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Equivalence relation

Definition: A relation R on a set A is called an equivalence 
relation if it is reflexive, symmetric and transitive.
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Equivalence relation

Definition: A relation R on a set A is called an equivalence 
relation if it is reflexive, symmetric and transitive.

Example: Let A = {0,1,2,3,4,5,6} and

• R= {(a,b)| a,b  A, a  b mod 3}   (a is congruent to b modulo 3)

Congruencies:

• 0 mod 3 = 0       1 mod 3 = 1       2 mod 3 = 2    3 mod 3 = 0

• 4 mod 3 = 1       5 mod 3 = 2       6 mod 3 = 0

Relation R has the following pairs:

• (0,0)                                    (0,3), (3,0), (0,6), (6,0)

• (3,3), (3,6) (6,3), (6,6)        (1,1),(1,4), (4,1), (4,4)

• (2,2), (2,5), (5,2), (5,5)
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Equivalence relation

• Relation R on A={0,1,2,3,4,5,6}  has the following pairs:

(0,0)              (0,3), (3,0), (0,6), (6,0)

(3,3), (3,6) (6,3), (6,6)        (1,1),(1,4), (4,1), (4,4)

(2,2), (2,5), (5,2), (5,5)

• Is R reflexive? Yes.

• Is R symmetric?  Yes.

• Is R transitive. Yes.

Then

• R is an equivalence relation.
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Equivalence class

Definition: Let R be an equivalence relation on a set A. The set     
{ x  A  a R x} is called the equivalence class of a, denoted 
by [a]R or simply [a]. If b  [a] then b is called a representative 
of this equivalence class.

Example:
• Assume R={(a,b) | a  b mod 3} for A={0,1,2,3,4,5,6}

R= {(0,0), (0,3), (3,0), (0,6), (6,0),(3,3), (3,6) (6,3), (6,6),  
(1,1),(1,4), (4,1), (4,4), (2,2), (2,5), (5,2), (5,5)}

• Pick an element a =0.
• [0]R = {0,3,6} 
• Element 1:   [1]R= {1,4} 
• Element 2:   [2]R= {2,5}
• Element 3:   [3]R= {0,3,6} = [0]R = [6]R

• Element 4:   [4]R= {1,4} = [1]R Element 5:   [5]R= {2,5} = [2]R
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Equivalence class

Example:

• Assume R={(a,b) | a  b mod 3} for A={0,1,2,3,4,5,6}

• R= {(0,0), (0,3), (3,0), (0,6), (6,0),(3,3), (3,6) (6,3), (6,6),  
(1,1),(1,4), (4,1), (4,4), (2,2), (2,5), (5,2), (5,5)}

Three different equivalence classes all together:

• [0]R = [3]R =[6]R = {0,3,6} 

• [1]R= [4]R= {1,4} 

• [2]R= [5]R= {2,5}  
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Partition of a set S

Definition: Let S be a set. A collection of nonempty subsets of S 
A1, A2, ..., Ak is called a partition of S if:

• Ai  Aj = ,  i ≠ j      and  
k
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Partition of a set S

Definition: Let S be a set. A collection of nonempty subsets of S 
A1, A2, ..., Ak is called a partition of S if:

• Ai  Aj = ,  i ≠ j      and  

Example: Let S={1,2,3,4,5,6} and 

• A1 ={0,3,6} A2 ={1,4} A3 = {2,5}

• Is A1, A2,, A3  a partition of S ?  Yes.

• Give a partition of S ?

• {0,2,4,6}  {1,3,5}

• {0} {1,2} {3,4,5} {6} 
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Equivalence classes and partitions

Theorem: Let R be an equivalence relation on a set A.  Then the 
union of all the equivalence classes of R is A: 

Proof: an element a of A is in its own equivalence class [a]R so 
union cover A.  

Theorem: The equivalence classes form a partition of A. 

Proof: The equivalence classes split A into disjoint subsets.  

Theorem : Let {A1, A2, .. Ai ,..} be a partitioning of S. Then there is 
an equivalence relation R on S, that has the sets Ai as its 
equivalence classes. 
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Partial orderings

Definition: A relation R on a set S is called a partial ordering, or 
partial order, if it is reflexive, antisymmetric, and transitive. A 
set together with a partial ordering R is called a partially ordered 
set, or poset, and is denoted by (S, R). Members of S are called 
elements of the poset.

Example: Assume R denotes the “greater than or equal” relation 
(൒)  on the set S={1,2,3,4,5}.

• Is the relation reflexive? Yes

• Is it antisymmetric? Yes

• Is it transitive? Yes

• Conclusion: R is a partial ordering.  



6

M. HauskrechtCS 441 Discrete mathematics for CS

Partial orderings

Example: Assume R is the divisibility relation (∣) on the set of 
integers S={1,2,3,4,5,6}

• Is the relation reflexive? Yes

• Is it antisymmetric? Yes

• Is it transitive? Yes

• Conclusion: R is a partial ordering.  
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Comparability

Definition 1: The elements a and b of a poset (S,≼ ) are 
comparable if either a ≼ b or b ≼ a. When a and b are elements 
of S so that  neither  a ≼ b nor b ≼ a holds, then a and b are 
called incomparable.

Definition 2: If  (S,≼ ) is a poset and every two elements of S are 
comparable, S is called a totally ordered or linearly ordered set, 
and ≼	is called a total order or a linear order.  A totally ordered 
set is also called a chain. 

Definition 3: (S,≼ ) is a well-ordered set if it is a poset such that ≼
is a total ordering and every nonempty subset of S has a least 
element. 
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Lexicographical ordering

Definition: Given two posets (A1,≼1) and (A2,≼2), the lexicographic 
ordering on A1	⨉ A2 is defined by specifying that  (a1, a2) is less 
than (b1,b2), that is, (a1, a2)≺ (b1,b2),  either if a1 ≺1	b1 or if a1 ൌ
b1 then a2 ≺2	b2.

The definition can be extended to a lexicographic ordering on strings 
Example: Consider strings of lowercase English letters. A 
lexicographic ordering can be defined using the ordering of the 
letters in the alphabet. This is the same ordering as that used in 
dictionaries.

– discreet ≺ discrete, because these strings differ in the seventh 
position and e ≺ t. 

– discreet ≺ discreetness, because the first eight letters agree, but 
the second string is longer. 
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Hasse diagram

Definition: A Hasse diagram is a visual representation of a 
partial ordering that leaves out edges that must be present 
because of the reflexive and transitive properties.

(a) A partial ordering. The loops are due to the reflexive property 

(b) The edges that must be present due to the transitive property 
are deleted 

(c) The Hasse diagram for the partial ordering (a). 
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Procedure for constructing Hasse diagram

• To represent a finite poset (S,≼ )  using a Hasse diagram, start with 
the directed graph of the relation:

– Remove the loops (a, a) present at every vertex due to the 
reflexive property.

– Remove all edges (x, y) for which there is an element   z ∈	S
such that x ≺	z and z ≺ y. These are the edges that must be 
present due to the transitive property.

– Arrange each edge so that its initial vertex is below the terminal 
vertex. Remove all the arrows, because all edges point upwards 
toward their terminal vertex. 
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Definition of a graph

• Definition: A graph G = (V, E) consists of a nonempty set V of 
vertices (or nodes) and a set E of edges. Each edge has either one 
or two vertices associated with it, called its endpoints.  An edge is 
said to connect its endpoints.

• Example:
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Terminology

• In a simple graph each edge connects two different vertices and 
no two edges connect the same pair of vertices.

• Multigraphs may have multiple edges connecting the same two 
vertices. When m different edges connect the vertices u and v, we 
say that {u,v} is an edge of multiplicity m. 

• An edge that connects a vertex to itself is called a loop.

• A pseudograph may include loops, as well as multiple edges 
connecting the same pair of vertices.

CS 441 Discrete mathematics for CS
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Terminology
• In a simple graph each edge connects two different vertices and no 

two edges connect the same pair of vertices.

• Multigraphs may have multiple edges connecting the same two 
vertices. When m different edges connect the vertices u and v, we 
say that {u,v} is an edge of multiplicity m. 

• An edge that connects a vertex to itself is called a loop.

• A pseudograph may include loops, as well as multiple edges 
connecting the same pair of vertices.
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Directed graph

Definition: An directed graph (or digraph) G = (V, E) consists of a 
nonempty set V of vertices (or nodes) and a set E of directed edges 
(or arcs). Each edge is associated with an ordered pair of vertices.  
The directed edge associated with the ordered pair (u,v) is said to 
start at u and end at v. 

Remark: 

– Graphs where the end points of an edge are not ordered are said 
to be undirected graphs.
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Directed graph

• A simple directed graph has no loops and no multiple 
edges.

Example: 

• A directed multigraph may have multiple directed edges.  
When there are m directed edges from the vertex u to the 
vertex v,  we say that  (u,v) is an edge of multiplicity m.

Example: 

• multiplicity of (a,b) is ?	
• and	the	multiplicity	of	ሺb,cሻ	is	?
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