower levels of the hierarchy. Moreover,
when the EHR info is incomplete, and information is missing making decisions
about some low-level diagnoses may not be feasible. Hence structuring the di-
agnostic process in a top-down manner based on a hierarchy often helps the
clinician to make rapid progress in pursuing feasible diagnoses and arrive at
diagnostic conclusions even while additional information is required for a final
decision on the most reasonable lower-level assignment. The objective of our
work is to bring and leverage the available disease hierarchies into the automatic
diagnostic and model learning process. Our conjecture is that machine learning
solutions that utilize hierarchies lead to better and more accurate models, and
that they can also learn from smaller amounts of available data. The ability to
learn models from smaller datasets is important since many low-level diagnoses
are rare; that is, they come with a low class prior.

One possible direction for modeling diagnostic code dependencies is multi-
task learning. Multi-task learning methods (MTL) have been effective in learning
improved machine learning models by facilitating the transfer of knowledge be-
tween a set of related target tasks. However, the methods may also fail or are less
effective when relations among tasks vary a great deal and when negative trans-
fer in between the tasks may occur [22, 26]. As a result, classic MTL approaches
alone may not be sufficient when facing a large number of diagnostic tasks orga-
nized in a complex hierarchical structure that can involve task asymmetry and
various degrees of task heterogeneity. Therefore, hierarchical multi-task learn-
ing methods (HMTL) that can handle hierarchical relations have been proposed
to solve an array of problems in natural language processing [23], computer vi-
sion [4], speech recognition [9], and even applied to clinical diagnosis problems.
However, the limitation of the past hierarchical modeling work for supporting
medical diagnoses tasks was somewhat limited and failed to integrate modern
deep learning methods to learn more generalizable representations of patients’
EHR data sequences. In addition, these methods could not effectively leverage
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asymmetries and heterogeneity of parent-child relations in existing hierarchies.
Our objective in this work is to develop and test new deep learning models
and methods across a broad range of diseases organized in the ICD-9 disease
hierarchy that leads to improved diagnostic classification models.

We propose a new hierarchical deep learning method that leverages the hier-
archical structure of patient diagnoses to facilitate the transfer of information in a
top-down fashion, from higher-level diagnostic codes with stronger classification
models to lower-level ones. After that, we further refine the initial hierarchical
model with a new disease interaction layer. Motivated by the field of differen-
tial diagnoses, the interaction layer learns to capture additional patterns from
patients’ EHR data to better discriminate among competing diagnoses and to
fine-tune the predictions of the hierarchical layer. Finally, we compare the per-
formance of our proposed method with baseline algorithms using the MIMIC-III
dataset and the ICD-9 diagnosis hierarchy.

2 Related Work

In the following, we briefly review models used for EHR data analysis, solu-
tions for assigning patients instances to diagnoses, and methods for leveraging
hierarchies of prediction tasks.

EHR data analysis and automated diagnoses: Most recent work on
EHR clinical data analysis and modeling has utilized modern deep learning ar-
chitectures to learn a low-dimensional representation of patient data based on
various NLP model architectures and sequence summaries. These include mod-
els based on autoencoders [19], word2vec embeddings and CBOWs summaries
[25], recurrent neural networks [2, 20, 12], and various transformer and BERT
architectures [13, 21]. These new architectures often lead to improvement of pre-
dictive performance over classic featurization methods on a variety of clinical
prediction and classification tasks.

One popular application of the above methods was the problem of auto-
matic assignment of diagnoses to patients’ EHR sequences [19, 20, 18]. Briefly,
Miotto et al. [19] used a denoising autoencoder to generate a low-dimensional
representation of the patient state and applied it to multiple clinical classifi-
cation problems, including patient diagnosis. On the other hand, Rajkomar et
al [20], and Lipton et al. [14] used Recurrent Neural Network (RNN) architec-
ture to predict patient discharge diagnoses from a set of clinical variables and
sequences of their observations. The diagnostic task was cast as a multi-label
classification problem. Finally, Malakouti and Hauskrecht[18] used unsupervised
low-dimensional summaries based on SVD to predict patient discharge diagnoses
by leveraging a broad range of clinical data (labs, medications, procedures, etc.).
The lower-dimensional features were then used to learn independently trained
classification models to classify a broad range of patient diagnoses.

While the ML models for supporting the assignment of diagnoses to patients’
EHRs have been quite popular, only a limited number of works have tried to
leverage and improve the performance of these diagnostic models with the help
of disease hierarchies available in ICD-9 and ICD-10 codes. One methodology
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specifically designed to work with the disease hierarchy was Hierarchical Adap-
tive MTL (HA-MTL) [17] that relied on an iterative algorithm to learn improved
SVM classification models for individual diseases via top-down, and bottom-up
sharing of predictive information across the hierarchy [17]. Their results showed
that sharing of the predictive information may indeed lead to improved classi-
fication models, with top-down sharing accounting for the majority of the im-
provement. However, we note that the design of these hierarchical methods was
somewhat limited and did not use modern EHR sequence embedding methods.

Hierarchical multi-task learning: Multi-task learning (MTL) methods
have been proposed to exploit task relationships, their commonalities, and dif-
ferences to learn improved classification models by allowing transfer of knowledge
between the target tasks[27]. In recent years, deep multi-task learning approaches
have also shown promising results [3]. Unfortunately, the main shortcoming of
early MTL methods is that they relied heavily on the relatedness of target tasks;
hence negative transfer could happen when tasks are not sufficiently similar [22].
Various methods have been proposed to prevent negative transfer that leverage
underlying task clusters [6, 16], task-task relatedness [1, 8, 15], or facilitate an
asymmetric transfer of knowledge [10, 11]. However, neither of these approaches
is sufficient to prevent negative transfer when a large number of heterogeneous
tasks with various levels of similarities are available. To address these shortcom-
ings, hierarchical multi-task learning methods (HMTL) were introduced [28, 5,
17]. Hierarchical deep MTL methods have also been proposed that leverage the
hierarchical structure of a set of carefully selected NLP tasks by allowing in-
ductive transfer of features between task-specific RNN blocks[23]. In computer
vision, HD-MTL was proposed, which first learned a visual tree for a large set of
atomic object classes and then leveraged the inter-class relatedness in the visual
tree to jointly learn more representative deep CNNs and a more discriminative
tree classifier for the target tasks[4]. However, to the extent of our knowledge, this
work will be the first attempt to propose a deep HMTL method that leverages
the diagnoses hierarchy to promote a top-down transfer of features from parents
to children while modeling the interactions between closely related tasks at the
same level of the hierarchy (siblings). Additionally, our proposed method is the
first attempt to also incorporate disease-disease interactions of sibling diagnoses
to learn improved diagnostic classifiers.

3 Methodology

Let D be the number of target diagnostic tasks of varying difficulty organized
in a hierarchical structure H. Our goal is to learn classification models for each
of these tasks by taking advantage of task relations reflected in H.

The patients’ EHRs are formed by complex sequences of observations, physio-
logical events, treatments, and procedures. To facilitate the learning of classifica-
tion models, the EHR sequences are often replaced with a compact vector-based
representation that attempts to summarize the information in EHRs relevant to
the specific prediction tasks. This transformed representation is also referred to
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as embedding. In the following, we first describe the basic architecture for trans-
forming the data in EHRs to a lower-dimensional embedding. After that, we
propose a refinement of this architecture by incorporating a hierarchical multi-
task learning layer that facilitates sharing of embeddings among related tasks.
Finally, we add a new model layer that incorporates disease-disease interactions
to learn additional task-specific features that aim to further refine the different
diagnostic models.

3.1 EHR data pre-processing and initial EHR transformation

We have adopted a three-step process to generate initial patient representations
from a wide range of patient clinical data (Figure 1). In Step 1, binary events
representing lab results, medications, vital signs, and procedures are generated
from the patient’s raw medical records. In Step 2, the events are divided into T
segments of equal length (24h window size). The events in each time segment are
then represented by normalized Bag-of-Words (BoW) vectors. Finally, the nor-
malized BoW vectors for each segment are then transformed using a supervised
feed-forward layer (Figure 2: Embedding Layer). The weights of the feed-forward
layer are learned from available data, and its output defines the initial EHR em-
bedding vector vt where t ∈ {1, 2, .., T}. Please note there is one embedding
vector vt per segment of time per patient.

Fig. 1: Preprocessing steps to learn lower-dimensional representation of EHR

3.2 Hierarchical Multitask Learning Layer

Multi-task learning aims to train target tasks simultaneously and, hence, learn
improved classification models by facilitating the transfer of knowledge between
related tasks. In deep multi-task learning methods, this similarity is often achieved
through either a set of common latent feature layers shared by all or groups of
related tasks or through imposed similarities between a set of task-specific con-
strained feature layers. However, traditional methods may fail to efficiently lever-
age task relationships when facing a large number of heterogeneous tasks with
various levels of similarities. There, hierarchical MTL methods aim to leverage
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underlying task hierarchies to efficiently direct sharing of information between
target tasks.

Our proposed layer learns a separate set of task-specific neural network blocks
for each target task in any arbitrary hierarchy while facilitating the inductive
transfer of features in a top-down fashion by sharing hidden states of parent
tasks with its children (see Figure 2). Additionally, following Sanh et al. [23]
we use shortcuts (blue arrows) so that each target task can have access to the
original EHR feature embeddings. This dual input mechanism enables each tar-
get task to either learn new features from the shared EHR embeddings, adopt
features from more general categorical parent tasks p (black arrows), or combine
these two sets of features in order to learn improved classification models. This is
analogous to clinicians distinguishing specific diagnoses types by examining ad-
ditional information that helps identify them from the other members of a group
of diseases with similar symptoms. Task-specific blocks in this work are modeled
using a bi-directional LSTM encoder architecture. The encoders take as input
the concatenated vector of original EHR embeddings (vt vectors) and the hid-
den states of their parent task p at each timestamp t (hpt ). Next, a max-pooling
layer(max([hm1 , h

m
2 , ..., h

m
T ])) for each target task was adopted to combine task-

specific LSTM hidden states at all timestamps. Finally, a feed-forward layer with
a sigmoid activation function was adopted to learn the final classification scores
for each target task.

Fig. 2: The proposed HLSTM network architecture.

3.3 Disease-Disease Interaction Layer

Differential diagnoses in medicine refer to distinguishing a particular patient’s
disease from a set of competing diagnoses with similar features through sys-
tematic methods of acquiring and examining additional data. Similarly, a com-
prehensive machine learning solution should capture such disease-disease inter-
actions to classify patients’ diagnoses accurately. Therefore, we propose a fine-
tuning step that is trained separately as a second step and learns to capture addi-
tional patterns from patients’ EHR data to improve the initial predictions by the
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hierarchical layer. The interaction layer, defines the final prediction probability
for the target task m as ˆfm = sigmoid(fm+∆fm) where fm is the initial score
based on the hierarchical model and ∆fm determines the change to the scores
based on the disease-disease interactions with its siblings. Motivated by the field
of differential diagnoses, a task-specific feature attention-based learning block is
adopted to learn additional features (Figure 3). First, a single linear layer is used
to learn a low-dimensional task-specific feature vector vmt from the original EHR
embeddings vt for each target task m. This is followed by a scaled dot-product
attention layer similar to the multi-head attention mechanism proposed in ”At-
tention is All You Need”[24] that uses vmt vectors and the initial classification
scores Sm from task m’s siblings to learn a set of importance weights αmt for

each timestamp t. Finally, a final feature vector is obtained as vm =
∑T
t α

m
t v

m
t .

Please note that this task-specific architecture uses the initial predictions of sib-
lings and the original EHR embeddings to capture new information from the
most important window segments during a patient’s hospitalization to fine-tune
the initial predictions.

Fig. 3: Task specific interaction layer

ˆfm = sigmoid(f
m
hmtl +∆f

m
)

∆f
m

= WsV
m

+ bs

V
m

= attn(WqS
m
,WkV

m
T , V

m
T )

(1)

while:

attn(Q,K, V ) = softmax(
QKT

√
h

)V (2)

4 Experiments

Data Description: The experiments in this section are conducted using the
MIMIC-III dataset [7], an open-access EHR dataset collected over a 12-year
time span. Only patients included in the MetaVision subset, including 22,046
visits, were included since the coding terminology used for patients’ clinical data
has a higher coherency. Finally, ICD-9 discharge diagnostic codes were used
to create diagnostic labels. Since medical diseases are only recorded using the
lower level leaf diagnostic codes, binary labels for the diagnostic categories were
created by applying a logical OR operation between all its children. Finally, we
consider only diagnoses and diagnostic categories that satisfy a minimum cut-
off threshold(Nmin = 100) on the number of patients with that diagnosis (D =
1228) to ensure sufficient positive sample sizes.

Implementation Details: The proposed HLSTM architecture was imple-
mented with a linear embedding layer of dimension 256 and the task specific
bi-LSTM used a hidden state of size 32. For evaluation, we adopted the weighted
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area under the receiver operating curve (AUROC) and the area under the precision-
recall curve (AUPRC), which is suggested to be more suitable when using the
average of the metrics across multiple imbalanced target tasks with varying
skewedness[20]. Finally, a random split of (70%/30%) the data was generated to
create train and test sets.

Overall performance: In this section, we compare the overall performance
of our proposed method with baselines including: (1) multi-label LSTM archi-
tecture which included a bidirectional LSTM layer, followed by a max-pooling
layer and a linear layer with sigmoid activation function to classify all target tasks
(multi-label lstm), (2) and MTL lstm implementation that adopted a shared fea-
ture embedding layer as the common feature layer while using task-specific lstm
blocks that share information through the shared embedding layer. All baselines
utilize the same EHR feature learning method as HMTL and use mean binary
cross-entropy loss for training.

Our empirical results show that our HMTL method results in strong im-
provements across all tasks, while the interaction layer also introduces slight
improvements over the HMTL layer. These improvements are consistent among
both categorical and low-level leaves (low-prior and imbalanced), showing that
the proposed method was able to transfer information top-down in an effective
manner.

All Nodes Category Nodes Leaf Nodes

Method Name AUROC AUPRC AUROC AUPRC AUROC AUPRC

Multi-label lstm 0.76 0.74 0.752 0.735 0.766 0.742
MTL lstm 0.69 0.674 0.724 0.70 0.675 0.653

HMTL 0.805 0.799 0.801 0.796 0.808 0.80
HMTL + Interaction layer 0.817 0.803 0.806 0.801 0.815 0.806

Table 1: Comparison of overall performance of proposed method with baselines
(average AUROC and AUPRC)

Task level analysis: While the overall results show strong improvements
across all diagnoses and diagnostic categories (M = 1228), it’s still valuable
to evaluate the performance of the model across individual tasks. Figure 4
shows improvements in the individual target diagnostic tasks with respect to
both weighted AUROC and weighted AUPRC metrics. In general, our proposed
method resulted in considerable improvement (∆ > 0.05) of nearly 50% of target
tasks while preventing negative transfer with more 91% of classifiers performing
at least as good as the baseline models(∆ ≥ 0). In fact, only a handful of very
rare diagnoses( 2% of 0.004 ≥ prior < 0.01 group) demonstrated considerably
lower performance that the baseline models (∆ < −0.05). While a perfect MTL
method is expected to only result in positive improvements, this has proven dif-
ficult in practice, especially when facing a large number of target tasks[26]. We
conjecture that the negative improvements are mainly due to the imperfect hi-
erarchy designs caused by residual categories that include diagnoses not closely
aligned with other diseases. This motivates research and development of future
HMTL methods that simultaneously learn to improve the existing hierarchies
for machine learning tasks.
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Fig. 4: Performance improvements of individual tasks compared to the baseline
multi-label LSTM models

5 Conclusion

We propose a new hierarchical deep learning method that leverages the hier-
archical structure of patient diagnoses to allow the transfer of information in
a top-down fashion, from higher-level diagnostic codes with stronger classifi-
cation models to lower-level ones. After that, we refine the initial hierarchical
model with a new disease interaction layer, utilizing the task relationships and
new patient information to learn classifiers that can better discriminate between
competing diagnoses. Our results show that our proposed method strongly out-
performs baselines across all target tasks, resulting in positive transfer in nearly
50% and preventing negative transfer in 92% of the target diagnoses.
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