Cluster trees and message propagation

CS3710 Advanced AI
Tomas Singliar

Outline

\square Simple graphs: trees and polytrees
\square Cluster graphs and clique trees

- running intersection, sepsetsMessage propagation (= VE)
\square Message passing VE in detail
\square Caching, out-of-clique queries, DP
\square Incremental updating
\square Constructing clique trees
- variable elimination
\square VE and BP: Pros \& cons and tradeoffs

Trees and polytrees

Tree: one directed path from the root to each node

PolyTree: one undirected trail from the root to each node

Undirected representation: a tree graph, treewidth=1

Clique trees

\square VE works on factors
\square Make factor a data structure

- Sends and receives messages
\square Cluster graph for set of factors , each node i is associated with a subset (cluster) C_{i} of .
- Family-preserving: each factor's variables are completely embedded in a cluster

Clique tree properties

\square Sepset $S_{i j}=C_{i} \cap C_{j}$

- separation set: Variables \mathbf{X} on one side of sepset are separated from the variables \mathbf{Y} on the other side in the factor graph given variables in S
\square Running intersection
- if C_{i} and C_{j} both contain X, then all cliques on the unique path between them do

Clique trees

Running intersection:

Cliques involving S form a connected subtree.

Initial potentials π_{i}^{0} :
Assign factors to cliques and multiply them. Have respect for families!

Message Passing VE

\square Query for $\mathrm{P}(\mathrm{J})$
Eliminate $\mathrm{D}: \tau_{2}(G, I)=\sum_{D} \pi_{2}[G, I, D]$

Message sent from [G,I,D] to $[G, S, I]$
Message received at $[G, S, I]$-[G,S,I] updates:

$$
\pi_{3}[G, S, I]=\tau_{2}(G, I) \times \pi_{3}^{0}[G, S, I]
$$

Message Passing VE

\square Query for $\mathrm{P}(\mathrm{J})$
Eliminate $\mathrm{H}: \tau_{4}(G, J)=\sum_{H} \pi_{5}[H, G, J]$

All messages

received at $[\mathbf{G}, \mathbf{J}, \mathbf{S}, \mathbf{L}]$	$\uparrow \mathbf{G}, \mathbf{J}$

[G,J,S,L] updates: H, G,
$\pi_{4}[G, J, S, L]=\tau_{3}(G, S) \times \tau_{4}(G, J) \times \pi_{4}^{0}[G, J, S, L]$
And so on...

Message Passing VE

\square Chose [J,L] as the root clique
\square Could we have chosen otherwise?

Message Passing VE

\square Choose [H,G,J] as the root clique

[D], [G,I], .
number the cliques and denote the messages

$$
\delta_{i \rightarrow j}
$$

Correctness of VE on clique trees

\square Message summarizes information in the part of tree it separates

$$
\delta_{i \rightarrow j}\left(S_{i j}\right)=\sum_{V\langle(i \rightarrow j)} \prod_{\left.\phi \in F^{2}(t \rightarrow)\right)} \phi
$$

\square Proof is by induction from leaves
\square Base case - leaf clique C_{i}

$$
\delta_{i \rightarrow j}\left(C_{i} \cap C_{j}\right)=\sum_{C_{i}-S_{i j}} \pi_{i}^{0}\left(C_{i}\right)=\sum_{C_{i}-S_{i j}} \prod_{\phi \in F_{i}} \phi
$$

Correctness of VE on clique trees

\square Induction case: non-leaf clique C_{i}, sending to C_{j}, with children $C_{i}, \ldots, C_{i_{k}}$
\square by intersection property, the unions are disjoint

$$
V_{\alpha,(i \rightarrow j)}=Y_{i} \bigcup_{m=1, . . k}^{+} V_{\alpha,\left(i_{m} \rightarrow i\right)} \quad F_{\alpha,(i \rightarrow j)}=F_{i} \bigcup_{m=1, . . k}^{+} F_{\alpha,\left(i_{m} \rightarrow i\right)}
$$

\square Then

Correctness of VE on clique trees

By induction hypothesis $\delta_{i \rightarrow j}\left(S_{i j}\right)=\sum_{V\langle(i \rightarrow j)} \prod_{\phi \in F_{\langle(i \rightarrow i)}} \phi$

$$
\sum_{V_{\alpha,(i \rightarrow j)}} \prod_{\phi \in F_{\alpha,(i \rightarrow j)}} \phi=\sum_{Y_{i}} \pi_{i}^{0} \times \prod_{m=1, \ldots, k} \delta_{i_{m} \rightarrow i}=\delta_{i \rightarrow j}
$$

Then the root clique has the correct marginal:

Message passing VE

\square Message order is only partial
\square Computes marginals for any node Y

- Results in a calibrated clique tree
\square Often, many marginals desired
- Inefficient to re-run inference
- One distinct message per edge \& direction
\square Recap: three kinds of factor objects
- initial, final potentials and messages

Message Passing VE

\square Shafer-Shenoy algorithm

- asynchronous implementation of two passes: upward and downward
- Asynchronously do:
\square node i ready to send m to node j when it has received a message from all other nodes
\square Send message $\delta_{i \rightarrow j}=\sum_{C_{i}-S_{i j}} \pi_{i} \times \prod_{k \in N(i)-j} \delta_{k \rightarrow i}$
- Marginalize root clique's ancillary vars

Message Passing: BP

\square Graphical model of a distribution

- More edges = larger expressive power
- Clique tree also a model of distribution
- Message passing preserves model but changes parameterization
\square Different but equivalent algorithm

Factor division

$A=1$	$B=1$	0.5			
$A=1$	$B=2$	0.4			
$A=2$	$B=1$	0.8			
$A=2$	$B=2$	0.2			
$A=3$	$B=1$	0.6			
$A=3$	$B=2$	0.5	\quad	$A=1$	0.4
:---	:---				
$A=2$	0.4				
$A=3$	0.5				

$A=1$	$B=1$	$0.5 / 0.4=1.25$
$A=1$	$B=2$	$0.4 / 0.4=1.0$
$A=2$	$B=1$	$0.8 / 0.4=2.0$
$A=2$	$B=2$	$0.2 / 0.4=2.0$
$A=3$	$B=1$	$0.6 / 0.5=1.2$
$A=3$	$B=2$	$0.5 / 0.5=1.0$

Inverse of factor product

Message Passing: BP

- Each node: multiply all the messages and divide by the one coming from node we send to
- Clearly the same as VE
$\delta_{i \rightarrow j}=\frac{\sum_{C_{i}-S_{i j}} \pi_{i}}{\delta_{j \rightarrow i}}=\frac{\sum_{C_{i}-S_{i j}} \prod_{k \in N(i)} \delta_{k \rightarrow i}}{\delta_{j \rightarrow i}}=\sum_{C_{i}-S_{i j}} \prod_{k \in N(i) \backslash j} \delta_{k \rightarrow i}$

Message Passing: BP

$\pi_{2}(B, C)=\frac{\pi_{2}^{0}(B, C)}{\delta_{2 \rightarrow 3}(C)} \times \delta_{3 \rightarrow 2}(C)=\frac{\pi_{2}^{0}(B, C)}{\delta_{2 \rightarrow 3}(C)} \times \sum_{D} \pi_{3}^{0}(C, D) \times \delta_{2 \rightarrow 3}(C)=\pi_{2}^{0}(B, C) \times \sum_{D} \pi_{3}^{0}(C, D)$

Message Propagation: BP

\square Lauritzen-Spiegelhalter algorithm
\square Two kinds of objects

- Initial potentials not kept
\square Improved "stability" of asynchronous algorithm (repeated messages cancel out)
\square Distribution representation - clique tree invariant

$$
\pi_{T}=\frac{\prod_{C_{i} \in T} \pi_{i}\left(C_{i}\right)}{\prod_{\left(C_{i} \leftrightarrow C C_{j}\right) \in T} \mu_{i j}\left(S_{i j}\right)}=P_{F}(X)
$$

Multiple queries

\square Much caching possible over a clique tree
\square Example: compute $P(X, Y)$, for each $X, Y \in$
\square Dynamic programming

- Base case, X and Y are in neighbor cliques

$$
P\left(C_{i} \mid C_{j}\right)=\frac{\pi_{i}\left(C_{i}\right)}{\mu_{i j}\left(C_{i} \cap C_{j}\right)} \quad P\left(C_{i}\right) \propto \pi_{i}
$$

- Take advantage of conditional independence:

$$
\exists l: C_{i} \perp C_{j} \mid C_{l} \quad P\left(C_{i}, C_{j}\right)=\sum_{C_{i}-C_{j}} P\left(C_{i}, C_{l}\right) P\left(C_{l} \mid C_{j}\right)
$$

Incremental updates

\square Fully-informed: all neighbors have sent their messages
\square Calibrated -- messages and cliques agree on marginals:

- fixed point of MP $\quad \sum_{c_{i}-s_{i j}} \pi_{c_{j}-s_{i j}} \quad \mu_{i j}$
\square Evidence available in pieces
- Re-running inference inefficient
\square Express evidence in indicator vector
- multiply into some clique C_{i}
- run one pass away from C_{i} to inform the rest
- works for soft evidence as well

Out-of-clique queries

\square I want $P(B, D)$, no clique with both B and D !

- Build a new clique tree - expensive, or
- Do variable elimination over calibrated tree

$P(B, D)=\sum_{C} P(B, C, D)$
$=\sum_{C} \frac{\pi_{2}(B, C) \pi_{3}(C, D)}{\mu_{23}(C)} \quad \begin{aligned} & \text { This is back to } V E, \text { we save } \\ & \text { if variables of interest are }\end{aligned}$
$=\sum_{C} P(B \mid C) P(C, D)$ close in the clique tree.

Defining clique trees

\square VE defines cliques

- Each factor is subset of a clique of
- Every max clique in is a factor
- Each clique in is a subclique in
- Each clique in is a clique in
- Non-maximal cliques can be eliminated
\square Chordal graphs
- Maximal cliques of any c.g. that is a superset of can be arranged into a clique tree for
- triangulation

Clique trees generated by VE

VE constructing a clique tree

VE constructing a clique tree

C, D

VE constructing a clique tree

VE constructing a clique tree

VE constructing a clique tree

G,J,S,L

VE constructing a clique tree
$\mathbf{C , D} \underset{\mathbf{D}}{\rightarrow}(\mathbf{G , I , D} \underset{\underset{\mathbf{G}, \mathbf{I}}{\rightarrow}}{\substack{\mathbf{G}, \mathbf{S}, \mathbf{I}}} \underbrace{}_{\downarrow \mathbf{G , S}}$

VE constructing a clique tree

Summary

\square Clique trees

- factors assigned to cliques many-to-one
- running intersection
\square Message passing on clique trees
- Variable Elimination
- Belief propagation
- different views, algebraically the same
\square VE defines cliques
\square Time and space tradeoff spectrum

Thank you
\square Questions solicited

