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Abstract. In this work, we propose a novel clinical event time-series
model based on the long short-term memory architecture (LSTM) that
can predict future event occurrences for a large number of different clin-
ical events. Our model relies on two sources of information to predict
future events. One source is derived from the set of recently observed
clinical events. The other one is based on the hidden state space defined
by the LSTM that aims to abstract past, more distant, patient infor-
mation that is predictive of future events. We evaluate our proposed
model on electronic health record (EHRs) data derived from MIMIC-III
dataset. We show that the combination of the two sources of information
implemented in our method leads to improved prediction performance
compared to the models based on individual sources.
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1 Introduction

Successful modeling of complex multivariate event time series and their ability
to predict future events is important for applications in various areas of science,
engineering, and business. In clinical settings our ability to predict future events
for a patient based on clinical events observed in past, such as past medication
orders, past labs and their results, or past physiological signals can help us to
anticipate the occurrence of a wide range of future events that would let health
care practitioners intervene ahead of time or prepare resources to get ready for
their occurrence. All of this can in turn improve the quality of patient care.

One of the challenges of modeling clinical event time series is their complex-
ity, that is, clinical event time series for hospitalized patients may consist of
thousands of different types of events corresponding to administration of many
different medications, lab orders, arrivals of lab results, or various physiological
observations, etc. This complexity may not fit very well standard Markov time
series models [19] with either observed or hidden state and transition models.

To alleviate the event complexity problem we propose to develop a new more
scalable event time series model based on the long-short-term-memory (LSTM)
[14] that relies on two sources of information to predict future events. One source
is derived from the set of recently observed clinical events. The other one is based
on the hidden state space defined by the LSTM that aims to abstract past, more
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distant, patient information that is predictive of the future events. In the context
of Markov state models, the next state in our models and the transition to the
next state is defined by a combination of the recent state (most recent events)
and the hidden state summarizing more distant past events.

In order to evaluate the proposed model, we use data derived from electronic
health records (EHRs) of critical care patients in MIMIC-III dataset [16]. The
clinical events considered in this work correspond to multiple types of events,
such as medication administration events, lab test result events, physiological
result events, and procedure events. These are combined together in a dynami-
cally changing environment typical of intensive care units (ICUs) with patients
suffering from severe life-threatening conditions.

Through extensive experiments on MIMIC-III data we show that our model
outperforms multiple time series baselines in terms of the quality of event predic-
tions. To provide further insights to its prediction performance we also divide the
results with respect to different types of clinical events considered (medication,
lab, procedure and physiological events), as well as, based on their repetition
patterns, again showing the superior performance of our proposed model.

2 Related Work

2.1 Event-time series models

The majority of discrete time-series models are based on Markov processes [24,
25]. Markov process models rely on Markov property that assumes that the state
captures all necessary information relating future and past. In other words, the
next state depends only on the most recent state, and is independent of the past
states. In this case the joint distribution of an observed sequence is modeled as
chain of conditional probabilities: p(y1, y2, ..yT ) = p(y1)

∏T
t=2 p(yt|yt−1)

For Markov process models, the conditional probability defining a transition
is parameterized by an e × e transition matrix where e denotes all possible
states: Ai,j = p(yt = j|yt−1 = i). Standard Markov processes assume all states
of the time series are directly observed. However, the states of many real-world
processes are not directly observable. One way to resolve the problem is to define
the state in terms of a limited number of past observations or features defined
on past observations [31, 12, 11].

Hidden state models. Another is to use Hidden Markov models (HMM) [29]
that introduce hidden states zt of some dimension d. Now the observations yt
is defined in terms of the hidden states and an e × d emission table B with
components: Bi,j = p(yt = j|zt = i). Briefly, the transition table A is used to
update the hidden states and the emission table is used to generate observations.

HMM has been shown to reach good performance in many applications such
as stock price prediction [10], DNA sequence analysis [15], and time-series clus-
tering [28]. However, classic HMM model comes with drawbacks when applied
to real-world time series: the hidden state space is discrete, and the transition
model is restricted to transitions in between the discrete states. Linear dynam-
ical models (LDS) [17] remedy some of the limitations by defining real-valued
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hidden state-space with linear transitions among the current and next hidden
state. One problem with HMM and LDS models is that the dimensionality of
their hidden state space is not known a priori. Various methods for hidden state
space regularization, such as work by Liu and Hauskrecht [21, 22] for LDS have
been able to address this problem.

Continuous time models. We would like to note that in addition to discrete
time series models, the researchers have explored also methods permitting con-
tinuous time models. Examples are various version of Gaussian process models
for predicting multivariate time series in continuous time, including those used
for representing irregularly sampled clinical time series [20, 23].

Neural-based models. Recent advances in neural architectures and their ap-
plication to time-series offer end-to-end learning framework that is often more
flexible than standard time-series models. In neural-based approaches, the dis-
crete time series are typically modeled using recurrent neural network (RNN)
which provides a more flexible framework for modeling time-series. Similarly
to HMM and LDS, RNN uses hidden states to abstract and carry information
from past history but with more flexible hidden state defined by real-valued
vectors and transition rules. At each time step, hidden state is updated given
the previous time step’s hidden states and a new information from the current
time step’s input. Although its limitations on vanishing and exploding gradient
problems [13], its variants such as long short-term memory (LSTM) [14] unit
and gated recurrent units (GRU) [2] allow wide adoptions in event time-series
modeling. They have been applied to prediction and modeling time series [9, 1],
vision [8], speech [7], and language [30] problems.

2.2 Clinical event time-series modeling

Modeling and prediction of discrete event time series in the healthcare area have
been influenced greatly by advances in various neural architectures and deep
learning. [3] used Skipgram [26] to represent and predict next visit in outpatient
data. But they evaluated their model on the prediction task at the level of
hospital visit, which can be of a very coarse granularity for real-world clinical
applications that encompass event-specific time information. [4] modeled clinical
time series with RNN and attention mechanism. However, the model is only able
to perform binary classification on a whole-sequence level. Our model is able to
predict fine-grained future event at the level of each time step of a sequence. [6]
also used neural network models to predict the sequence of clinical events. In
their approach, the patient pool was limited to patients with kidney failure and
organ transplant. On the other hand, our model is tested and shows superior
performances over baselines across general clinical time series that were not
limited to a specific patient cohort.

3 Methodology

In this section, we first introduce state-space Markov and LSTM-based event
time series models and then present our model combining the two models.
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State-space Markov event prediction. Given an observed events sequence
y = y1, y2, ..., yT , we can model y by defining a Markov transition model relat-
ing the current event state yt with the next event states yt+1. In this case, we
assume the event space is formed by a multivariate binary vector reflecting the
occurrence of many different events (encoded as 1) over some time-window. One
way to parameterize the transition between two consecutive event states is to
use a transition matrix W with a bias vector b. As we want to predict multi-
variate binary vector, we can use sigmoid function σ(x) = 1

1+e(−x) as the output
activation function:

ŷt+1 = σ(W · yt + b) (1)

LSTM-based event prediction. LSTM models are being successfully used to
model time series with the help of hidden state vector, allowing one to summarize
in the hidden state information from more distant past. At a glance, at each time
step of a sequence, LSTM gets current (event) input and updates its hidden
states. The hidden state then generates signals for the next hidden state, as well
as, predictions for the occurrence of events in the next time-step.

In detail, at each time step t, events in the input sequence represented as
multi-hot vector mt is processed to a real-valued vector xt through linear em-
bedding matrix W emb: xt = W (emb) · mt. Then, given processed input xt and
previous hidden states ht−1, LSTM updates hidden states ht:

ft = σ(W (f) · [ht−1, xt] + b(f)) it = σ(W (i) · [ht−1, xt] + b(i))

ot = σ(W (o) · [ht−1, xt] + b(o)) C̃t = tanh(W c · [ht−1, xt] + b(c))

Ct = ft · Ct−1 + it · C̃t ht = ot ⊗ tanh(Ct)

ft, it, and ot are forget, input and output gates and ⊗ denotes element-wise
multiplication. With these parameters ready, we can update hidden states:

ht = LSTM(xt, ht−1)

Future event occurrence prediction is generated through a fully-connected
layer W q with output activation function sigmoid:

ŷt+1 = σ(W (fc) · ht + b(fc)) (2)

This parameterization links to the state space based event predictor. When
yt of Eq. 1 is replaced to hidden states ht, it becomes Eq. 2.

Recent context-aware LSTM-based event predictor. When properly trained,
hidden states in LSTM can be sufficient to represent and model future behav-
iors of event time-series by abstracting dependencies of past and future events.
However, to be trained properly, LSTM (or any deep-learning based models)
requires large amounts of training instances. In the clinical domain, obtaining
large amounts of clinical cases (e.g., rarely ordered medication or lab tests) is
hard in general. This constraint may deter us to train LSTM for predicting rare
clinical cases. Meanwhile, for certain clinical event category such as medications,
the future occurrence of an event may highly depend on recent previous or cur-
rent occurrence of the event type and incorporating this information may help
to resolve the data deficiency constraint.
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Therefore, to address the problem, we propose and develop an adaptive mech-
anism that refers to both abstracted information of past sequence through hidden
states of LSTM and concrete information about event occurrences in very recent
context window. Different from the preliminary LSTM-based output generation
in Eq. 2 that only depends on abstracted hidden states of LSTM, we directly re-
fer to recent event occurrence information. The recent event at the current time
step t is in multi-hot vector mt and it is incorporated into the model through a
linear transformation to model:

b(u) = W (s) ·mt + b(s)

b(s) can be seen as additional bias term that reflects recent event occurrence
information and final prediction for event occurrence is made as follows:

ŷt+1 = σ(W (fc) · ht + b(fc) + b(u))

The proposed predictor also can be seen as combining the LSTM based predictor
with state-space based Markov predictor. Especially, in context of Markov state
models, the next state in our models and the transition to the next state is defined
by a combination of the recent state (most recent events) and the hidden state
summarizing more distant past events.

Loss function. To measure the performance of the event prediction, L is defined
as binary cross entropy between label vector yt and prediction vector ŷt over all
sequences in the training set and 1 denotes a vector filled with 1s:

L =
∑
t

−[yt · log ŷt + (1− yt) · log(1− ŷt)]

Parameter learning. The parameters of the model is learned by back prop-
agation through time (BPTT) [32] with adaptive stochastic gradient descent
based optimizer [18]. Hyper-parameters are tuned by F1-score performances on
validation set with following ranges: embedding (W (emb)) size in {128, 256, 512};
hidden states size in {512, 1024, 2048} and learning rate = 0.005 batch size = 512.
To prevent over-fitting, early stopping and dropout (p = 0.5) are applied.

4 Experimental Evaluation

4.1 Clinical data

We test the proposed model on MIMIC-III, a clinical database generated from
real-world EHRs of intensive care unit patients [16]. We extract 21,897 patients
whose records are generated from Meta Vision system that is one of the systems
used to create records in the MIMIC-III database. We extract patient in age
between 18 and 99 and whose length of stay in ICU is between 3 and 20 days.
We randomly split patients into the train, test, and validation sets with the ratio
of 7:2:1 and generate multivariate event time-series by segmenting sequences with
both input-window and future window with size W = 24. At the end of each
input-window, its future-window is generated.

We consider the following types of events in our models: medication admin-
istration events, lab results events, procedure events, and physiological result
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events. Medication administration events indicate records of specific kind
of medication administered to the patient. Lab results events indicate lab test
and its results represented as normal, abnormal-high, or abnormal-low. Proce-
dure events indicate records of procedures patient received during hospitaliza-
tion. For medication, lab, and procedure event categories, we select those events
observed in more than 100 different patients. Physiological result events con-
sist of 23 cardiovascular, routine vital signs, respiratory, and hemodynamics sig-
nals selected by a critical care expert. Similarly to the lab result events, numeric
physiological results are discretized to normal, abnormal-high, and abnormal-
low. Table 1 shows the basic data statistics.

Table 1. Clinical data statistics by event categories

Category Medication Procedure Lab test Physio signal

Cardinality 136 79 1197 102

Num. of occurrences 803K 257K 4266K 8378K

Proportion of positive label 5.9% 3.2% 3.6% 83.1%

4.2 Evaluation metrics

We evaluate the quality of time series predictions using area under precision-
recall curve (AUPRC) and area under the receiver operating characteristic curve
(AUROC). Although AUROC is commonly used to present result for binary
classification problems, it can provide misleading information when applied to
highly imbalanced dataset. On the other hand, AUPRC provides more accurate
profile on performances of models under such circumstances [5, 27]. As shown in
Table 1, our dataset is severely skewed to negative examples. Therefore, we use
AUPRC as our primary evaluation measurement.

4.3 Baseline models

We compare our proposed model to the dense logistic regression models defined
upon the following inputs (predictors) :
Current Markov state (Markov) as defined in Eq. 1.
Binary History (LR-binary): Unlike the current Markov state information,
this model considers the occurrence of all past events (not just the most recent
one) and encodes them into one multi-hot vector.
Count History (LR-count): This model, similarly to Binary history, summa-
rizes all past events (not just the most recent ones), but instead of multi-hot
vector representation it uses a vector of event counts.
Current LSTM state (LSTM): The model uses the hidden state of the LSTM
to summarize information from distant past important for prediction.

4.4 Results

All our evaluations were performed on the test set, that was not touched during
the training and validation steps. Prediction results in Figure 1 summarize the
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performance of our model and baselines on 24-hour prediction window. The
results show that our model outperforms all baselines in terms of both AUROC
and AUPRC statistics. Moreover, the Markov state model is better than pure
LSTM in terms of AUPRC. This shows the information from the most recent
time window is most of the time the most important source for predicting the
next step events. This is not surprising given the fact that many events (such
as drug administrations or lab orders) are repeated every 24-hours, hence once
they are observed they are most likely to occur also in the next time window.
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Fig. 1. Overall time-series prediction results on the 24-hours window segmentation

To verify the above reasoning, and to provide further insights into the pre-
dictive performance of our models, we break the above results by considering
separately predictions when the same events occurred in the previous time step
and when they did not. We refer to these as to repetitive and non-repetitive pat-
terns. The results are given in Figure 2. From the results, we can clearly see that
predicting non-repetitive events is significantly more difficult than predicting
repetitive ones. However, despite this, we can also see that our model consis-
tently outperforms other baselines across both repetitive and non-repetitive sce-
narios. Remarkably for non-repetitive event prediction, our model’s AUROC is
32% higher than average of all baseline models in AUPRC and 11% in AUROC.
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Fig. 2. Prediction results on repetitive and non-repetitive events

To analyze our results further, we next break the evaluation down by inspect-
ing predictive performances of the models for the different event categories. The
results are shown in Figure 3. Clearly, our model consistently outperforms base-
line models across all event categories in both AUROC and AUPRC statistics.

So far, all our results were obtained by considering the window size of 24
hours. Next, we investigate the predictive performance of the models by varying
the prediction window size. More specifically we will consider the window size W
of length 6, 12 and 24 hours. Due to space limits, we will consider and compare
the methods only using AUPRC statistics. As shown in Figure 4, our model
shows superior performance across all time-resolutions.
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Fig. 3. Prediction results by the event type category
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Fig. 4. AUPRC prediction statistics for the different window sizes

To dig deeper into the time segmentation results, in Figure 5 we show the
predictive performance of lab test and physiological result events. We can see
that on lab test event prediction, our model dominates at larger window sizes
(W = 12, 24): it outperforms baseline models by 27%. In smaller window size
(W = 6), the LSTM performs slightly better than ours by 2%. On physiological
event prediction, our model surpasses all baselines across all time resolutions.

Interestingly, on lab event prediction, overall predictability is high at W = 24
and deteriorates for smaller window sizes. This reflects the recurrent character-
istic of lab events at a cycle of 24 hours, that is, lab tests and their results are
ordered and observed most of the time once daily. Inversely, the overall pre-
dictability of physiological events decreases with increasing window length. It
indicates a recurrent characteristic of clinical events but in different recurring
interval that is much shorter. Most physiological result events are automatically
generated from bedside monitoring devices at short intervals, typically at a scale
of seconds to minutes. Therefore, the variability of observation on a time series
generated from smaller windows should be less than those of larger windows.
Hence, overall predictability on smaller time resolution is consistently higher
than larger ones as seen in Figure 5.

5 Conclusion

In this work, we show the importance of two sources of information for event-time
series modeling. One source is derived from the set of recently observed clinical
events and the other is based on the hidden states of LSTM that aims to abstract
past, more distant, patient information that is predictive of future events. We
show that the combination of the two sources of information implemented in our
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Fig. 5. Prediction result for lab and physiological events for the different window sizes

method leads to improved prediction performance on MIMIC-III clinical event
data when compared to models that rely only on individual sources.
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