CS 441 Discrete Mathematics for CS
 Lecture 9

Functions II

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Functions

- Definition: Let A and B be two sets. A function from A to \mathbf{B}, denoted $\mathbf{f}: \mathbf{A} \rightarrow \mathbf{B}$, is an assignment of exactly one element of B to each element of A. We write $f(a)=b$ to denote the assignment of b to an element a of A by the function f.

Functions

- Definition: Let A and B be two sets. A function from A to B, denoted $\mathbf{f}: \mathbf{A} \rightarrow \mathbf{B}$, is an assignment of exactly one element of B to each element of A. We write $f(a)=b$ to denote the assignment of b to an element a of A by the function f.

Injective function

Definition: A function f is said to be one-to-one, or injective, if and only if $f(x)=f(y)$ implies $x=y$ for all x, y in the domain of f. A function is said to be an injection if it is one-to-one.

Alternative: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $\mathrm{x} \neq \mathrm{y}$. This is the contrapositive of the definition.

Not injective function

Injective function

Surjective function

Definition: A function f from A to B is called onto, or surjective, if and only if for every $b \in B$ there is an element $a \in A$ such that $f(a)=b$.
Alternative: all co-domain elements are covered

Bijective functions

Definition: A function f is called a bijection if it is both one-toone (injection) and onto (surjection).

Bijective functions

Example 1:

- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- Define f as
- $1 \rightarrow \mathrm{c}$
- $2 \rightarrow \mathrm{a}$
- $3 \rightarrow$ b
- Is f a bijection?
- ?

Bijective functions

Example 1:

- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- Define f as
- $1 \rightarrow \mathrm{c}$
- $2 \rightarrow \mathrm{a}$
- $3 \rightarrow$ b
- Is f a bijection?
- Yes. It is both one-to-one and onto.

Bijective functions

Example 2:

- Define g : W $\rightarrow \mathrm{W}$ (whole numbers), where
$g(n)=\lfloor n / 2\rfloor$ (floor function).
- $0 \rightarrow\lfloor 0 / 2\rfloor=\lfloor 0\rfloor=0$
- $1 \rightarrow\lfloor 1 / 2\rfloor=\lfloor 1 / 2\rfloor=0$
- $2 \rightarrow\lfloor 2 / 2\rfloor=\lfloor 1\rfloor=1$
- $3 \rightarrow\lfloor 3 / 2\rfloor=\lfloor 3 / 2\rfloor=1$
- Is g a bijection?

Bijective functions

Example 2:

- Define g : W $\rightarrow \mathrm{W}$ (whole numbers), where $\mathrm{g}(\mathrm{n})=\lfloor\mathrm{n} / 2\rfloor$ (floor function).
- $0 \rightarrow\lfloor 0 / 2\rfloor=\lfloor 0\rfloor=0$
- $1 \rightarrow\lfloor 1 / 2\rfloor=\lfloor 1 / 2\rfloor=0$
- $2 \rightarrow\lfloor 2 / 2\rfloor=\lfloor 1\rfloor=1$
- $3 \rightarrow\lfloor 3 / 2\rfloor=\lfloor 3 / 2\rfloor=1$
-
- Is g a bijection?
- No. g is onto but not $1-1(\mathrm{~g}(0)=\mathrm{g}(1)=0$ however $0 \neq 1$.

Bijective functions

Theorem: Let f be a function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.
Assume
$\rightarrow \mathrm{A}$ is finite and f is one-to-one (injective)

- Is f an onto function (surjection)?

Bijective functions

Theorem: Let f be a function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

Proof:

\rightarrow A is finite and \mathbf{f} is one-to-one (injective)

- Is f an onto function (surjection)?
- Yes. Every element points to exactly one element. Injection assures they are different. So we have $|\mathrm{A}|$ different elements A points to. Since f: A \rightarrow A the co-domain is covered thus the function is also a surjection (and a bijection)
$\leftarrow A$ is finite and f is an onto function
- Is the function one-to-one?

Bijective functions

Theorem: Let f be a function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

Proof:

\rightarrow A is finite and \mathbf{f} is one-to-one (injective)

- Is f an onto function (surjection)?
- Yes. Every element points to exactly one element. Injection assures they are different. So we have $|\mathrm{A}|$ different elements A points to. Since f: A \rightarrow A the co-domain is covered thus the function is also a surjection (and a bijection)

$\leftarrow \mathbf{A}$ is finite and \mathbf{f} is an onto function

- Is the function one-to-one?
- Yes. Every element maps to exactly one element and all elements in A are covered. Thus the mapping must be one-to-

Bijective functions

Theorem. Let f be a function from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

Please note the above is not true when A is an infinite set.

- Example:

- $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}$, where $\mathrm{f}(\mathrm{z})=2$ * z .
- f is one-to-one but not onto.
- $1 \rightarrow 2$
- $2 \rightarrow 4$
- $3 \rightarrow \mathbf{6}$
- 3 has no pre-image.

Functions on real numbers

Definition: Let f 1 and f 2 be functions from A to \mathbf{R} (reals). Then
$\mathrm{f} 1+\mathrm{f} 2$ and f 1 * f 2 are also functions from A to \mathbf{R} defined by

- $(\mathrm{f} 1+\mathrm{f} 2)(\mathrm{x})=\mathrm{f} 1(\mathrm{x})+\mathrm{f} 2(\mathrm{x})$
- $(\mathrm{f} 1 * \mathrm{f} 2)(\mathrm{x})=\mathrm{f} 1(\mathrm{x}) * \mathrm{f} 2(\mathrm{x})$.

Examples:

- Assume
- $\mathrm{f} 1(\mathrm{x})=\mathrm{x}-1$
- $\mathrm{f} 2(\mathrm{x})=\mathrm{x}^{3}+1$
then
- $(\mathrm{f} 1+\mathrm{f} 2)(\mathrm{x})=\mathrm{x}^{3}+\mathrm{x}$
- $(\mathrm{f} 1 * \mathrm{f} 2)(\mathrm{x})=\mathrm{x}^{4}-\mathrm{x}^{3}+\mathrm{x}-1$.

Increasing and decreasing functions

Definition: A function f whose domain and codomain are subsets of real numbers is strictly increasing if $f(x)>f(y)$ whenever $x>$ y and x and y are in the domain of f. Similarly, f is called strictly decreasing if $f(x)<f(y)$ whenever $x>y$ and x and y are in the domain of f.

Example:

- Let $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$, where $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-1$. Is it increasing ?

Increasing and decreasing functions

Definition: A function f whose domain and codomain are subsets of real numbers is strictly increasing if $f(x)>f(y)$ whenever $x>$ y and x and y are in the domain of f. Similarly, f is called strictly decreasing if $f(x)<f(y)$ whenever $x>y$ and x and y are in the domain of f.

Example:

- Let $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$, where $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-1$. Is it increasing ?
- Proof.

For $x>y$ holds $2 x>2 y$ and subsequently $2 x-1>2 y-1$
Thus \mathbf{g} is strictly increasing.

Increasing and decreasing functions

Definition: A function f whose domain and codomain are subsets of real numbers is strictly increasing if $f(x)>f(y)$ whenever $x>$ y and x and y are in the domain of f. Similarly, f is called strictly decreasing if $f(x)<f(y)$ whenever $x>y$ and x and y are in the domain of f.

Note: Strictly increasing and strictly decreasing functions are one-to-one.
Why?

Increasing and decreasing functions

Definition: A function f whose domain and codomain are subsets of real numbers is strictly increasing if $f(x)>f(y)$ whenever $x>$ y and x and y are in the domain of f. Similarly, f is called strictly decreasing if $f(x)<f(y)$ whenever $x>y$ and x and y are in the domain of f.

Note: Strictly increasing and strictly decreasing functions are one-to-one.

Why?

One-to-one function: A function is one-to-one if and only if $f(x) \neq$ $f(y)$, whenever $x \neq y$.

Identity function

Definition: Let A be a set. The identity function on A is the function $\mathrm{i}_{\mathrm{A}}: \mathrm{A} \rightarrow \mathrm{A}$ where $\mathrm{i}_{\mathrm{A}}(\mathrm{x})=\mathrm{x}$.

Example:

- Let $\mathrm{A}=\{1,2,3\}$

Then:

- $\mathrm{i}_{\mathrm{A}}(1)=$?

Identity function

Definition: Let A be a set. The identity function on A is the function i_{A} : $\mathrm{A} \rightarrow \mathrm{A}$ where $\mathrm{i}_{\mathrm{A}}(\mathrm{x})=\mathrm{x}$.

Example:

- Let A = \{1,2,3\}

Then:

- $\mathrm{i}_{\mathrm{A}}(1)=1$
- $\mathrm{i}_{\mathrm{A}}(2)=2$
- $\mathrm{i}_{\mathrm{A}}(3)=3$.

Bijective functions

Definition: A function f is called a bijection if it is both one-toone and onto.

Inverse functions

Definition: Let f be a bijection from set A to set B . The inverse function of \mathbf{f} is the function that assigns to an element b from B the unique element a in A such that $\mathrm{f}(\mathrm{a})=\mathrm{b}$. The inverse function of f is denoted by f^{-1}. Hence, $f^{-1}(b)=a$, when $f(a)=b$. If the inverse function of f exists, f is called invertible.

f is bijective

Inverse of f

Inverse functions

Note: if f is not a bijection then it is not possible to define the inverse function of f . Why?
Assume f is not one-to-one:
?

f

Inverse functions

Note: if f is not a bijection then it is not possible to define the inverse function of f . Why?
Assume f is not one-to-one:
Inverse is not a function. One element of B is mapped to two different elements.

CS 441 Discrete mathematics for CS

Inverse functions

Note: if f is not a bijection then it is not possible to define the inverse function of f . Why?

Assume f is not onto:

?

f

Inverse functions

Note: if f is not a bijection then it is not possible to define the inverse function of f . Why?
Assume f is not onto:
Inverse is not a function. One element of B is not assigned any value in B.

f

CS 441 Discrete mathematics for CS

Inverse functions

Example 1:

- Let $\mathrm{A}=\{1,2,3\}$ and i_{A} be the identity function
- $\quad \mathrm{i}_{\mathrm{A}}(1)=1$
- $\quad \mathrm{i}_{\mathrm{A}}(2)=2$
- $\quad \mathrm{i}_{\mathrm{A}}(3)=3$
$\mathrm{i}_{\mathrm{A}}{ }^{-1}(1)=1$
$\mathrm{i}_{\mathrm{A}}{ }^{-1}(2)=2$
$\mathrm{i}_{\mathrm{A}}{ }^{-1}(3)=3$
- Therefore, the inverse function of i_{A} is i_{A}.

Inverse functions

Example 2:

- Let $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$, where $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-1$.
- What is the inverse function g^{-1} ?

Inverse functions

Example 2:

- Let $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$, where $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-1$.
- What is the inverse function g^{-1} ?

Approach to determine the inverse:

$$
\begin{aligned}
y=2 x-1 & \Rightarrow y+1=2 x \\
& \Rightarrow(y+1) / 2=x
\end{aligned}
$$

- Define $\mathbf{g}^{-1}(\mathbf{y})=\mathbf{x}=(\mathbf{y}+\mathbf{1}) / \mathbf{2}$

Test the correctness of inverse:

$$
\cdot g(3)=. .
$$

Inverse functions

Example 2:

- Let $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$, where $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-1$.
- What is the inverse function g^{-1} ?

Approach to determine the inverse:

$$
\begin{aligned}
y=2 x-1 & \Rightarrow y+1=2 x \\
& \Rightarrow(y+1) / 2=x
\end{aligned}
$$

- Define $\mathbf{g}^{-1}(\mathbf{y})=\mathbf{x}=(\mathbf{y}+\mathbf{1}) / \mathbf{2}$

Test the correctness of inverse:

- $\mathbf{g}(3)=2 * 3-1=5$
- $\mathbf{g}^{-1}(5)=$

Inverse functions

Example 2:

- Let $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$, where $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-1$.
- What is the inverse function g^{-1} ?

Approach to determine the inverse:

$$
\begin{aligned}
y=2 x-1 & =>y+1=2 x \\
& =>(y+1) / 2=x
\end{aligned}
$$

- Define $\mathbf{g}^{-1}(\mathbf{y})=\mathbf{x}=(\mathbf{y}+\mathbf{1}) / \mathbf{2}$

Test the correctness of inverse:

- $\mathbf{g}(3)=2 * 3-1=5$
- $\mathbf{g}^{-1}(5)=(5+1) / 2=3$
- $\mathrm{g}(\mathbf{1 0)}=$

Inverse functions

Example 2:

- Let $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$, where $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-1$.
- What is the inverse function g^{-1} ?

Approach to determine the inverse:

$$
\begin{aligned}
y=2 x-1 & =>y+1=2 x \\
& =>(y+1) / 2=x
\end{aligned}
$$

- Define $\mathbf{g}^{-1}(\mathbf{y})=\mathbf{x}=(\mathbf{y}+\mathbf{1}) / \mathbf{2}$

Test the correctness of inverse:

- $\mathbf{g}(3)=2 * 3-1=5$
- $\mathbf{g}^{-1}(5)=(5+1) / 2=3$
- $g(10)=2 * 10-1=19$
- $\mathrm{g}^{-1}(19)=$

Inverse functions

Example 2:

- Let $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$, where $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-1$.
- What is the inverse function g^{-1} ?

Approach to determine the inverse:

$$
\begin{aligned}
y=2 x-1 & =>y+1=2 x \\
& =>(y+1) / 2=x
\end{aligned}
$$

- Define $\mathbf{g}^{-1}(\mathbf{y})=\mathbf{x}=(\mathbf{y}+\mathbf{1}) / \mathbf{2}$

Test the correctness of inverse:

- $\mathbf{g}(3)=2 * 3-1=5$
- $\mathbf{g}^{-1}(5)=(5+1) / 2=3$
- $g(10)=2 * 10-1=19$
- $\mathrm{g}^{-1}(19)=(19+1) / 2=10$.

Composition of functions

Definition: Let f be a function from set A to set B and let g be a function from set B to set C. The composition of the functions g and f, denoted by $\mathrm{g} O \mathrm{f}$ is defined by

$$
\text { - }(g \circ f)(a)=g(f(a))
$$

Composition of functions

Example 1:

- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$

$\mathrm{g}: \mathrm{A} \rightarrow \mathrm{A}$,	$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$
$1 \rightarrow 3$	$1 \rightarrow \mathrm{~b}$
$2 \rightarrow 1$	$2 \rightarrow \mathrm{a}$
$3 \rightarrow 2$	$3 \rightarrow \mathrm{~d}$

$\mathrm{f} O \mathrm{~g}: \mathrm{A} \rightarrow \mathrm{B}:$

- $1 \rightarrow$

Composition of functions

Example 1:

- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$

$$
\begin{array}{lc}
\mathrm{g}: \mathrm{A} \rightarrow \mathrm{~A}, & \mathrm{f}: \mathrm{A} \rightarrow \mathrm{~B} \\
1 \rightarrow 3 & 1 \rightarrow \mathrm{~b} \\
2 \rightarrow 1 & 2 \rightarrow \mathrm{a} \\
3 \rightarrow 2 & 3 \rightarrow \mathrm{~d}
\end{array}
$$

$\mathrm{f} O \mathrm{~g}: \mathrm{A} \rightarrow \mathrm{B}:$

- $1 \rightarrow \mathrm{~d}$
- $2 \rightarrow$

Composition of functions

Example 1:

- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$

$\mathrm{g}: \mathrm{A} \rightarrow \mathrm{A}$,	$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$
$1 \rightarrow 3$	$1 \rightarrow \mathrm{~b}$
$2 \rightarrow 1$	$2 \rightarrow \mathrm{a}$
$3 \rightarrow 2$	$3 \rightarrow \mathrm{~d}$

$\mathrm{f} O \mathrm{~g}: \mathrm{A} \rightarrow \mathrm{B}:$

- $1 \rightarrow \mathrm{~d}$
- $2 \rightarrow$ b
- $3 \rightarrow$

Composition of functions

Example 1:

- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$

$$
\begin{array}{lc}
\mathrm{g}: \mathrm{A} \rightarrow \mathrm{~A}, & \mathrm{f}: \mathrm{A} \rightarrow \mathrm{~B} \\
1 \rightarrow 3 & 1 \rightarrow \mathrm{~b} \\
2 \rightarrow 1 & 2 \rightarrow \mathrm{a} \\
3 \rightarrow 2 & 3 \rightarrow \mathrm{~d}
\end{array}
$$

$\mathrm{f} \circ \mathrm{g}: \mathrm{A} \rightarrow \mathrm{B}:$

- $1 \rightarrow \mathrm{~d}$
- $2 \rightarrow$ b
- $3 \rightarrow \mathrm{a}$

Composition of functions

Example 2:

- Let f and g be two functions from Z to Z , where
- $f(x)=2 x$ and $g(x)=x^{2}$.
- $\mathrm{fO} \mathrm{g}: \mathrm{Z} \rightarrow \mathrm{Z}$
- $(f \circ g)(x)=f(g(x))$

$$
=f\left(x^{2}\right)
$$

$$
=2\left(x^{2}\right)
$$

- $\mathrm{g} \mathrm{Of}: \mathrm{Z} \rightarrow \mathrm{Z}$
- $(\mathrm{g} \circ \mathrm{f})(\mathrm{x})=$?

Composition of functions

Example 2:

- Let f and g be two functions from Z to Z , where
- $f(x)=2 x$ and $g(x)=x^{2}$.
- $\mathrm{fO} \mathrm{g}: \mathrm{Z} \rightarrow \mathrm{Z}$
- $(f \circ g)(x)=f(g(x))$
$=f\left(x^{2}\right)$
$=2\left(x^{2}\right)$
- g Of: Z $\rightarrow \mathrm{Z}$
- $(\mathrm{g} \circ \mathrm{f})(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))$
$=\quad g(2 x) \quad$ Note that the order of
$=\quad(2 \mathrm{x})^{2} \quad$ the function composition matters
$=4 x^{2}$

Composition of functions

Example 3:

- (f $\left.O_{f^{-1}}\right)(\mathbf{x})=\mathbf{x}$ and $\left(\mathbf{f}^{-1} \bigcirc \mathbf{f}\right)(\mathbf{x})=\mathbf{x}$, for all x.
- Let $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$, where $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-1$ and $\mathrm{f}^{-1}(\mathrm{x})=(\mathrm{x}+1) / 2$.
- ($\mathrm{f} \circ \mathrm{f}^{-1}$) $(\mathrm{x})=\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{x})\right)$
$=\quad f((x+1) / 2)$
$=2((x+1) / 2)-1$
$=\quad(x+1)-1$
$=\quad \mathrm{x}$

Composition of functions

Example 3:

- (f $\left.O^{-1}\right)(x)=x$ and $\left(f^{-1} O f\right)(x)=x$, for all x.
- Let $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$, where $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-1$ and $\mathrm{f}^{-1}(\mathrm{x})=(\mathrm{x}+1) / 2$.
- ($\left.\mathrm{f} \circ \mathrm{f}^{-1}\right)(\mathrm{x})=\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{x})\right)$
$=f((x+1) / 2)$
$=2((x+1) / 2)-1$
$=\quad(x+1)-1$
$=\quad \mathrm{X}$
- $\left(\mathrm{f}^{-1} \bigcirc \mathrm{f}\right)(\mathrm{x})=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))$
$=\quad \mathrm{f}^{-1}(2 \mathrm{x}-1)$
$=\quad(2 \mathrm{x}) / 2$
$=\quad \mathrm{x}$

Some functions

Definitions:

- The floor function assigns a real number x the largest integer that is less than or equal to x. The floor function is denoted by $\lfloor\mathrm{x}\rfloor$.
- The ceiling function assigns to the real number x the smallest integer that is greater than or equal to x . The ceiling function is denoted by $\lceil\mathrm{x}\rceil$.

Other important functions:

- Factorials: $\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)$ such that 1 ! $=1$

