
Hierarchical Active Learning with Overlapping Regions
Zhipeng Luo
ZHL78@pitt.edu

Department of Computer Science
University of Pittsburgh
Pittsburgh, Pennsylvania

Milos Hauskrecht
milos@pitt.edu

Department of Computer Science
University of Pittsburgh
Pittsburgh, Pennsylvania

ABSTRACT
Learning of classification models from real-world data often re-
quires substantial human effort devoted to instance annotation.
As this process can be very time-consuming and costly, finding
effective ways to reduce the annotation cost becomes critical for
building such models. To address this problem we explore a new
type of human feedback – region-based feedback. Briefly, a region
is defined as a hypercubic subspace of the input data space and
represents a subpopulation of data instances; the region’s label is a
human assessment of the class proportion of the data subpopulation.
By using learning from label proportions algorithms one can learn
instance-based classifiers from such labeled regions. In general, the
key challenge is that there can be infinite many regions one can
define and query in a given data space. To minimize the number and
complexity of region-based queries, we propose and develop a hier-
archical active learning solution that aims at incrementally building
a concise hierarchy of regions. Furthermore, to avoid building a pos-
sibly class-irrelevant region hierarchy, we further propose to grow
multiple different hierarchies in parallel and expand those more
informative hierarchies. Through experiments on numerous data
sets, we demonstrate that methods using region-based feedback
can learn very good classifiers from very few and simple queries,
and hence are highly effective in reducing human annotation effort
needed for building classification models.

KEYWORDS
Classification; Active Learning; Learning from Label Proportions;
Decision Tree Learning

1 INTRODUCTION
Learning of classification models from real-world data often re-
quires additional human effort devoted to data annotation. Unfor-
tunately, annotating individual instances is often labor-intensive
and costly. To reduce human annotation effort, active learning has
become one widely-applied machine learning solution. It is an
interactive learning framework between learning machines and
human annotators: a human iteratively provides labels for the data
requested by an active learning algorithm which, in turn, builds a
classifier incrementally with more labeled data. To minimize the
number of labeled data, actively learning plays its role in between
by requesting only those data that appear important to model re-
finement and learning. The efficacy of active learning has been
demonstrated in numerous real-world applications [6, 23, 26, 27]
as well as in theoretical work [2, 4].

Despite encouraging results of active learning research, the ma-
jority of current solutions are instance-based; that is, they query and
learn from individual data instances. Unfortunately, instance-based

approaches often come with two fundamental drawbacks. First,
for more complex input spaces the number of instances one may
feasibly label may still be relatively small, which can be insufficient
to cover the entire data space or to represent the underlying data
distribution. As a result, models induced from limited labeled data
may carry significant uncertainty and bias. The second drawback is
that active learning often relies on biased models to select the data
instances to be labeled next; instances sampled by such models can
deviate from the underlying data distribution. This is often referred
to as a sampling bias problem [5]. Insufficient management of the
sampling bias may fail the active learning process.

Besides active learning, another promising research direction
that aims at saving human annotation effort is the utilization of
alternative forms of efficient human feedback. This effort is comple-
mentary to active learning research. In general, human knowledge
and feedback about the classification domain may take on differ-
ent forms that deviate from the traditional instance-based class
annotation. It is motivated by the fact that instance labeling is
not always an easy, efficient way for humans to provide feedback.
For example, when a physician diagnoses a patient for a possible
heart disease they must peruse the patient record that consists of
complex collections of lab results, symptoms, and findings. Hence,
researchers have explored novel ways of soliciting easy human
feedback that can guide the model building process. Examples of
this research direction include auxiliary soft-label feedback [12–
14, 26, 27], feature feedback [6, 17], and group-based feedback. The
group-based feedback includes multiple instance learning (MIL) [1]
that annotates bags of objects by indicating the presence or absence
of the target class among all the instances in a bag. Another type
of group-based feedback is learning from label proportions (LLP)
[18]. It assumes class proportion statistics are given to groups of
objects, estimating the proportions of the target class in each group.
Both MIL and LLP are able to learn instance-based classifiers from
labeled bags/groups.

To solve the annotation cost problem, we aim for efficient anno-
tations that are easy for humans to perform but also informative for
models to learn from. To do this, we study region-based feedback. A
region is defined as a hypercubic subspace of the input data space;
it is naturally described to humans by using conjunctive patterns
that are formed by value ranges over the input features; regions can
be annotated by humans using class proportion feedback, which
is an estimate of the class proportion of the instance subpopula-
tion represented by the region. Figure 1 illustrates this idea. The
region-based annotation comes with many advantages. First, it can
lead to a more efficient labeling process - annotators are capable
of expressing their belief in classifying a population of instances
only through one query of the region. Second, regions can better
reflect the underlying data distribution and the class information.

Proportion Feedback: “25% of

patients in this region may suffer

from a heart disease.”

“What is the chance that patients who are:

suffer from a heart disease?”

Gender=Female

40<Age<50
Chest Pain

Type=3

130 mg/dL<Fasting Glucose<150 mg/dL

Figure 1: An example of a region-based query for the diagnosis of a heart disease [19]. A few patient instances on the left are
originally recorded using 24 features. But after they are grouped, the whole group can be described by a conjunctive pattern
defined using only 4 relevant features. The conjunctive patterns define a hypercubic region in the original feature space; an
annotator (a physician) takes the region description and gives it a class proportion label. Individual cases are not labeled.

As we shall demonstrate, a few labeled regions are very informative
to model learning. By using LLP algorithms, one can learn very
accurate classifiers from a set of regions labeled with their class
proportions.

In general, however, there can be infinite many regions one can
define over a numeric feature space. Hence, one critical challenge
would be how to identify only a small subset of regions for human
annotators to label and for classifiers to learn from. Previous work
has leveraged active learning heuristics to seek such informative
regions. Early work [7, 19] propose to construct compact regions
around the most uncertain instances. Recently, [8–11] propose to
form regions in a hierarchical way. Their methods incrementally
build a decision tree-like hierarchy of regions. The goal is to build
such a hierarchy concise such that the leaf regions can be refined
pure quickly. Although the hierarchical solution was shown to
be a more fundamental way to identify informative regions, it
may come with two potential limitations. First, they overly use
unsupervised heuristics (i.e. clustering) to build a region hierarchy.
However, if the structure of data is poorly aligned with the class
distribution of data, the region hierarchy will end up being class-
irrelevant. As a consequence, it can dramatically slow down the
entire labeling and learning efficiency. Second, as a hierarchy grows
deep the leaf regions are gradually described by more and more
complex conjunctive patterns, which can be overwhelming for
human annotators to review and assess.

In this paper, we propose and develop a new hierarchical active
learning framework that can not only identify informative and
simple regions efficiently, but also effectively control the cluster-
ing heuristic. Our solution is to grow multiple region hierarchies
simultaneously and permits learning from overlapping regions.
Figure 2 illustrates the idea. The motivation is intuitive - if one
hierarchy turns out to be class-irrelevant then growing multiple
hierarchies offers the flexibility of finding informative regions in
other hierarchies. For this purpose, we need to diversify the feature
combinations when constructing different hierarchies. This is in
spirit to reducing the decision tree correlations in decision forest

learning [3]. To evaluate our new approach, we perform a com-
prehensive empirical study on 16 data sets collected from OpenML
repository [25]. Our new solution is shown having competitive per-
formance to the state-of-the-arts methods [11, 19] in general tasks;
furthermore, it dramatically outperforms others when the structure
of data is poorly aligned with the classification task. Besides, we also
show that our method uses much simpler region-based queries.
Hence, our method is shown to be query-efficient, human-friendly,
and robust.

2 BACKGROUND
2.1 Motivation for Region-Based Feedback
Conjunctive patterns defined with the input data features allow
model builders to compactly represent instance subpopulations
for querying purpose. On the human side, proportion-based feed-
back allows annotators to express their uncertainty when labeling
grouped data. These two properties make region-based queries effi-
cient when used for collecting human feedback in practice. As an
example, consider the heart disease classification task presented in
[19]. A traditional instance-based query for determining whether
the patient suffers from a heart disease would cover all the feature
values recorded in the data. One example query might look like:
“Consider a patient with (sex=female)∧ (age=39)∧ (chest pain type=3)
∧ (fasting blood sugar=150 mg/dL) ... (20 more features). Does the
patient have a heart disease?”. The label would be a binary {true,
false} response. In contrast, a region-based query using conjunctive
patterns could be described by a much smaller subset of relevant
features that represent a subpopulation of patients. Figure 1 has
illustrated one such example.

2.2 Learning from Label Proportions (LLP)
LLP deals with how to learn instance-based classifiers from a set
of bags (in our scenario, regions) that are labeled with class pro-
portions. There are two main categories of LLP algorithms: (1)
[16, 18] have developed statistical models. The main idea is to
use proportion labels to approximate the sufficient statistics in

.

60% chance of

survival

80% chance of

survival

40% chance of

survival

Age <= 70 Age > 70

Adjusted AJCC 6th

M = 1
Adjusted AJCC 6th

M = 0

20% chance of

survival

60% chance of

survival

60% chance of

survival

75% chance of

survival

50% chance of

survival

Cancer grade = 3, 4

Adjusted AJCC 6th

N = 1

Adjusted AJCC 6th

N > 1

30% chance of

survival

60% chance of

survival

Cancer grade = 1, 2

Figure 2: An illustration of our multiple-hierarchy solution HALOR applied to the survival analysis for colorectal cancer
patients. The figure shows two trees that are constructed by different feature combinations. The tree on the right appears
more informative than the other one.

an instance-based likelihood function; (2) [20, 28] aim at learning
general classifiers. The principle is to learn a classifier well that
can generate matching instance labels of which the class propor-
tions are close to the true proportions. Moreover, [29] states that
to ensure accurate classifiers induced from bags there should be
sufficiently many pure enough bags used for training. This condition
motivates the finding of pure regions in our work.

2.3 Active Learning from Labeled Regions
LLP andMIL (multiple instance learning) assume that bags naturally
exist in data so they do not tackle how bags are formed or labeled. To
identify informative (i.e. with high purity) regions among general
data for model learning, researchers have leveraged active learning
heuristics. [7, 19] first propose to construct compact regions around
the most uncertain instances among an unlabeled data set. But a
main problem is that such regions are intrinsically impure since
instances with high uncertainty are probably distributed around
the underlying decision boundary. More recently, [8–11] propose
a more principled way for constructing regions. Their main idea
is to incrementally build a region hierarchy, aiming at quickly
refining the leaf regions pure. Their implementations are thereby
named asHAL (Hierarchical Active learning) frameworks. The first
implementation is named [9] HALG (HAL with Groups), which pre-
compiles a hierarchy of clusters (groups) and then poses queries on
the groups in a top-down manner. However, this approach is overly
dominated by clustering as it only labels groups within the fixed
hierarchy. If clustering is poorly aligned with the actual instance
class distribution, the consequent hierarchy of clusters could be
totally class-irrelevant. Later, they [10, 11] alleviate this problem by
proposing a different approach HALR (HAL with Regions). HALR
constructs a region hierarchy dynamically by directly splitting the
entire input data space. It is similar to the decision tree learning
process, but the strategy of splitting regions is determined by two
heuristics. One is an unsupervised heuristic, which separates two
clusters formed among the instances in a region; the other one is a
supervised heuristic, which separates two classes of instances with
the class labels predicted by a classifier one aims to learn. Using
which heuristic in each split is determined by the quality of the
classifier. When initially the classifier is immature, HALR mainly
relies on the clustering heuristic to split regions. But note that the

Algorithm 1 Hierarchical Active Learning Framework with Over-
lapping Regions (HALOR)
Input: Unlabeled dataU; Labeling budget 𝑇 ; # of trees 𝐾
Output: A binary classification model 𝑃 (𝑦 |𝒙 ; �̂�)
1: R ← initialize a root region that is unbounded;
2: Query the class proportion of R;
3: Initialize 𝐾 trees, each having a different split on R;
4: Query & infer the class proportions of the child regions;
5: 𝐿 ← all the child regions of the 𝐾 trees;
6: 𝑡 ← 𝐾 + 1 (the # of queries consumed);
7: repeat
8: Learn the base model 𝑃 (𝑦 |𝒙 ; �̂� (𝑡)) from 𝐿;
9: Identify the most informative split (𝑑∗, 𝑣∗, 𝑅∗);
10: Split 𝑅∗ from value 𝑣∗ at dimension 𝑑∗;
11: Query & infer the class proportions of sub-regions;
12: 𝐿 ← {𝐿 − 𝑅∗} ∪ {𝑅∗’s sub-regions};
13: 𝑡 ← 𝑡 + 1;
14: until 𝑡 = 𝑇 , i.e. the budget is used up
15: return 𝑃 (𝑦 |𝒙 ; �̂� (𝑇))

initial splits dominate the structure of the whole hierarchy. Again,
if the majority of the splits are unsupervised, the consequent region
hierarchy may still be class-irrelevant.

Our work proposes a more robust solution HALOR (HAL with
Overlapping Regions) that grows multiple region hierarchies and
permits learning with overlapping regions. There are two essential
improvements. The first one is robustness: HALOR can effectively
reduce the side effects of the clustering heuristic and guarantees
finding informative regions among multiple hierarchies. The sec-
ond improvement is on the query complexity of regions: because of
building multiple shallow hierarchies, HALOR queries the leaf re-
gions that are defined by less complex conjunctive patterns. Simple
region-based queries can greatly ease the annotation process.

3 METHODOLOGY
In this section, we detail the implementation of our multiple-tree
based approach, named HALOR, and the key steps are summarized
in Algorithm 1. The essential idea is to grow multiple hierarchies

(binary trees) simultaneously to allow exploring more informative
regions in different trees. In the following, we will first present how
to build one tree (i.e. the number of trees 𝐾 = 1), and then present
how to build multiple trees (𝐾 > 1).

3.1 Preliminaries
Our goal is to learn an instance-based binary classification model
𝑓 : 𝑋 → 𝑌 = {0, 1}. 𝑋 ⊂ R𝑚 is the input space and it consists of
𝑚 features {𝑑1, ..., 𝑑𝑚}. The features can be numeric, nominal, and
categorical.We collect a pool of unlabeled dataU = {𝒙𝑖 |𝒙𝑖 ∈ 𝑋, 1 ≤
𝑖 ≤ 𝑛} for training, and we assume the data have been properly
normalized and encoded beforehand. Without loss of generality, we
proceed with the learning of a binary probabilistic model 𝑃 (𝑦 |𝒙 ;𝜽)
(𝜽 is the model parameter) and we refer to it as our base model.

A region 𝑅 is a hypercubic subspace of the input space, defined
as a triplet 𝑅 = (𝐶, 𝐷, `). 𝐶 is the region description by using
conjunctive patterns formed by value ranges over the input features:

(𝑣1,𝑚𝑖𝑛 < 𝑑1 < 𝑣1,𝑚𝑎𝑥) ∧ ... ∧ (𝑣𝑖,𝑚𝑖𝑛 < 𝑑𝑖 < 𝑣𝑖,𝑚𝑎𝑥) ∧ ...

Absence of any feature (or value) in conjunctive patterns indicates
unbounded values on that feature dimension. For example, in Figure
2, the bottom-right region on the right tree is described as “Patient
population: Age>70 ∧ Adjusted AJCC 6th M=1”, and the other fea-
ture values are unbounded. 𝐷 ⊂ U is the fraction of empirical data
that are satisfied by the conjunctive patterns 𝐶 . ` is the class pro-
portion of the instance population within 𝑅, annotated by a human.
By assuming that instances in U are i.i.d. sampled according to
the underlying distribution of 𝑝 (𝒙), and that there are sufficiently
many of them, we assume that the class proportion of the empirical
instances 𝐷 is also equal to `.

3.2 Actively Building One Region Hierarchy
Building a single hierarchy of regions is similar to the standard
decision tree learning process. We initialize the region hierarchy
from a root region R that is totally unbounded. R also covers all the
empirical dataU. Its class proportion is the prior class distribution
𝑝 (𝑦 = 1), annotated by a human. With such a 1-node tree defined,
we incrementally grow the tree by repeatedly performing a rectan-
gular, binary split on one of the leaf regions. Formally, suppose at
each time 𝑡 (i.e. the number of queries consumed so far) there are 𝑁
leaf regions (all labeled) in a fringe 𝐿 = {𝑅𝑖 |1 ≤ 𝑖 ≤ 𝑁 }, our proce-
dure aims at finding a triplet (𝑑∗, 𝑣∗, 𝑅∗), meaning a split made on re-
gion 𝑅∗ ∈ 𝐿 from value 𝑣∗ at feature 𝑑∗. After the split, we solicit the
class proportion of either sub-region from human annotators and
then infer the proportion of the other. The label inference is valid
because the total proportion remains unchanged during the split.
Finally, we expand the fringe 𝐿 ← {𝐿 − 𝑅∗} ∪ {𝑅∗’s sub-regions},
increment 𝑡 ← 𝑡 + 1, and re-train the base model with the new 𝐿

(training to be presented in Section 3.4).
Key to our procedure is determining which 𝑅𝑖 should be split

and how to split it. Recall that in decision tree learning, the quality
of splits is measured by information gain. That is, suppose one valid
split (𝑑, 𝑣) splits a region 𝑅𝑖 into two sub-regions 𝑅𝑙 and 𝑅𝑟 . Then,
the information gain of this split is defined as:

𝐺 (𝑑, 𝑣, 𝑅𝑖) = 𝐼 (`𝑖) −
𝑛𝑙

𝑛𝑖
𝐼 (`𝑙) − 𝑛

𝑟

𝑛𝑖
𝐼 (`𝑟) (1)

where 𝐼 (`) = 2` (1− `) is Gini-Index measurement of class entropy;
`𝑖 , `𝑙 , `𝑟 are the class proportions of the empirical instances in 𝑅𝑖 ,
𝑅𝑙 , 𝑅𝑟 ; 𝑛𝑖 , 𝑛𝑙 , 𝑛𝑟 are the number of instances, respectively. The best
split is the one that maximizes the information gain.

The reason of using Gini-Index to measure the class entropy is
because it reflects the expected error when one attempts to guess the
actual instance labels in a region 𝑅𝑖 with label `𝑖 . More specifically:

(1) For each instance in 𝑅𝑖 , sample its label as an independent
Bernoulli process with the parameter = `𝑖 . This creates 𝑛𝑖
sampled labels;

(2) Calculate the distribution of 𝑤𝑖 , i.e. the number of mis-
matches between the sampled labels and the true labels.
Although the true labels are unknown, each true label can
be assumed to follow an independent Bernoulli distribution
with parameter = `𝑖 . Therefore, the probability of mismatch
for each instance also follows in independent Bernoulli distri-
bution with parameter = 𝑃 (𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ) = 𝑃 [𝑓 𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒] +
𝑃 [𝑓 𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒] = 2`𝑖 (1− `𝑖). Then apparently𝑤𝑖 follows
a Binomial distribution 𝐵𝑖𝑛(𝑛𝑖 , 2`𝑖 (1 − `𝑖));

(3) Finally, E(𝑤𝑖) = 2`𝑖 (1 − `𝑖)𝑛𝑖 is the expected error of guess-
ing all the instance labels in 𝑅𝑖 .

In a decision tree learning process, the gain is easily calculated
by using the training instance labels. However, in our process we
do not acquire individual data labels, thus unable to compute `𝑙
or `𝑟 . Therefore, we develop two heuristics to approximate the
gain. The first one is termed supervised heuristic that uses the base
classification model. Ideally, an accurate enough model can foresee
the information gain of every candidate split by simply inferring the
class proportion of any possible sub-region. Formally, suppose the
base model is learned as 𝑃 (𝑦 |𝒙 ; �̂�) from 𝐿, then the class proportion
of any sub-region 𝑅𝑠 (𝑠 = 𝑙 or 𝑟) can be inferred as:

ˆ̀𝑠 =
1
𝑛𝑠

𝑛𝑠∑
𝑗=1

𝑃 (𝑦 𝑗 = 1|𝒙 𝑗 ; �̂�) (2)

Hence, Eq. 1 can be approximated by the base model as:

𝐺𝑠 (𝑑, 𝑣, 𝑅𝑖) = 𝐼 (`𝑖) −
𝑛𝑙

𝑛𝑖
𝐼 (ˆ̀𝑙) − 𝑛

𝑟

𝑛𝑖
𝐼 (ˆ̀𝑟) (3)

Nevertheless, the base model is barely accurate initially when the
supervision (i.e. human annotation) is little, and thus the supervised
gain defined in Eq. 3 is unreliable. Therefore, in order to calibrate
the gain calculation, we also consider another approximation - un-
supervised gain. The essential idea is to identify two clusters in the
data within a region and then find the best split that separates the
two clusters apart. It is a sensible heuristic that is often used in semi-
supervised learning and clustering-based active learning [5, 22, 24].
The reasoning behind is that clustering is usually assigned with
the classification task, and thus the structure of data could more
or less reflect the underlying class distribution. To implement an
unsupervised split, we first perform a 2-means probabilistic cluster-
ing on the instances 𝐷𝑖 within a region 𝑅𝑖 . Then each instance will
have an unsupervised probabilistic label indicating the chance of
belonging to either cluster. Given these instance labels, we compute
the unsupervised gain as:

𝐺𝑢 (𝑑, 𝑣, 𝑅𝑖) = 𝐼 (˜̀𝑖) −
𝑛𝑙

𝑛𝑖
𝐼 (˜̀𝑙) − 𝑛

𝑟

𝑛𝑖
𝐼 (˜̀𝑟) (4)

where ˜̀𝑖 , ˜̀𝑙 , ˜̀𝑟 are the cluster proportions of the parent region 𝑅𝑖
and the two sub-regions, respectively.

Now, with supervised gain (Eq. 3) and unsupervised gain (Eq. 4)
defined above, we need to combine them and balance their effects.
The principle is to weight the supervised gain more when the base
model becomes more accurate and makes more reliable inference.
Hence, we propose using a weighted sum as the final gain of a split
(𝑑, 𝑣) made on a region 𝑅𝑖 :

𝐺𝑠+𝑢 (𝑑, 𝑣, 𝑅𝑖) = 𝛼 (𝑡)𝑠 𝐺𝑠 (𝑑, 𝑣, 𝑅𝑖) + (1 − 𝛼 (𝑡)𝑠)𝐺𝑢 (𝑑, 𝑣, 𝑅𝑖) (5)

where 𝛼 (𝑡)𝑠 ∈ [0, 1] is the weight of supervised gain. Intuitively,
𝛼
(𝑡)
𝑠 should be small initially when the model is poor and then

gradually increases. To this end, we set 𝛼 (𝑡)𝑠 ∝ [1/𝜖 (𝑡)]2 where 𝜖 (𝑡)
is the training error of fitting the base model to the labeled regions
in 𝐿:

𝜖 (𝑡) =
𝑁∑
𝑖=1

𝑛𝑖

𝑛
| ˆ̀𝑖 − `𝑖 | (6)

where `𝑖 is the true class proportion of 𝑅𝑖 and ˆ̀𝑖 is the inferred
proportion given by the base model (Eq. 2); 𝑛 =

∑𝑁
𝑖=1 𝑛𝑖 = |U| is

the number of all the instances. Using the inverse of 𝜖 (𝑡) at order
2 is because the 𝐼 (`) = 2` (1 − `) is of order 2 on `. Finally, we
determine the most informative split as follows:

(𝑑∗, 𝑣∗, 𝑅∗) = arg max
(𝑑,𝑣) 𝑠𝑝𝑙𝑖𝑡𝑠 𝑅𝑖 ∈𝐿

{𝑛𝑖
𝑛
·𝐺𝑠+𝑢 (𝑑, 𝑣, 𝑅𝑖)} (7)

The gain is further weighted by region size because we also prefer
to split a larger region so as to impose a higher impact on model
update.

Remarks. Compared to the latest work [11] in terms of building
a single hierarchy, we have two improvements. Firstly, we have
designed a one-step procedure to explicitly identify the most infor-
mative split (Eq. 7). The previous work, however, finds the best split
only within a most uncertain region. However, high uncertainty
in the parent region does not necessarily guarantee any informa-
tive split made in the end, in that the child regions could also be
equally uncertain. Secondly, the previous work treats the two split-
ting heuristics independently and employs a Bandit algorithm for
selecting which heuristic to use. However, Bandit algorithms re-
quire exploration steps that may waste the initial queries on the
supervised heuristic that is yet known to be poor in the beginning.
Our solution, by comparison, combines the two heuristics into one
formula (Eq. 5) and nicely balances them by using a weight 𝛼 (𝑡)𝑠

that is directly associated with the current model performance.

3.3 Building Multiple Region Hierarchies
There are two limitations of growing a single hierarchy. Firstly,
the initial splits made on the root region R are mainly determined
by the unsupervised heuristic. A possible failure case is that clus-
tering may always dominate the splits and consequently, builds
a class-irrelevant tree. Secondly, the query complexity of regions
increases rapidly as the tree grows deeper. To alleviate these issues,
we now present a robust multiple-tree solution. The whole process
resembles building a single tree, but additionally, we need to control
the similarity among the regions appearing in different trees.

To start, we initialize a small number of one-split trees (𝐾 ≈ 2, 3).
They all start with the same root region R, but each has a split
on a different feature dimension. These initial 𝐾 splits are done
unsupervisedly. That is, we first perform 2-means clustering on all
the instances in R, and then find the top-𝐾 features, along with
their best splits, that can separate the two clusters the most (Eq. 4).
After each split, we query or infer the class proportions of the sub-
regions and put them into a fringe 𝐿. Therefore, the initialization
phase outputs 𝐾 one-split trees, totally 2𝐾 labeled regions in 𝐿,
and 𝐾 + 1 queries consumed (1 query for the root region R). After
initialization, similarly as before we incrementally grow the trees by
repeatedly splitting one leaf region in 𝐿. The most informative split
identified by Eq. 7 can be directly applied here, but with a pre-check
named region deduplication procedure that prevents generating
duplicate regions that already exist in 𝐿. Duplicate regions are
defined as follows:

Definition 3.1. Given two regions 𝑅1 = (𝐶1, 𝐷1, `1) and 𝑅2 =

(𝐶2, 𝐷2, `2). Denote by 𝐹1, 𝐹2 the set of unique features that are
used in conjunctive patterns 𝐶1, 𝐶2. Denote by 𝐷 = 𝐷1 ∩ 𝐷2 the
intersection of data instances 𝐷1, 𝐷2. If (1) 𝐹1 ≡ 𝐹2 and (2) either
|𝐷 |/|𝐷1 | or |𝐷 |/|𝐷2 | is greater than a threshold 𝛾 ∈ [0, 1], then 𝑅1
and 𝑅2 are duplicate.

Whenever executing Eq. 7, we first apply the deduplication proce-
dure that discards any invalid split (𝑑, 𝑣) if it generates at least one
sub-region that is duplicate to any existing region in 𝐿. An efficient
implementation of this procedure is to first select out the valid
features and the associated split values, and then only compute
gains for these valid splits.

3.4 Learning a Model from Labeled Regions
The last part remained is to explain how we employ a general
LLP (learning from label proportion) algorithm to learn the base
classification model 𝑃 (𝑦 |𝒙 ;𝜽) from labeled regions 𝐿. The main idea
is to learn the model properly such that it can generate matching
instance labels of which the class proportions are close to the true
proportions. Suppose at a time 𝑡 there are 𝑁 labeled regions in 𝐿
that are the leaf regions from all region hierarchies. Each region
𝑅𝑖 contains 𝑛𝑖 instances and has a proportion label `𝑖 . Denote by
ˆ̀𝑖 the estimated proportion given by the base model (Eq. 2) and
𝑛 =

∑𝑁
𝑖=1 𝑛𝑖 . Then, the loss function for model learning can be

defined as:

L(𝐿;𝜽) = 1
2

𝑁∑
𝑖=1

𝑛𝑖

𝑛
(ˆ̀𝑖 − `𝑖)2 + _R(𝜽) (8)

where R(𝜽) is the regularization term penalizing model complexity.
Particular to this paper, we use 𝐿2 penalty: R(𝜽) = ∥𝜽 ∥2. Finding of
the best parameter �̂� can be worked out by a standard optimization
program. We use a gradient-based optimization approach. The loss
function defined above is trained by minimizing a squared loss via
L-BFGS [15].

4 EXPERIMENTS
We conduct a comprehensive study to empirically evaluate our
approach HALOR and its variants. The purpose is to see (1) how
efficiently (in terms of number of queries) that HALOR can learn

Table 1: 16 binary classifications data sets.

Dataset # of Data # of Features Major Class% Feature Type About
musk 6598 167 84.59% Numeric, Ordinal, Categorical Molecules classification
satellite 5100 36 98.53% Numeric Satellite images classification
bank 45211 16 88.30% Numeric, Ordinal, Categorical Financial accounts classification
ozone 2534 72 93.69% Numeric Ozone levels detection
kc1 2109 21 84.54% Numeric NASA software fraud detection
pc1 1109 21 93.06% Numeric NASA software fraud detection
wdbc 569 30 62.74% Numeric Breast cancer images
eye 14980 14 55.12% Numeric Eye states recognition
ilpd 583 10 71.35% Numeric, Categorical Indian liver patients
biodeg 1055 41 66.26% Numeric Chemicals classification
phishing 11055 30 55.69% Ordinal, Categorical Phishing websites detection
nomao 34465 118 71.44% Numeric, Ordinal, Categorical Places deduplication
climate 540 20 91.48% Numeric Climate model prediction
hill-valley 1212 100 50.00% Numeric Hill valley recognition
click 39948 9 83.16% Numeric Web ad clicks prediction
telescope 19020 10 64.84% Numeric Images from Gamma telescope

classification models, and (2) how complex the region queries used
by HALOR can be.

4.1 Data Sets
We collect 16 the most influential data sets that are ranked by
OpenMLmachine learning repository [25]. They come from a variety
of real-life fields. Table 1 summarizes the basic information and
statistics. Those sets with high-dimensional feature spaces or with
unbalanced class distribution are marked bold.

4.2 Methods Compared
We compare our solution HALOR-𝐾 (𝐾 trees) to 5 other repre-
sentative active learning approaches: two instance-based methods
that also use clustering heuristic: HS (Hierarchical Sampling) [5]
and DWUS (Density-Weighted Uncertainty Sampling) [21]; three
region-based methods: RIQY [19], HALG [9] and HALR [11].

(1) HS performs hierarchical clustering on a pool of unlabeled
data and then relies on the hierarchy to select instances. By assum-
ing that the hierarchy structure is well aligned with the actual class
labels, HS only queries instances from those impure clusters that
are (estimated) of high class entropy.

(2) DWUS is a conventional active learning approach. Its strat-
egy is to query instances that are not only uncertain but also repre-
sentative of other unlabeled data.

(3) RIQY is the first active learning work that uses region-based
queries. The framework builds upon DWUS. The difference is that
RIQY’s query is made to a region which is formed upon a compact
neighbor of 𝒙∗ that is suggested by the DWUS algorithm. However,
the regions found by RIQY are often impure because the neighbor
around an uncertain 𝒙∗ are probably impure as well.

(4) To overcome the issues of RIQY,HALG andHALR are recent
works that propose to form and query regions hierarchically. HALG,
like HS, compiles a fixed hierarchy of clusters first and then queries
regions formed by the clusters. HALR, however, constructs regions
dynamically and reduces the bias brought by the clustering heuristic.

This promotes the learning efficiency of HALR, which is the state-
of-the-arts.

4.3 Experimental Settings
We split each data set into three disjoint parts: the initial labeled
dataset (about 1%-2% of all available data), a test dataset (about 25%
of data) and an unlabeled datasetU (the rest) used as training data.
Note that only HS, DWUS, and RIQY require the initial labeled
data to start training while other HAL methods do not. To simulate
region proportion labels from human annotators, we use empirically
labeled instances to do so. To label a region, we count the instances
that fall into the region and report their class label fraction as the
class proportion. Note that the instance labels are only used to
generate region labels, never exposed to region construction or
learning algorithm. Such a simulation method has been frequently
used in RIQY and LLP studies. We evaluate all the methods based
on two metrics: (1) model performance measured by AUC (the Area
Under the Receiver Operating Characteristic curve) and (2) query
complexity (i.e. how many features have been used in a query). We
adopt Logistic Regression as the base model. In the following, we
will show plots of AUC score and query complexity against the
number of queries 𝑡 < 200. To best visualize each plot, we omit
the remaining tails of curves after most methods have converged.
To reduce the experiment randomness, all results are averaged
over 20 runs with different training/test data splits. Each method’s
hyper-parameters have been fine-tuned using cross-validation. Our
HALOR method uses 𝛾 = 0.1, and the regularization parameter _
in LLP learning is chosen mildly between [10−5, 10−3].

4.4 Model Performance Results
The main results are shown in Figure 3, and the rankings of all
methods are summarized in Table 2. Overall, HALR and HALOR
are leading the best performance; RIQY, DWUS and HALG follow;
HS ranks last. Below are some general observations:

0 50 100 150 200
Number of Queries

0.5

0.6

0.7

0.8

0.9

1

A
U

C

musk

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 20 40 60 80 100
Number of Queries

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

satellite

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0.4

0.5

0.6

0.7

0.8

0.9

A
U

C

bank

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 20 40 60 80 100
Number of Queries

0.4

0.5

0.6

0.7

0.8

0.9

A
U

C

ozone

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 20 40 60 80 100
Number of Queries

0.4

0.5

0.6

0.7

0.8

A
U

C

kc1

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0.4

0.5

0.6

0.7

0.8

0.9
A

U
C

pc1

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 10 20 30 40 50
Number of Queries

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

wdbc

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0.45

0.5

0.55

0.6

0.65

A
U

C

eye

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0.45

0.5

0.55

0.6

0.65

0.7

0.75

A
U

C

ilpd

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 20 40 60 80 100
Number of Queries

0.2

0.4

0.6

0.8

1

A
U

C

biodeg

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 20 40 60 80 100
Number of Queries

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

phishing

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

nomao

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0.4

0.5

0.6

0.7

0.8

0.9

A
U

C

climate

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

hill-valley

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0.5

0.52

0.54

0.56

0.58

0.6

0.62

A
U

C

click

DWUS
RIQY
HS
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
U

C

telescope

DWUS
RIQY
HS
HALG
HALR
HALOR-4

Figure 3: The AUC performance of all methods tested on 16 data sets.

(1) Region-based methods (RIQY, HALs) vs. instance-based meth-
ods (HS, DWUS). We observe that initially when only a very few
queries are available (<10 queries), learning with regions outputs
better models than learning with instances. The reason is that
one general region with class proportion is usually more class-
informative than one labeled instance. Later as more queries are
made, purer regions emerge quickly and accelerate the model con-
vergence. Such observations demonstrate the advantages of using
regions for active querying and learning.

(2) Among all the region-based methods (RIQY, HALs), we see
that HAL frameworks, especially HALR and HALOR, generally
perform better. This lends credence to the fact that HALs construct
more informative regions than RIQY.

(3) Finally, among the three HAL frameworks, HALR andHALOR
perform better than HALG. It is because HALR and HALOR con-
struct regions dynamically and they can better control the bias
brought by clustering heuristic. Furthermore, comparing HALR

and our approach HALOR, we see that HALR performs slightly bet-
ter. The probable reason is because in many datasets the structure
of data is more or less aligned with their class distributions, and
therefore, building one tree guided by clustering heuristic (HALR)
would be no harm to those datasets. Nevertheless, we must point
out that HALR does fail on data set hill-valley, where clustering
is totally irreverent to the actual class distribution. Then, HALR has
no remedy for such situation because a single tree has been overly
dominated by the clustering heuristic. In contrast, our solution
HALOR has effectively mitigated this problem by growing multiple
trees. If one tree fails, we can always build new trees to find more
class-relevant regions. Therefore, HALOR is fundamentally more
robust. Well, the side effect of growing multiple trees is that it in-
curs a slight performance drop initially, in that it needs queries to
explore new trees. But we also see HALOR then catches up rapidly
and can potentially outperform HALR.

Table 2: Ranking of all methods on all data sets.

Dataset HS DWUS RIQY HALG HALR HALOR
musk 4 2 2 3 1 1
satellite 3 2 2 1 1 1
bank 3 2 2 2 1 1
ozone 3 2 2 2 1 1
kc1 3 2 2 2 1 1
pc1 5 4 3 3 1 2
wdbc 2 1 1 1 1 1
eye 4 2 2 3 1 2
ilpd 3 2 2 1 1 1
biodeg 2 1 1 1 1 1
phishing 4 3 3 2 1 1
nomao 3 1 1 2 1 1
climate 4 3 3 2 1 1
hill-valley 6 1 2 5 4 3
click 6 5 4 3 1 2
telescope 5 3 3 4 1 2
Average 3.72 2.11 2.06 2.33 1.22 1.39
Std 1.45 1.10 0.84 1.05 0.71 0.59

4.5 Query Complexity Results
Another important measurement closely related to annotation cost
is the complexity of queries. In general, high-dimension instances
described by numerous features can overwhelm annotators. By
comparison, well-built region-based queries using much fewer fea-
tures can be easier for annotators to review and assess. To measure
this aspect, we define the complexity of a region query as:

Complexity(𝑞𝑢𝑒𝑟𝑦) = # of features used in the 𝑞𝑢𝑒𝑟𝑦
total # of all features

(9)

According to the definition above, the complexity of a query can
range from 0 to 1. Being 1 means using up all the features, while
close to 0 means using very few features in the query. Figure 4
shows the query complexities of all region-based methods. We omit
instance-based methods since instance queries use all the features
so their query complexity is constantly 1. Overall, our method
HALOR uses the least number of features in its queries. For high-
dimensional data sets such as musk (167 features), nomao (118) and
hill-valley (100), HALOR needs merely a few features (<5%) to
describe the regions, and such a property would make the labeling
process a lot easier. HALR uses more complex queries because it
grows only one tree and the query complexity increases more with
the depth of the tree. For HALG, we see more variations because
the region descriptions are automatically learned by a rule inducer
which may return imperfect and more complex regions. Lastly, we
see RIQY’s curves are very close to 1. It is because RIQY tends to
construct very small and compact regions around specific instances,
and thus it leads to induce regions of high complexity defined by
many conditions (features).

4.6 Effects of Number of Trees in HALOR
The hyper-parameter 𝐾 in HALOR-𝐾 approach determines how
many trees are grown in parallel. Figures 5 and 6 show how the
model performance and query complexity vary with 𝐾 . To save

space, we only plot the results for the top 8 data sets where the
performance of different variants of HALOR differ the most (the
remaining 8 datasets show only little difference with different 𝐾).
The figures and results therein illustrate a couple of trade-offs in
HALOR. First, for query complexity, apparently, growing more
trees in HALOR translates into simpler region and hence simpler
queries. In terms of model performance, it initially takes more
queries for HALOR to explore the feature information for larger
𝐾 . This incurs performance drop in the initial (exploration) phase.
However, growing more trees has a higher potential of improving
model performance later. The results further suggest that usually
2 or 3 trees in HALOR would be good enough to learn models
well from the trees. See the performance boosting from HALR to
HALOR-2 on hill-valley.

5 CONCLUSIONS
We study a novel hierarchical active learning (HAL) framework
that works with region-based queries. We develop a robust im-
plementation of HAL that is to grow multiple region hierarchies
simultaneously. The essential benefits are: (1) it allows identify-
ing more informative splits among multiple difference trees; (2) it
reduces the query complexity of regions and thus makes human
annotation easier. Based on large number of results, we conclude
that HAL is a label-efficient framework for general binary clas-
sification problems. Our multi-tree solution HALOR is shown to
be more robust than previous single-tree based implementations.
Therefore, HALOR is effective in learning classification models
while consuming very little and simple human feedback.

ACKNOWLEDGMENTS
The work presented was supported by NIH grant R01GM088224.
The content of this paper is solely the responsibility of the authors
and does not necessarily represent the official views of NIH.

REFERENCES
[1] Jaume Amores. 2013. Multiple instance classification: Review, taxonomy and

comparative study. Artificial Intelligence 201 (2013), 81–105.
[2] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. 2009. Agnostic

active learning. J. Comput. System Sci. 75, 1 (2009), 78–89.
[3] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[4] Sanjoy Dasgupta. 2011. Two faces of active learning. Theoretical computer science

412, 19 (2011), 1767–1781.
[5] Sanjoy Dasgupta and Daniel Hsu. 2008. Hierarchical sampling for active learning.

In Proceedings of the 25th ICML. ACM, 208–215.
[6] Gregory Druck, Burr Settles, and Andrew McCallum. 2009. Active learning by

labeling features. In Proceedings of the 2009 Conference on Empirical Methods in
Natural Language Processing: Volume 1-Volume 1. Association for Computational
Linguistics, 81–90.

[7] Jun Du and Charles X Ling. 2010. Asking generalized queries to domain experts
to improve learning. Knowledge and Data Engineering, IEEE Transactions 22, 6
(2010), 812–825.

[8] Zhipeng Luo andMilos Hauskrecht. 2017. Active learning of classification models
from soft-labeled groups. In Advances in Neural Information Processing Systems,
Learning from Limited Data Workshop.

[9] Zhipeng Luo and Milos Hauskrecht. 2018. Hierarchical Active Learning with
Group Proportion Feedback. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI’18. 2532–2538. https://doi.org/10.
24963/ijcai.2018/351

[10] Zhipeng Luo and Milos Hauskrecht. 2018. Hierarchical active learning with
proportion feedback on regions. In Joint European Conference onMachine Learning
and Knowledge Discovery in Databases. Springer, 464–480.

[11] Zhipeng Luo and Milos Hauskrecht. 2019. Region-Based Active Learning with
Hierarchical and Adaptive Region Construction. In Proceedings of the 2019 SIAM
International Conference on Data Mining. SIAM, 441–449.

https://doi.org/10.24963/ijcai.2018/351
https://doi.org/10.24963/ijcai.2018/351

0 50 100 150 200
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

musk

RIQY
HALG
HALR
HALOR-4

0 20 40 60 80 100
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

satellite

RIQY
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

bank

RIQY
HALG
HALR
HALOR-4

0 20 40 60 80 100
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

ozone

RIQY
HALG
HALR
HALOR-4

0 20 40 60 80 100
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

kc1

RIQY
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0

0.2

0.4

0.6

0.8

1
Q

ue
ry

 C
om

pl
ex

it
y

pc1

RIQY
HALG
HALR
HALOR-4

0 10 20 30 40 50
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

wdbc

RIQY
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

eye

RIQY
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

ilpd

RIQY
HALG
HALR
HALOR-4

0 20 40 60 80 100
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

biodeg

RIQY
HALG
HALR
HALOR-4

0 20 40 60 80 100
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

phishing

RIQY
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

nomao

RIQY
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

climate

RIQY
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

hill-valley

RIQY
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

click

RIQY
HALG
HALR
HALOR-4

0 50 100 150 200
Number of Queries

0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

om
pl

ex
it

y

telescope

RIQY
HALG
HALR
HALOR-4

Figure 4: Query complexity of region-based methods.

[12] Quang Nguyen, Hamed Valizadegan, and Milos Hauskrecht. 2011. Learning clas-
sification with auxiliary probabilistic information. In 2011 IEEE 11th International
Conference on Data Mining. IEEE, 477–486.

[13] Quang Nguyen, Hamed Valizadegan, and Milos Hauskrecht. 2014. Learning
classification models with soft-label information. Journal of the American Medical
Informatics Association 21, 3 (2014), 501–508.

[14] Quang Nguyen, Hamed Valizadegan, Amy Seybert, and Milos Hauskrecht. 2011.
Sample-efficient learning with auxiliary class-label information. In AMIA Annual
Symposium Proceedings, Vol. 2011. American Medical Informatics Association,
1004.

[15] Jorge Nocedal and Stephen Wright. 2006. Numerical optimization. Springer
Science & Business Media.

[16] Giorgio Patrini, Richard Nock, Paul Rivera, and Tiberio Caetano. 2014. (Almost)
no label no cry. In NIPS. 190–198.

[17] Stefanos Poulis and Sanjoy Dasgupta. 2017. Learning with feature feedback: from
theory to practice. In Artificial Intelligence and Statistics. 1104–1113.

[18] Novi Quadrianto, Alex J Smola, Tiberio S Caetano, and Quoc V Le. 2009. Estimat-
ing labels from label proportions. Journal of Machine Learning Research 10, Oct
(2009), 2349–2374.

[19] Parisa Rashidi and Diane J Cook. 2011. Ask me better questions: active learning
queries based on rule induction. In Proceedings of the 17th ACM SIGKDD. ACM,
904–912.

[20] Stefan Rueping. 2010. SVM classifier estimation from group probabilities. In
Proceedings of the 27th international conference on machine learning (ICML-10).

911–918.
[21] Burr Settles. 2012. Active learning. Synthesis Lectures on Artificial Intelligence

and Machine Learning 6, 1 (2012), 1–114.
[22] Burr Settles and Mark Craven. 2008. An analysis of active learning strategies for

sequence labeling tasks. In Proceedings of the conference on empirical methods in
natural language processing. Association for Computational Linguistics, 1070–
1079.

[23] Burr Settles, Mark Craven, and Soumya Ray. 2008. Multiple-instance active
learning. In Advances in neural information processing systems. 1289–1296.

[24] Ruth Urner, Sharon Wulff, and Shai Ben-David. 2013. PLAL: Cluster-based active
learning. In Conference on Learning Theory. 376–397.

[25] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2013. OpenML:
Networked Science inMachine Learning. SIGKDD Explorations 15, 2 (2013), 49–60.
https://doi.org/10.1145/2641190.2641198

[26] Yanbing Xue and Milos Hauskrecht. 2017. Active Learning of Classification
Models with Likert-Scale Feedback. In SIAM Data Mining Conference, 2017. SIAM.

[27] Yanbing Xue and Milos Hauskrecht. 2019. Active learning of multi-class classifi-
cation models from ordered class sets. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 33. 5589–5596.

[28] Felix Yu, Dong Liu, Sanjiv Kumar, Jebara Tony, and Shih-Fu Chang. 2013. ∝ SVM
for Learning with Label Proportions. In ICML. 504–512.

[29] Felix X Yu, Krzysztof Choromanski, Sanjiv Kumar, Tony Jebara, and Shih-Fu
Chang. 2014. On learning from label proportions. arXiv preprint arXiv:1402.5902
(2014).

https://doi.org/10.1145/2641190.2641198

Number of Queries
0 10 20 30 40 50

A
U

C

0.5

0.6

0.7

0.8

0.9

1
musk

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Number of Queries
0 20 40 60 80 100

A
U

C

0.5

0.6

0.7

0.8

0.9
bank

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Number of Queries
0 10 20 30 40 50

A
U

C

0.4

0.5

0.6

0.7

0.8

0.9
ozone

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Number of Queries
0 50 100 150 200

A
U

C

0.4

0.5

0.6

0.7

0.8

0.9
pc1

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Number of Queries
0 50 100 150 200

A
U

C

0.45

0.5

0.55

0.6

0.65
eye

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Number of Queries
0 50 100 150 200

A
U

C

0.5

0.55

0.6

0.65

0.7

0.75

0.8
hill-valley

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Number of Queries
0 20 40 60 80 100

A
U

C

0.45

0.5

0.55

0.6

0.65
click

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Number of Queries
0 50 100 150 200

A
U

C

0.5

0.6

0.7

0.8

0.9
telescope

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Figure 5: Model performance of HALOR with various number of trees.

Number of Queries
0 10 20 30 40 50

Q
ue

ry
 C

om
pl

ex
it

y

0

0.01

0.02

0.03

0.04

0.05
musk

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Number of Queries
0 20 40 60 80 100

Q
ue

ry
 C

om
pl

ex
it

y

0

0.1

0.2

0.3

0.4

0.5

0.6
bank

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Number of Queries
0 10 20 30 40 50

Q
ue

ry
 C

om
pl

ex
it

y

0

0.02

0.04

0.06

0.08

0.1
ozone

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Number of Queries
0 50 100 150 200

Q
ue

ry
 C

om
pl

ex
it

y

0

0.1

0.2

0.3

0.4
pc1

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Number of Queries
0 50 100 150 200

Q
ue

ry
 C

om
pl

ex
it

y

0

0.1

0.2

0.3

0.4

0.5

0.6
eye

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Number of Queries
0 50 100 150 200

Q
ue

ry
 C

om
pl

ex
it

y

0

0.02

0.04

0.06

0.08

0.1
hill-valley

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Number of Queries
0 20 40 60 80 100

Q
ue

ry
 C

om
pl

ex
it

y

0

0.2

0.4

0.6

0.8
click

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Number of Queries
0 50 100 150 200

Q
ue

ry
 C

om
pl

ex
it

y

0

0.2

0.4

0.6

0.8
telescope

HALR
HALOR-2
HALOR-3
HALOR-4
HALOR-5
HALOR-6

Figure 6: Query complexity of HALOR with various number of trees.

	Abstract
	1 Introduction
	2 Background
	2.1 Motivation for Region-Based Feedback
	2.2 Learning from Label Proportions (LLP)
	2.3 Active Learning from Labeled Regions

	3 Methodology
	3.1 Preliminaries
	3.2 Actively Building One Region Hierarchy
	3.3 Building Multiple Region Hierarchies
	3.4 Learning a Model from Labeled Regions

	4 Experiments
	4.1 Data Sets
	4.2 Methods Compared
	4.3 Experimental Settings
	4.4 Model Performance Results
	4.5 Query Complexity Results
	4.6 Effects of Number of Trees in HALOR

	5 Conclusions
	Acknowledgments
	References

