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using Random Sampling
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Particles

• Particles: a set of instantiations of joint 
distribution to all or some of the variables 
in the network
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Outline

• Forward Sampling
• Rejection Sampling
• Likelihood Weighting Sampling
• Importance Sampling
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Forward Sampling

• Sample the nodes in some order consistent with 
the partial order of the BN, so that by the time 
we sample a node, we have values for all its 
parents.
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BBN sampling example

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F
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Forward Sampling in a Bayesian network

Procedure Forward-Sample (B)
1 Let              be a topological ordering of X
2 For i=1,…,n
3 //Assignment to       in 
4 Sample     from 
5 return (                )

nXX ,...,1

><←
iXi Paxu

iX
Pa 11,..., −ixx

ix )|( ii uXP

11,..., −ixx
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Absolute Error Bound

• Apply Hoeffding’s bound to estimate how 
many samples are required to achieve an 
estimate whose error is bounded by  , with 
probability at least 1-

Gives sample complexity: 

δεε ε ≤≤+−∉ − 222]))(,)([)(ˆ( M
DD eyPyPyPP

ε
δ

22
)/2ln(

ε
δ

≥M
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Relative Error Bound

• By applying Chernoff’s bound to conclude that 
Is also within a relative error     of the true value 

, within high probability. Specifically, we have 
that:

So that:

)(ˆ yPD

ε )(yP

3/)( 2

2))1)(()(ˆ( εyMP
DD eyPyPP −≤∈+∉

2)(
)/2ln(3

ε
δ

yP
M ≥
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Rejection Sampling

To generate samples from P(x|e), we can: 
1. generate samples x from P(X), 
2. reject any sample which is not compatible with e.

Problem:  the number of accepted particles can be 
quite small. The expected number is MP(e).

• The number of samples required to achieve a 
low relative error grows linearly with 1/P(e)
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Likelihood Weighting

• Idea: Instead of generating samples that are 
rejected, simply force the samples to take on the 
appropriate values at observed nodes.

•
• Problem: particles are generated with probability 

that is different from P(x)

• Solution: each particle generated is assigned a 
weight that represents P(e) for that sample 
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BBN likelihood weighting example

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F
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F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

T

J = T (set !!!) M = F (set !!!)
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BBN likelihood weighting example
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weight = 0.9*0.3=0.27



12

23

BBN likelihood weighting example

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

F

J = T (set !!!) M = F (set !!!)

Second sample

24

BBN likelihood weighting example

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

F F

J = T (set !!!) M = F (set !!!)

Second sample



13

25

BBN likelihood weighting example

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

F F

F

J = T (set !!!) M = F (set !!!)

Second sample

26

BBN likelihood weighting example

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05 0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

F F

F

J = T (set !!!) M = F (set !!!)

Second sample



14

27
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BBN likelihood weighting example
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BBN likelihood weighting example

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F
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J = T (set !!!) M = F (set !!!)

Earthquake0.001 0.999

P(A|B,E)

weight = 0.05*0.99=0.0495

Evidence J=T,M=F 
in combination with B=F,E=F,A=F

Second sample
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Likelihood weighting

• Assume we have generated the following M samples:

F    F
F

T   F

F    F
F

T   F

T    F
F

T   F

F    F
F

T   F
…

• If we calculate the estimate:

sampletotal
TBwithsampleFMTJTBP

_#
)(_#),|( =

====

a less likely sample from P(X) may be generated more 
often. 

• For example, sample                  is generated more often 
than in P(X)  

• So the samples are not consistent with P(X). 

M

F    F
F

T   F
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Likelihood weighting

• Assume we have generated the following M samples:

F    F
F

T   F

F    F
F

T   F

T    F
F

T   F

F    F
F

T   F
…

How to make the samples consistent?
Weight each sample by probability with which it agrees with 

the conditioning evidence P(e).

M

F    F
F

T   F
Weight  0.0495

T    F
F

T   F
Weight  0.27
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Likelihood weighting
• How to compute weights for the sample?
• Assume the query

• Likelihood weighting:
– With every sample keep a weight with which it 

should count towards the estimate 

xB
FMTJandBofvalueanywithsamples

TB
FMTJandTBwithsamples

w

w
FMTJTBP

=
==

=
===

∑
∑

====

,

,),|(~

),|( FMTJTBP ===

∑

∑

=

=

=
==== M

i

i

M

i

ii

w

wTB
FMTJTBP

1

)(

1

)()( }{1
),|(~
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Likelihood weighting

• Assume we have generated the following M samples:

F    T
T

T   F

F    F
T

T   F

F    T
F

T   F

F    T
T

T   F
…

• If we calculate the estimate:

sampletotal
TAwithsampleFMTJTAP

_#
)(_#),|( =

====

a less likely sample from P(x) may be generated more 
often. So the samples are not consistent with P(x). 

How to make the samples consistent? The probability of 
the evidence P(e) for the sample tells us how likely the 
evidence is in the sample. So we can use P(e) to weight 
each sample and correct the bias.

M
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Likelihood weighting

• Assume M samples where evidence is enforced:

F    T
T

T   F

F    F
T

T   F

F    T
F

T   F

F    T
T

T   F
…

)|,( TAFMTJP === )|,( TAFMTJP === )|,( TAFMTJP ===)|,( TAFMTJP === weights

∑

∑

=

=

=
==== M

i

i

M

i

ii

w

wTA
FMTJTAP

1

)(

1

)()( }{1
),|(~

• We can use P(e) to weight each sample and correct 
the bias.

• The correct estimate is then:

M
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Procedure LW-sample (B, Z=z)
//B – Bayesian network over X, Z– event in the network
1 Let                     be a topological ordering of X
2 
3 for i=1,..., n
4 //Assignment to       in 
5 If             then
6 Sample       from 
7 else
8 //Assignment to      in z
9 //Multiply weight by probability of desired value
10 return

nXX ,...,1

1←w

><←
iXi Paxu

iX
Pa 11,..., −ixx

ZX i ∉

ix )|( ii uXP

><← ii Xzx iX

)|( ii uxwPw←
wxx n ),,...( 1

Likelihood weighted Particle Generation

36

Likelihood Weighting
Summary
Likelihood Weighting
• generates M weighted particles 

<   [1],w[1] >,…, <   [M],w[M] > using LW- Sample 
procedure.  

• Estimates the  conditional probability P(y|e) using M 
samples as :

ξ

∑
∑

=

= =
=

][
}][{1][

)|(ˆ
1

1

mw
ymymw

eyP M
m

M
m

ξ
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Importance Sampling

• Importance Sampling is a general approach for 
estimating the expectation of a function f(x) 
relative to some distribution P(X) (target 
distribution):  

• Generally, we can estimate this expectation by 
generating samples x[1], …, x[M] from P, and 
then estimating 

∑
=

=
M

m
p mxf

M
fE

1
])[(1][~

∑=
}{

)()(][
x

p xfxPfE ∫=
x

p dxxfxpfE )()(][or

38

Importance Sampling

• Estimate of               requires to sample P(x)
• It might be impossible or computationally very 

expensive to generate samples directly from P. 
• Because of that we might prefer to generate 

samples from a different distribution Q (a 
proposal or sampling distribution) instead

• A proposal distribution Q can be arbitrary, but it 
should satisfy: 

Q(x)>0 whenever P(x)>0

][~ fE p
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Unnormalized Importance Sampling
(P is Known)

• Since we generate samples from Q instead of P, we must 
adjust our estimator to compensate for the incorrect 
sampling distribution.

• We use standard estimator for expectations relative to Q. 
We generate a set of samples D={x[1],…,x[M]} from Q, 
and estimate:

)]()([]
)(
)()([)]([ )()()( xwxfE
xQ
xPxfEXfE xQxQXp ==

∑
=

=
M

m
D mxQ

mxPmxf
M

fE
1 ])[(

])[(])[(1)(ˆ
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• This is an unbiased estimator: its mean for any data set 
is precisely the desired value

• We can estimate the distribution of this estimator around 
its mean: as M → ∞

)/;0()]([)]()([ 2
)( MNXfEXwXfE QpXQ σ∝−

2
)(

2
)(

2 )])([(]]))()([([ XfEXwXfE XPXQQ −=σ

)(/)()( xQxPxw =

where

Unnormalized Importance Sampling
(P is Known)
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)(|)(|)( XPXfXQ ∝

• The variance of this estimator decreases linearly with the 
number of samples. 

• When f(X)=1, the variance is simply the weighting function 
P(X)/Q(X). Thus the more different Q is from P, the higher 
the variance will be. 

• The lowest variance is achieved when

• We should avoid cases where our sampling probability 
Q(X)<<P(X)f(X) in any part of the space, as these cases 
can lead to very large or even infinite variance. 

Unnormalized Importance Sampling
(P is Known)

42

Normalized Importance Sampling
(P is known up to a normalizing constant)

P′

)(
)()(

XQ
XPXw

′
=

• When P is only known up to a normalizing constant    , but 
we have access to a function    (X), such that     is not a 
normalized distribution, but      (X)=    P(x)

α
P′P′

α

• In this context, we cannot define the weights relative to P, so 
we define: 

∑ ∑∑
′

===
x xx

XP xQ
xPxfxQ

xQ
XPxfxQxfxPXfE

)(
)()()(1

)(
)()()()()()]([)( α

)]([
)]()([

)]()([1

)(

)(
)( XwE

XwXfE
XwXfE

XQ

XQ
xQ ==

α
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Normalized Importance Sampling
(P is known up to a normalizing constant)

• Using an empirical estimator for both the numerator and 
denominator, we can estimate:

∑
∑

=

==
])[(

])[(])[(
)(ˆ

1

1

mxw
mxwmxf

fE M
m

M
m

D

• Although the normalized estimator is biased, its variance is 
typically lower than that of the unnormalized estimator. This 
reduction in variance often outweighs the bias term.  

• Normalized estimator is often used in place of the 
unnormalized estimator, even in cases where P is known 
and we can sample from it effectively.
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Proposal Distribution
based on the Mutilated Belief network

Assume a Bayesian Network
• We want to calculate P(x|e)
• This is hard if we need to go opposite the links and account 

for the effect of evidence on nondescendants
Objective:  generate particles efficiently using a simpler proposal 

distribution Q(x)
Solution: a mutilated belief network
• Idea: 

– Avoid propagation of evidence effects to nondescendants;
– Disconnect all variables in the evidence from their parents 
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Mutilated Belief network

Burglary Earthquake

Alarm

JohnCalls MaryCalls

Original network

• Assume we want to calculate P(x|B=T,J=T) in the 
Alarm network

• Use B=T and J=T to build a mutilated network

Burglary=T Earthquake

Alarm

JohnCalls=
T

MaryCalls

Mutilated network
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Mutilated Belief network

• Assume the evidence is J=j* and B=b* 
• Original network:

• Mutilated network:

• Note that

Burglary Earthquake

Alarm

JohnCalls MaryCalls

Original network

Burglary=T Earthquake

Alarm

JohnCalls=
T

MaryCalls

Mutilated 
network

)|()|*()*,|()(*)(*)*,,,,( amPajPebaPePbPbBjJmMaAeEP ======

)|()*,|()(*)*,,,,( amPebaPePbBjJmMaAeEQ ======

)|*(*)(
)(
)()( ajPbP
xQ
xPxw ==
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Mutilated Belief network

• Assume the evidence is J=j* and B=b* 
• Original network:

• Mutilated network:

• Note that

Burglary Earthquake

Alarm

JohnCalls MaryCalls

Original network

Burglary=T Earthquake

Alarm

JohnCalls=
T

MaryCalls

Mutilated 
network

)|()|*()*,|()(*)(*)*,,,,( amPajPebaPePbPbBjJmMaAeEP ======

)|()*,|()(*)*,,,,( amPebaPePbBjJmMaAeEQ ======

So importance sampling with a proposal distribution based
on mutilated network  is equal to likelihood weighting

)|*(*)(
)(
)()( ajPbP
xQ
xPxw ==

48

Data-Dependent Likelihood Weighting

• Question: When to stop? How many samples do we 
need to see? 

• Intuition: not every samples contribute equally to the 
quality of the estimate. A sample with high weight is 
more compatible with the evidence e, and may provide 
us with more information.

• Solution: We stop sampling when the total weight of 
the generated particles reaches a pre-defined value.

• Benefits: It allows early stopping in cases where we 
were lucky in our random choice of samples.
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Ratio Likelihood Weighting

• Estimate the conditional probability P(y|e) in two phases: 
use likelihood weighing to estimate P(e) and P(y,e) 
separately.

∑
∑

=

′
=′

′′
==

][/1
][/1

)(ˆ
),(ˆ

)|(ˆ
1

1

mwM
mwM

eP
eyPeyP M

m

M
m

D

D
D

• Use LW M times with the argument E=e to generate a set 
D of weighted samples 
use the same algorithm      times with argument Y=y, E=e 
to generate another set     of weighted samples

])[],[(]),...,1[],1[( MwMw ξξ

M ′
D′
])[],[(]),...,1[],1[( MwMw ′′′′ ξξ

• Then we can estimate:
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Q&A

• Thank you!


