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Why Markov Chain?

P(X|e)— the query 
we want to compute
e1 & e2 are known 
evidence
Sampling from the 
distribution P(X) is 
very different from 
the desired posteriore1 e2

P(X|e)

Markov Chain

Markov Chain Monte Carlo 
Objective: generates samples from the 
posterior distribution
Idea: a sampling process, that initially 
generates samples very different from the 
target posterior but gradually refines the 
samples so that they are closer and closer 
to the posterior. 
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Markov Chain (Cont.)

Based on 
a state space 
a transition probability model

Defines a next-state distribution
for every state 

State space -- e.g. possible instantiations
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Markov Chain (Cont.)

Chain Dynamics

∑
∈

++ →===
)(

)()()1()1( )'()()'(
XValx

tttt xxTxXPxXP

x1

x2

x3

x’

t t+1

T(x1->x’)

T(x2->x’)

T(x3->x’)
)'()(

)'(
3

1

)()(

)1()1(

xxTxXP

xXP

i
i

i
tt

tt

→==

=

∑
=

++



4

Markov Chain Monte Carlo (MCMC)
State 
Space

………

X1

X2

X3

X4

MCMC (Cont.)

given evidences e – state X1 and P(X|e)

X1

P (X|e)
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MCMC (Cont.)

given evidences e – state X1 and P(X|e)

X1

Apply T

P (X|e)

MCMC (Cont.)

given evidences e – state X1 and P(X|e)

X2X1

Local 
Rules

P (X|e)
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MCMC (Cont.)

given evidences e – state X1 and P(X|e)

X2X1

Apply T Apply T

P (X|e)

MCMC (Cont.)

given evidences e – state X1 and P(X|e)

X2X1

Apply T Apply T

P (X|e)
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MCMC (Cont.)

given evidences e – state X1 and P(X|e)

……X2X1

Local 
Rules

Local 
Rules

P (X|e)

Local 
Rules

MCMC (Cont.)

given evidences e – state X1 and P(X|e)

…… XnX2X1

Apply T Apply T Apply T

P’(X|e)P (X|e)
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MCMC (Cont.)

given evidences e – state X1 and P(X|e)

…… XnX2X1

P’(X|e)P (X|e)

Apply T Apply T Apply T

MCMC (Cont.)

given evidences e – state X1 and P(X|e)

…… XnX2X1

Apply T Apply T Apply T

Xn+2Xn+1 ……

Samples from desired P (X|e)P’(X|e)P (X|e)
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MCMC (Cont.)

MCMC sampling process doesn’t converge 
to a stationary distribution definitely

Stationary distribution

The stationary distribution is not unique, it 
depends on the initial states. 
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MCMC (Cont.)

a Finite state Markov Chain has a 
unique stationary distribution 

this markov chain is regular
regular: exist some k, for each pair of 
states x and x’, the probability of 
getting from x to x’ in exactly k steps is 
greater than 0.

c
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In general graphical model

Target distribution ------
States ------ Instantiations     to

Some possible assignments to 

local transition models ------for 
each variable
Combine all local transition models 
into a single chain (random select)
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Gibbs Sampling

Evidences:
x5 =T
x6 =T

all variables have 
binary values T 
or F

x5

x4

x6

x2 x3

x1
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Gibbs Sampling (Cont.)

x5

x4

x6

x2 x3

x1

X0

P(Xrest|e)

x5=x6=T (Fixed)

x1=F, x2=T
x3=T, x4=T

Gibbs Sampling (Cont.)

x5

x4

x6

x2 x3

x1

X0

P(Xrest|e)

x5=x6=T (Fixed)

x1=F, x2=T
x3=T, x4=T

Update 
Value of x4
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Gibbs Sampling (Cont.)

x5

x4

x6

x2 x3

x1

X0

x5

x4

x6

x2 x3

x1

X1

x4=F
x5=T
x6=T

P(Xrest|e)

x1=F, x2=T,
x3=T,

Gibbs Sampling (Cont.)

x5

x4

x6

x2 x3

x1

X0

x5

x4

x6

x2 x3

x1

X1

Update 
Value 
of x3

P(Xrest|e)

x4=F
x5=T
x6=T
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Gibbs Sampling (Cont.)

x5

x4

x6

x2 x3

x1

……

x5

x4

x6

x2 x3

x1

……

Xn Samples from desired P’(Xrest|e)

P’(Xrest|e)

Gibbs Sampling (Cont.)

x5

x4

x6

x2 x3

x1

x5

x4

x6

x2 x3

x1

Keep resampling each variable using the value of variables 
in its local neighborhood  (Markov blanket)
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Gibbs Sampling (Cont.)

x5

x4

x6

x2 x3

x1

• Gibbs sampling takes advantage of the structure
• Markov blanket makes the variable independent from 
the rest of the network 

),,,|( 65324 xxxxXP

Build a Markov Chain

Key idea of MH algorithm
builds a reversible Markov Chain
For the move proposed by the proposal 
distribution

Either accept it and take a transition to state x’
Or reject it and stay at current state x
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Build a Markov Chain (Cont.)

For each pair of states x and x’
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Build a Markov Chain (Cont.)

From detailed balance equation

We can get that 
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Build a Markov Chain (Cont.)

Compared MH with Gibbs
For Gibbs

Special MH, which acceptance probability 
is 1.
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Mixing Time in
Using Markov Chain

Mixing Time
The number of steps we take until we 
collect a sample from the target 
distribution.  (# = n)

…… XnX2X1

Local 
Rules

Local 
Rules

Local 
Rules

Mixing Time

Xn+2Xn+1 ……

Samples from desired P(X|e)
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Summary

Markov Chain Monte Carlo method 
attempts to generate samples from 
posterior distribution
MH algorithm is a general scheme for 
specifying a Markov chain.
Gibbs sampling is a special case that 
takes advantage of the network 
structure (Markov Blanket)

Thanks

Any question? 


