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Abstract
Learning of classification models in practice of-
ten relies on nontrivial human annotation effort in
which humans assign class labels to data instances.
As this process can be very time consuming and
costly, finding effective ways to reduce the annota-
tion cost becomes critical for building such models.
In this work we solve this problem by exploring
a new approach that actively learns classification
models from groups, which are subpopulations of
instances, and human feedback on the groups. Each
group is labeled with a number in [0,1] interval rep-
resenting a human estimate of the proportion of in-
stances with one of the class labels in this subpop-
ulation. To form the groups to be annotated, we de-
velop a hierarchical active learning framework that
divides the whole population into smaller subpop-
ulations, which allows us to gradually learn more
refined models from the subpopulations and their
class proportion labels. Our extensive experiments
on numerous datasets show that our method is com-
petitive and outperforms existing approaches for re-
ducing the human annotation cost.

1 Introduction
Learning of classification models from real-world data often
requires extensive human annotation effort on labeling data
instances. As this annotation process is often time-consuming
and costly, the key challenge is to find effective ways to re-
duce the annotation effort while guaranteeing that models
built from limited labeled data are accurate enough to be ap-
plied in practice. One popular machine learning solution is
active learning that sequentially selects examples to be la-
beled next. Active learning has been successfully applied in
domains as diverse as computer vision, natural language pro-
cessing and bio-medical data mining [Nguyen et al., 2014;
Valizadegan et al., 2013].

Despite enormous progress in active learning research in
recent years, the majority of current active learning solutions
focus on instance-based methods that query and label indi-
vidual data instances. Unfortunately, this may limit their ap-
plicability when targeting complex real-world classification
tasks. There are two reasons for this. First, when the labeling

budget is severely restricted, a small number of labeled data
may not properly cover or represent the entire input space.
In other words, the data selected by active learning are likely
to suffer from sampling bias problem. To mitigate this issue
[Dasgupta and Hsu, 2008] has developed a hierarchical active
learning approach to sample instances in a more robust way
which is driven by not only the currently sampled data, but
also the underlying structure in the data.

Second, instance-based learning framework often assumes
instances are easy to label for humans. But this is not al-
ways true, especially when each data instance has many fea-
tures and some specific features are valued with high preci-
sion numbers which can be very intricate for human annota-
tors to assess. For example, when a physician diagnoses a
patient (e.g. for possible heart condition) he/she must review
the patient record that consists of complex collections of re-
sults, symptoms and findings (such as age, BMI, glucose lev-
els, HbA1c blood test, blood pressure, heart rate etc.). The
review and the assessment of these records w.r.t. a specific
condition may become extremely time-consuming as it often
requires physicians to peruse through a large quantity of data.

In light of this, novel active learning methods based on
group queries have been proposed: AGQ+ [Du and Ling,
2010] and RIQY [Rashidi and Cook, 2011]. The basic idea
here is to (1) embody similar instances together as a group,
(2) induce the most relevant rules which are conjunctive pat-
terns of the input feature space to represent the group and
(3) solicit a generic label on the group instead of on any spe-
cific instance. The group label is a number in [0,1] interval
which represents a human estimate of the proportion of in-
stances that belongs to one of the classes in the subpopula-
tion, or equivalently, the probability with which an instance
with that class label is drawn from the subpopulation. This
line of work especially RIQY has shown empirically that ac-
tive learning with generic group proportion feedback works
more efficiently than instance-based active learning.

To solve the original annotation cost problem from a new
perspective that differs from instance-based active learning
methods, we develop a novel group learning framework
called HALG (Hierarchical Active Learning with Group pro-
portion feedback) that combines the strengths of Dasgupta’s
hierarchical solution and the group queries introduced in
RIQY. More specifically, by assuming a pool of unlabeled
data instances at hand, our framework starts with a hierarchi-



cal clustering on the pool which will generate a hierarchy of
groups. Then proceeding from the top levels in the hierarchy
to lower ones, we actively select the most influential groups to
be labeled next. The influence is measured by how much the
groups will update the base classification model once they get
labeled. This active selection strategy borrows the merit of
maximum model change criterion [Roy and McCallum, 2001;
Freytag et al., 2014] used in instance-based active learning.
In terms of model learning, we introduce a simple, yet ef-
fective, algorithm based on sampling that is able to learn
any instance-level classification models from labeled groups.
Our empirical study shows our HALG framework can esti-
mate very well the underlying model parameters in a very
few queries.

In the next section, let us review in more detail the related
work that has inspired ours and also, on the other hand, see
how our method can improve upon theirs.

2 Related Work
Cluster-Based Active Learning Our hierarchical learning
framework is motivated by the work of [Dasgupta and Hsu,
2008] that leverages a pre-compiled hierarchical cluster tree
to drive the instance selection procedure. They start learning
from a few coarse-grained clusters and gradually split clus-
ters that are impure (w.r.t. the known class labels) to smaller
clusters such that the label entropy is reduced. In terms of
model learning, not only the labeled instances but also the
instances with predicted labels that fall to sufficiently pure
clusters are used for learning. While their approach is able to
reduce the sampling bias, learning with predicted labeled data
can be risky especially when the class distribution is severely
unbalanced. As a result it may take numerous queries before
the first instance from the minority class is sampled. In our
work, we directly query clusters regarding their class propor-
tion labels and use them to learn classification models. As the
proportion labels reflect the minority class proportion, our ap-
proach is friendlier to learning with highly unbalanced class
distribution as opposed to Dasgputa’s method.
Active Learning from Group Feedback AGQ+ [Du and
Ling, 2010] and RIQY [Rashidi and Cook, 2011] are the first
attempts to actively learn classification models from group
rather than instance based feedback. As mentioned in intro-
duction, we share the same motivation that in many practical
domains annotators prefer to work with group-level queries
which are shorter (in terms of feature space), less confusing
and more intuitive. Here we borrow from RIQY’s paper and
their example in the heart disease domain:

An instance class-label query in heart disease domain
could be formulated as: “Assess whether the patient with
(sex=female) & (age=39) & (chest pain type=3) & (fasting
blood sugar=150 mg/dL) ... (20 more features) suffers from a
heart disease?”. The answer to this query is binary, reflect-
ing the agreement or disagreement of an annotator with the
instance falling to the heart disease class.

On the contrary, a group query which uses conjunctive
patterns in the feature space can represent a generic popu-
lation. For instance: “What proportion of patients who are
(sex=female) & (40<age<50) & (chest pain type=3) and

(fasting blood sugar within [130,150] mg/dL) ... (not nec-
essarily using all the features) suffer from a heart disease?”.
The answer to this query is an empirical assessment of the
proportion of heart disease patients in the population, say
about 75% patients within this population have heart disease.

In terms of methodology, each of their active learning cy-
cles starts by aggregating multiple similar instances together
as a group which is centered at the most uncertain instance.
RIQY represent this group by using conjunctive patterns and
presents it to a human to ask for its proportion label. The re-
turned label is propagated to all instances within the group
and each instance is finally assigned a binary label based
on some confidence. Therefore, any standard instance-level
learning algorithm can be applied to learn a classification
model. AGQ+ follows a similar process except that they as-
sign soft labels to instances and adopt a weighted instance
learning algorithm.

Both AGQ+ and RIQY have shown that active learning
with group proportion feedback can find the true model faster
than active learning with instance based feedback. Despite
the good empirical results, their methodology can be further
refined. One potential improvement is to devise new ways
to form the groups. Briefly, RIQY forms a group by picking
one data instance first and then building a group around that
instance. This is somewhat ad-hoc and it might not pursue
the most meaningful groups. In our work, we form groups
through hierarchical clustering which is more systematic in
terms of the input space coverage. It also lets us find addi-
tional structure in the data that may lead to more meaningful
groups.

Learning from Group Proportion Feedback Multiple
works [Quadrianto et al., 2009; Kück and de Freitas, 2012;
Patrini et al., 2014; Yu et al., 2013] study the problem of
learning instance-level classifiers from apriori given groups
and their class proportion statistics. The problem formula-
tion fits scenarios like political election, online purchasing or
spam filtering. For example, we can easily obtain the percent-
age of voting results on election in each county and use these
group statistics to predict individual’s voting preference. In
terms of model learning, their algorithm either uses the pro-
portion labels to estimate the sufficient statistics required
by the final likelihood function [Quadrianto et al., 2009;
Patrini et al., 2014], or develops models that generate instance
labels that are consistent with the proportions [Kück and de
Freitas, 2012; Yu et al., 2013]. There are two minor limita-
tions of their approaches. First, their optimization procedures
can be time-consuming and hence they may not work well in
combination with active learning where models are updated
frequently. Second, their algorithms are restricted to a limited
number of models. Because of that, in our work, we resort to
a very simple learning algorithm based on instance sampling
which can efficiently learn many popular probabilistic para-
metric models. Finally, we note, that this line of work does
not deal with are the problems of group generation, group
representation and active querying of groups that are essen-
tial for our active learning methodology.



Algorithm 1: Our HALG Framework
Input: An unlabeled data pool U ; A labeling budget
Output: A binary classification model P (y|x; θ̂)

1: T ← Perform hierarchical clustering on U
2: TG ← Adjust T to form a new tree of groups
3: Query (TG)′s root;
4: Fringe F (1) ← {(TG)′s root};
5: Active learning time t← 1;
6: repeat
7: Learn P (y|x; θ̂

(t)
) from current F (t)

8: Split a group G∗ in F (t) based on P (y|x; θ̂
(t)

)
9: Query the labels of G∗’s children from labelers

10: F (t+∆t) ← {F (t) −G∗} ∪ {G∗’s children}
11: t← t+ ∆t (∆t = # of G∗’s children)
12: until the labeling budget runs out

13: return P (y|x; θ̂
(t)

)

3 Our Framework
Our HALG learning framework, summarized in Algorithm 1,
is designed to learn a binary classification model from group
queries and group proportion feedback. Our framework starts
with a hierarchical clustering performed on all unlabeled data
(line 1) to identify initial groups and their hierarchy. The
hierarchy is then adjusted such that only groups that can be
compactly described via conjunctive patterns (line 2) are re-
tained. This adjustment returns the tree of final groups. These
groups are annotated via active learning in the top-down fash-
ion. During the active learning process we always maintain
a fringe of groups (line 4) which is a complete partition of
the all the data, and perform active querying and learning
based on this fringe (Line 6-12). In each active learning cy-
cle, we use the maximum model change strategy to (1) select
the most influential group in the fringe to split, (2) assess its
child groups by human annotators and (3) replace the group
with its children in the fringe. Every time the fringe is refined,
the base classification model is updated and used to calculate
the model change in the next cycle. In the following sections
we will describe the details of our framework. Section 4 in-
troduces the groups concepts. Section 5 presents our efficient
solution for learning the instance-level classification model
from group proportion feedback. Finally section 6 explains
our active group selection procedure.

4 The Concept of Groups
In our work, we use the term group to denote a set of instances
in the dataset. We assume the dataset is defined by a matrix of
real numbers Un×m consisting of nm-dimensional instances.
We start to build the groups by applying standard hierarchical
clustering (using the ward linkage [Ward Jr, 1963]) on U to
output a tree T of clusters. The clusters of instances are our
initial groups.
Compact Group Description These initial groups, however,
are hard to present to humans for assessment since they would
require us to enumerate all instances that fall into the group.
To present groups to annotators in a human-friendly way, we

compactly describe them using conjunctive patterns over the
input space features. As we have seen earlier, a group of pa-
tient instances may be described as: (gender=male) & (heart
rate 80-100) & (temperature 100-110F) etc. This representa-
tion matches the hypercube definition of regions of a typical
decision tree algorithm. Hence, we employ a C4.5 [Quinlan,
2014] classifier to automatically learn a more compact de-
scription (idea originally introduced by RIQY) of the group
of instances found via clustering. More specifically, if we
want to learn the description of a group Gi, we mark all in-
stances inGi as 1 and the rest of data instances (U −Gi) as 0.
Then a C4.5 classifier will output a set of hypercubes C(Gi)
that could potentially describe Gi. The match (or fit) of each
hypercube c ∈ C(Gi) to Gi can be assessed in terms of: (1)
precision, which measures the proportion of data in c that
are actually coming from Gi; and (2) recall, which measures
the proportion of data in Gi that c can capture. As both met-
rics are important, we adopt F1score = 2×precision×recall

precision+recall

to be the final quality metric to select the hypercube that best
fits the description of group Gi. That is, the description of Gi

is a hypercube which is arg maxc∈C(Gi) F1score(c).
The Final Tree of Hypercube-like Groups When the above
C4.5-based group matching is performed on the clusters of
the original hierarchical tree T , there may be some clusters
(groups) that are not matched well by hypercube-shaped re-
gions. In such a case, its best hypercube match comes with in-
tolerably low F1scores. To mitigate this issue, we prune the
original tree structure T to form a new tree TG such that only
well-fitted hypercube-like groups are preserved in TG. More
formally, we say that a cluster is hypercube-like if it can be ap-
proximated by hypercube with a minimum precision(≥ 0.5)
and recall(≥ 0.5). Our goal is to preserve and approximate
only hypercube-like regions in the original tree. We imple-
ment this idea by starting from the root of the tree T and by
checking in the top-down fashion if the descendant clusters
are hypercube-like. If a descendant cluster is not hypercube-
like we exclude it from the tree by directly reconnecting its
parent with its children clusters. As a result, the original bi-
nary tree T may become a multi-nary tree TG in which the
nodes (clusters) are all hypercube-like. We use the tree TG to
form the groups for the subsequent active learning process.
Group Proportion Label The human assessment of each
group (approximated well by a hypercube-like region) is
made via a proportion label, which is an estimate of the pro-
portion of one of the classes in the group. For example, peo-
ple could say that “90% of instances in a certain group are
positive”. Or alternatively, we can interpret the proportion la-
bel as an instance-level likelihood. For instance, “Instances
in such group are 90% likely to be positive”. To assess the
label of each group, annotators will only need to review the
description of the best hypercube-like region matching it, and
thus, they do not have to explore each data instance that falls
in the group individually.
The Fringe of Groups After we form the group hierarchy
TG, the top-down active learning process begins. In each ac-
tive learning cycle, we maintain a fringe F of labeled groups
which is a complete partition of all unlabeled data. Initially,
we make one query to obtain the label of (TG)’s root which



can be interpreted as the prior probability of classes, and put
the labeled root into F (t) at t = 1. Here t is the active learn-
ing time-step, basically counting the number of group queries
made so far. As t increases, finer and finer groups and their
proportion labels will replace their parents in F (t).

In the following, we explain how to learn a model from
labeled groups in F (t) and how the model will assist us in
choosing the group that should be split next (Section 6).

5 Learning a Model from Labeled Groups
Suppose at the active learning time t there are N labeled
groups in the current fringe: F (t) = {(Gi, µi)}Ni=1, where
Gi denotes a group and µi its proportion label. Each group
Gi = {xij}ni

j=1 contains ni instances and its label µi ∈ [0, 1]
is assumed to represent the positive class proportion in bi-
nary classification setting. Our goal is to learn a base model
P (y|x;θ) which is an instance-level discriminative classifier
from F (t). Our learning algorithm does this by (1) sampling
sufficiently many labeled instances from the labeled groups
and (2) feeding them to the instance-level classification learn-
ing procedure.
Sampling We create a bootstrap sample S(t) =
{(xk, yk)}Kk=1 of K labeled instances from F (t). Each
xk is uniformly sampled with replacement from the unla-
beled data pool U , and yk is sampled from an independent
Bernoulli process with parameter equal to µi which is the
proportion label of group Gi that xk resides in. When K is
sufficiently large the randomness in the x part in S(t) is not
of interest and we only focus on the randomness of y in S(t).
Learning With the sample S(t), we can estimate the model

parameter vector as θ̂
(t)

through maximum likelihood estima-

tion (MLE). Although θ̂
(t)

may vary because of the random-
ness in S(t), from the theoretic standpoint, when moderate
MLE assumptions required by the Central Limit Theorem are

satisfied, θ̂
(t)

asymptotically follows a Normal distribution
conditioned on {xk}(t) in S(t) [Bickel and Doksum, 2015]:

θ̂
(t) asymp.∼ N (θ(t),Σ(t)) (1)

Here θ(t) = E[θ̂
(t)

] is the converged parameter when K →
∞, and the variance Σ(t) is the inverse of Fisher information
matrix IK(θ(t)) depending on the actual finite sample size

K. So the randomness of θ̂
(t)

is bounded by this asymptotic
Normal distribution and the larger K is, the smaller the vari-
ance would be.

In practice, however, θ(t) and Σ(t) are unknown. Yet
usually Σ(t) is approximated by the the MLE estimator as

Σ̂
(t)

(for example when calculating the confidence interval

of θ̂
(t)

). Further whenK is large, the difference between θ̂
(t)

and θ(t) is sufficiently small (or equivalently, the confidence

interval of θ̂
(t)

is very tight). So as another approximation,

we replace θ(t) by θ̂
(t)

in the normal distribution. That is, it
is appropriate to assume the following asymptotic distribution

holds when K is sufficiently large:

θ̂
(t) asymp.∼ N (θ̂

(t)
, Σ̂

(t)
) (2)

In our experiments each label is sampled from 5 to 10 times
depending on datasets and this gives us K ∼ 104 magnitude

which is large enough to provide a very small Σ̂
(t)

.
Sampling Bias Sampling bias is a problem faced by active
learning methods, which is caused by a shortage of labeled
data to learn the models. It may lead to samples that do not
reflect properly the true underlying distribution generating the
data. In Equation (1), θ(t) reflects what one can learn after t
queries are made, and this estimate certainly differs from the
underlying true model parameter (denoted by θ(∞)) that we
aim to learn. One of the reasons is that each label yk in the
training data S(t) is sampled using its Bernoulli parameter
equal to its group proportion label among all the instances,
rather than on xk. Hence, the difference between θ(t) and
θ(∞) is due to the variability induced by the label assign-
ments for instances in each individual group. To understand
this issue, we define the sampling bias for each labeled group
(Gi, µi) as:

bias(Gi) = E[wi] (3)
where E[wi] is the expected number of wrong labels if we
randomly sample the labels of all the ni instances in Gi w.r.t.
its proportion label µi. We calculate E[wi] through the fol-
lowing procedure:

1. For each instance in Gi, sample its label via an indepen-
dent Bernoulli process with the parameter = µi. This
creates ni sampled labels;

2. Derive the distribution of wi, i.e. the number of mis-
matches between the sampled labels and the true la-
bels. Although the true labels are unknown, each
true label similarly follows an independent Bernoulli
distribution with the same parameter µi. Therefore,
the probability of mismatch for each instance also fol-
lows an independent Bernoulli distribution with pa-
rameter = P (mismatch) = P [false positive] +
P [false negative] = 2µi(1− µi). Then apparently wi

follows a Binomial distribution Bin(ni, 2µi(1− µi));
3. Lastly, bias(Gi) = E(wi) = 2µi(1− µi)ni.

The definition of bias(Gi) clearly shows that larger ni or
more uncertain (more extreme) µi accounts for more sam-
pling bias introduced by Gi.

6 Active Refinement of Groups
In this section, we explain our active learning strategy that
refines the fringeF (t) at time t to generateF (t+∆t), where ∆t
is the number of new queries made. The gist of our approach
is to split the most influential groupG∗ ∈ F (t) w.r.t. updating
the base model, query the labels of its child groups, and then
replace G∗ with its child groups in the fringe.

Intuitively, according to the definition of bias(Gi), we
want to split a large and/or impure group such that the la-
bel uncertainty of large groups can be reduced. Moreover, we
would also like the current model θ(t) to have a big update



after the split such that it converges quickly to θ(∞). There-
fore, we adopt maximum model change criterion as our ac-
tive learning strategy. The key idea is to split the group such

that the model distributionN (θ̂
(t)
, Σ̂

(t)
) can be updated most

from time t to (t+∆t). To achieve this goal, we need to guess
what would happen after we split each group. More specif-
ically, we need to (1) infer the most probable labels of each
Gi’s child groups and (2) estimate how much the model dis-
tribution will change if we replace Gi with its child groups
(with inferred labels) in the fringe for learning.
Label Inference One reasonable way to infer the label of a
child group is to use the empirical mean statistics of all the in-
stances inferred by the base model. Formally, let us suppose
each group Gi in the current fringe F (t) has Ci child groups
and each child group Gic = {x(ic)j}nic

j=1 has nic many in-
stances for c ∈ [1, Ci]. The label of each child group µ̂ic can
be inferred as:

µ̂ic =
1

nic

∑
j∈[1,nic]

P (y(ic)j = 1|x(ic)j ; θ̂
(t)

) (4)

Then we can create a new fringe F (t)
[i] = {F (t) − (Gi, µi)} ∪

{(Gic, µ̂ic)}Ci
c=1, feed it to our parameter optimization al-

gorithm and obtain a new model distribution, denoted by

N (θ̂
(t)

[i] , Σ̂
(t)

[i] ). So this N (θ̂
(t)

[i] , Σ̂
(t)

[i] ) represents what the
new model distribution would look like if we were to
split the group Gi. Before we compare N (θ̂

(t)

[i] , Σ̂
(t)

[i] ) to

N (θ̂
(t)
, Σ̂

(t)
), one important note is that we should fix {xk}

in the sample S(t) for re-learning, as the two asymptotic nor-
mal distributions are comparable only if they are learned con-

ditioned on the same {xk}. So when learning N (θ̂
(t)

[i] , Σ̂
(t)

[i] ),
only the labels in group Gi are re-sampled.
Model Change In terms of estimating the model change, we
use KL-divergence to measure the distribution change from

the current model distributionN (θ̂
(t)
, Σ̂

(t)
) toN (θ̂

(t)

[i] , Σ̂
(t)

[i] )
for each group Gi. Finally, we select the group G∗ with the
maximum change to split:

G∗ = arg max
Gi∈F (t)

DKL(N (θ̂
(t)

[i] , Σ̂
(t)

[i] ) || N (θ̂
(t)
, Σ̂

(t)
))

After the split, G∗’s children {G∗c} are sent for querying and
a new fringe is updated as:

F (t+∆t) = {F (t) − (G∗, µ∗)} ∪ {(G∗c, µ∗c)}C∗
c=1

A minor caveat when calculating the model change is that
when the number of groups in F (t), i.e. N , is large, it may be
time-consuming to solve the N optimization procedures se-
quentially. However, we note that as the these N procedures
are independent, parallel processing can be appropriately de-
ployed to reduce the total runtime.

7 Experiments
We conduct an empirical study to evaluate our proposed ap-
proach on 9 general binary classification data sets collected

from UCI machine learning repository [Asuncion and New-
man, 2007]. The purpose of this study is to research how effi-
ciently (in terms of the number of queries) our HALG frame-
work can learn classification models in cost-sensitive tasks.

Dataset # of
Data

# of
features

Major
Class

Feature
Type

Seismic 2584 18 93% N-O-C
Ozone 1847 72 93% N
Pima 768 8 65% N-C
Spam 4601 57 60% N-O
Music 1059 68 53% N
Wine 4898 11 67% N

Wineub 1895 11 95% N
Gamma 5000 10 65% N
SUSY 5000 18 55% N

Table 1: 9 UCI data sets. ‘N’, ‘O’and ‘C’stand for ‘Numeric’, ‘Or-
dinal’and ‘Categorical’respectively.

7.1 Data Sets
The 9 data sets come from a variety of real life applications:

• Seismic: Predict if seismic bumps are in hazardous state
• Ozone: Detect ozone level on some days
• Pima: Diagnose diabetes disease among Indian women
• Spam: Classify spam commercial emails
• Music: Find the geographical origin of music
• Wine: Predict wine quality
• Gamma: Detect γ particles in Cherenkov telescope
• SUSY: Distinguish a signal or background process

Table 1 summarizes the basic statistics of the datasets. Some
have been widely used in the previous active learning work
(Wine, Pima) [Rashidi and Cook, 2011; Xue and Hauskrecht,
2017]; some have high-dimensional (Ozone, Spam, Music)
feature space; and some are unbalanced in class distribution
(Seismic, Ozone, Wine unbalance).

7.2 Methods Tested
We compare our HALG to 3 other methods:

1. DWUS: Density-Weighted Uncertainty Sampling which
combines uncertainty sampling and the structure in
data [Settles, 2012] to decide queries;

2. RIQY: the state-of-the-art active learning with group
proportions [Rashidi and Cook, 2011];

3. HS: Hierarchical Sampling [Dasgupta and Hsu, 2008]

7.3 Experimental Settings
Data Split To run the experiments, we split each data set into
three disjoint subsets: the initial labeled dataset (about 1%-
2% of all available data), a test dataset (about 25% of data)
and a training dataset U (the rest of the data) that is used for
training and active learning. Please note only DWUS and
RIQY require the initial labeled data to start training.



Figure 1: Performances of different methods on 9 UCI data sets.

Group Proportion Label Feedback To simulate the label-
ing process and group proportion feedback we use counts of
instances and their labels to estimate the class proportion rep-
resented by the group. We note the same method was applied
to test RIQY in its original paper.
Evaluation Metrics We adopt Area Under the Receiver Op-
erating Characteristic curve (AUC) to evaluate the quality of
the learned classification model (in our case Logistic regres-
sion model) on the test data. Our graphs plot the AUC scores
sequentially as the number of queries gradually increases to
200. All results are averaged over 20 runs in different random
splits. When generating the results we also assumed the dif-
ferent types of queries are equivalent in terms of their costs.
However, we note that in reality different query types may
carry different costs. In some cases, say when presenting and
labeling images, instance queries are much easier to assess.
On the other hand, a group query may be easier for objects
like medical records and patient data.

7.4 Experiment Results
The main results are shown in Figure 1. Overall, our HALG
approach (red line) is able to outperform other methods on the
majority of the datasets and is close to the best method on the

remaining sets. It comes with two advantages. First, when the
labeling budget is severely limited and the number of queries
is small, learning with labeled groups is superior to learning
with the same number of labeled instances, simply because
generic group queries can provide richer class information
than specific instance queries. Second, the initial steep slopes
and early convergence in our learning curves lend great cre-
dence to our active learning strategy that it is capable of se-
lecting the most influential group to split and consequently it
can accelerate the convergence rate of the method.

Dataset FRR Dataset FRR
Wine 42% Spam 60%
Ozone 89% Music 88%

Gamma 34% SUSY 61%
Seismic 61% Pima 40%

Table 2: The averaged feature reduction rate (FRR) of group queries

Unbalanced Classes For data sets Seismic, Ozone and Wine
unbalance (simulated from Wine) with unbalanced class dis-
tribution, our method performs even better as it could capture
properly the minority class information via proportion labels.



In contrast to this, the instance-based methods may find these
proportions very slowly. Also note that hierarchical sampling
(HS) completely failed because it always determines the la-
bels of unlabeled instances by the majority vote if they belong
to pure enough (but not entirely pure) clusters, and hence it
may miss to capture the minority class information.
Complexity of Group Queries Our last experiment aims to
analyze the benefit our group queries in terms of their com-
plexity. We assess the complexity of our group queries by
using feature reduction rate that reflects the savings due to
the description of the group G relative to the complexity of
the full feature space. More specifically we define the feature
reduction rate for the group G as 1− # features to describe G

# all features .
Please notice that the complexity of instance-based queries is
equal the number of features. The results in Table 2 show
the average reduction rate for 20 repetitions of our algorithm.
This results suggest that on average it takes about one third
to one half of features to distinguish one group from the
other groups. This can considerably simplify the interaction
with human annotators especially when data objects are high-
dimensional, and when the active learning queries need to
present only the features relevant for the group and its query.

8 Conclusions and Future Work
We have developed and presented HALG - a new frame-
work that can actively learn instance-based classifiers from
group proportion feedback. The groups used in our frame-
work are formed by hierarchical clustering and they can be
refined actively based on the maximum model change crite-
rion such that the model learned from these groups can con-
verge quickly to a very good model. In terms of application,
our framework is best suited for problems when instance la-
beling is hard due to high-dimensional objects we need to
label, and when the group description is more compact and
depends only on a limited number of features necessary to
distinguish the different groups.

In terms of future work, one challenging open research
problem concerns proper theoretical characterization of the
group active learning, as well as, theoretical understanding of
benefits of group-level feedback compared to instance-level
approaches.
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