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i Why Markov Chain?

P(X|e) = P(X|e)— the query

we want to compute
A = e, & e, are known
evidence

~. = Sampling from the

distribution P(X) is

o very different from
the desired posterior

i Markov Chain

= Markov Chain Monte Carlo

= Objective: generates samples from the
posterior distribution

= Idea: a sampling process, that initially
generates samples very different from the
target posterior but gradually refines the
samples so that they are closer and closer
to the posterior.




i Markov Chain (Cont.)

= Based on

= a state space  Val(X)
= a transition probability model T

= Defines a next-state distribution
= for every state x eVal X)

= State space -- e.g. possible instantiations

i Markov Chain (Cont.)

= Chain Dynamics
P(H.])(X(H—l) — X') — ZP(I) (X(f) = x)T(X —> _x')

xeVal(X)

X4 T(x1->x’)

T(x2->x’) P(t+l)(X(t+1) _ x')
X, X

3
/ = ZP(’) (X =x)T(x, = x")
X3 (x3->x°) i=1

t t+1




l\@@v Chain Monte Carlo (MCMC)

* MCMC (Cont.)

= given evidences e — state X; and P(X]|e)

P (Xe)
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= given evidences e — state X; and P(X]|e)

P (X|e) P'(X|e) Samples from desired P (X|e)

Apply T Apply T Apply T




i MCMC (Cont.)

= MCMC sampling process doesn’t converge
to a stationary distribution definitely
= Stationary distribution
r(X=x)= D> m(X=x)T(x—>x)
xeVal(X)

= The stationary distribution is not unique, it
depends on the initial states.

i MCMC (Cont.)

= a Finite state Markov Chain has a
unique stationary distribution

= this markov chain is regular

= regular: exist some k, for each pair of
states x and x’, the probability of
getting from x to X’ in exactly k steps is
greater than 0.




i In general graphical model

= Target distribution ------ P(y|E=e)
= States ------ Instantiations S to ¥
= Some possible assignments to ¥

= local transition models ------ for
each variable xey—E

= Combine all local transition models
into a single chain (random select)

i Gibbs Sampling

X4 = Evidences:

/\ = X5 =T
L X6 =T

X2 X3 = all variables have
~. binary values T

X, or F
/\




* Gibbs Sampling (Cont.)

P(xrest I e)

X1=F, X,=T
X3=T, X4=T

Xs=Xg=T (Fixed)

* Gibbs Sampling (Cont.)

P(xrest I e)

Update
Value of x,

X1=F, X2=T
X3=T, X4=T

Xs=Xg=T (Fixed)




* Gibbs Sampling (Cont.)

P(Xiest | ©)

* Gibbs Sampling (Cont.)

P(Xrest | €)




* Gibbs Sampling (Cont.)

P,(xrest I e)

Samples from desired P’(X, .| e)

* Gibbs Sampling (Cont.)

Keep resampling each variable using the value of variables

in its local neighborhood (Markov blanket)

(| X5, 5, X5, %)




i Gibbs Sampling (Cont.)

* Gibbs sampling takes advantage of the structure
 Markov blanket makes the variable independent from
the rest of the network

i Build a Markov Chain

= Key idea of MH algorithm
= builds a reversible Markov Chain

= For the move proposed by the proposal
distribution
= Either accept it and take a transition to state x’
= Or reject it and stay at current state x




i Build a Markov Chain (Cont.)

= For each pair of states x and X’
x # x'
T(x—>x)=T%x—>x")A(x —>x")
xX=Xx'
T(x—x)=T?(x—>x)+ ) T(x>x)(1-Ax—>x))

i Build a Markov Chain (Cont.)

= From detailed balance equation

7(X)T(x > x")=n(x")T(x'> x)

= We can get that

z(x")T2(x'— x)

A(x — x") =min|[], 2T (x 5 1)




i Build a Markov Chain (Cont.)

= Compared MH with Gibbs
= For Gibbs

A(u,, x, = u;,x';)
P(x' |u)T%u,, x',— u,,x,)
P(x; lu)T%u,,x; > u,,x,)
P(x',-lu,-)P(xilu,-)]

P(x; [u)P(x';|u;)

=min[ 1,1]=1

= Special MH, which acceptance probability
is 1.

= min[ 1,

= min[ 1,

Mixing Time in
i Using Markov Chain

= Mixing Time
= The number of steps we take until we

collect a sample from the target
distribution. (# = n)

Mixing Time Samples from desired P(X|e)




i Summary

= Markov Chain Monte Carlo method
attempts to generate samples from
posterior distribution

= MH algorithm is a general scheme for
specifying a Markov chain.

= Gibbs sampling is a special case that
takes advantage of the network
structure (Markov Blanket)

* Thanks

Any question?




