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Recap (Problem).

w Intelligence

Recap (Variable Elimination)
p()= D HOPDPd,)p(g,i,d)(s,)p(U, )P(j.1,5)p(h, g, J)

L,S,G,H,I,D,C

= D #DHg.i, (s, )P(j.15)p(h,g. ) #(c)p(d,c)

L,S,G,H,I,D c

= D #DHg.i, (s, &)P(j.1,5)p(h, g, j)z(c)

L,S,G,H,I,D

=>0(j.1,5)Y ¢, 2)7(s,8)7(g, /)
- Z¢(j,l,s)r(l,s,j)
= Zz‘(l,j)

=7(J)




Basic messages

. Variable Elimination is not determininistic.

. The order of elimination governs the overall
efficiency.

. Finding an optimal ordering is difficult.

. While different methodologies exist they are all
functionally identical.

. The cost of any ordering is exponential in the
number of variables that appear in the largest
factor.

Factor-Based Elimination.

p()= D2 HPOPd,c)p(g,i,d)(s, (L, )P(j.1,5)p(h. 2. ))

L,S,G,H,I,D,C

= D #DHg.i, (s, )P(j.15)p(h,g. ) #(c)p(d,c)

L,S,G,H,I,D c

= D #DHg.i, (s, &)P(j.1,5)p(h, g, j)z(c)

L,S,G,H,I,D

=>0(j.1,5)Y ¢, 2)7(s,8)7(g, /)
- Z¢(j,l,s)r(l,s,j)
= Zz'(l,j)

=7(J)




FBE: Trace

Step | Var Factors Used New Factor
1 C #.(C),¢p(D,C) 71 (D)
2 D »c(G,I,D),7(D) (G, 1)
3 I or(I),ds(S,I),7=2(G,I) m3(G, S)
4 H ou(H,G,J) T4(G, J)
5 G | u(G,J), 13(G,S),¢r(L,G) | 75(J,L,S)
6 S (S, L, S),¢5(J, L, S) 76(J, L)
7 L 76(J, L) 77(J)
FBE: Trace
Step | Var Factors Used New Factor | Complexity
I cC ¢ (C)pp (D, C) 7,(D) 2
2 D ¢.(G,1,D)r,(D) 7,(G,1) 3
31 T ¢, (Dgs(S,Dr,(G,T) | 75(G,S) 3
4 H ¢, (H,G,J) 7,(G,J) 3
5 G |7,(G,))1,(G,8)¢, (L,G)| 75(J,L,S) 4
6 S 7(J,L,8)¢p,(J,L,S) 7,(J,L) 3
7 L 7,(J,L) 7, (J) 2




Factor-based elimination

. Ordering Q:
- A permutation of variables for elimination.
. Factor 9(X,Y) > X:

— A function mapping some set of variables to a real
value.

. scope[P].
— The set of variables represented in the factor.
. width[Q] :
— The scope of the largest factor produced by Q.

FBE: Steps

* FBE consists of a series of elimination steps.

 Each step is as follows:
— Select a variable X from the set of variables remaining.

— Multiply all factors T where X escope[t] to produce a
new factor y.

— Sum X out of y to produce a new factor T whose scope is
v minus X.

» Repeat until a single factor t(Y) remains where Y 1s
the target variable of our inference.




Complexity

* The complexity of each elimination step 1s: O(Nk,)

— Where:
v, =4 x..x4,
N, =[ scope(y,) |

* The complexity of the algorithm for a given ordering

Qis: O(nN_.)
— Where:
* n is the initial number of factors in the graph.

« N, =width[Q].

FBE: Trace

Step | Var Factors Used New Factor
1 C ¢.(C),6p(D,C) 71(D)
2 D ¢c(G,1,D), 1 (D) (G, 1)
3 I or(I),¢s(S, 1), 7=2(G,T) 3(G, S)
4 H ou(H,G,J) 4(G, J)
5 G | u(G,J), 3(G,S),or(L,G) | 75(J,L,S)
6 S m5(J, L, S), ¢5(J, L, S) 76(J, L)
7 L 76(J, L) 7(J)




FBE: Trace.

Step | Var Factors Used New Factor | Complexity

1 | C ¢.(C)p, (D, C) 7,(D) 2

2 | D ¢.(G,1,D)z,(D) 7,(G, 1) 3

31 1| ¢(Dgs(S. e (G D) | 75(G,S) 3

4 H ¢, (H,G,J) 7,(G,J) 3

5 G |7,(G,))t,(G,8)¢,(L,G) |z, (J,L,S) 4

6 S 7.(J,L,8)¢,(J,L,S) 7,(J,L) 3

7 L 2-6(']’ L) 2'7 (J) 2
Total cost: width[€2] =4

O(nN_ . )=08x4)=0(32)
Ordering 2
Step | Var Factors Used New Factor

Il | G | ¢6(G,1,D),¢.(L,G)¢u(H,G,J) | n(I,D,L, ], H)
2 | 1T ¢r(D),¢s(S,N)ymu(I,D,L,J,H) | 72(D, L,8S,J M)
3 S ¢s(J,L,S),m=(D,L,S, J H) (D, L, J, H)
4 | L m3(D, L, J,H) (D, J, H)
5 H 4(D,J, H) 75(D, J)
6 C 75(D, J), op(D, C) 76(D, J)
7 D 16(D, J) 77(.J)




FBE: Trace.

Step | Var Factors Used New Factor | Complexity

¢G (G9 ]a D)¢L (La ®¢H (Ha Ga 'D ZE(I,QLJ,H) 6

1 C

2 | D | $(D¢(S,Dr(I,D,L,J,H) |5(DLSJ,H) 6
3| 1| QULSLDLSLH | 5DLIH| 5
4 | H o(D,L,J,H) 7(DJ,H) 4
51 G 7,(D,J, H) 20y 3
6 | s 7,(D,J)y(D,C) (D) 3
7 L 7.(D,J) (/) 2

Total cost: Width[Q)] =6

max

Optimal Permutation.

Optimal Ordering Q ':
Q'st.VQ"width [Q'] < width [Q]

Note:
. The optimal ordering is not guaranteed to be unique.

. Nor is 1s guaranteed to be less than: O(n N max)




Moral Graphs

Moral-graph H[G]J: of a bayesian network over X is an
undirected graph over X that contains an edge between x

and vy if:
- There exists a directed edge between them in G.

- They are both parents of the same node in G.

f® ®
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D

Moral Graphs

Why moralization?

P(C,D,G,1,S,L,J,H)=
P(C)P(D|C)P(G|I1,D)P(S|I)P(L|G)P(J|L,S)P(H |G,J)
$,(C)9,(D,C)ps(G,1,D)p,(S,1)ps(L,G)ps(J,L,S)p,(H,G,J)




Variable Elimination

. The variable elimination algorithm
is based only on the scope of each
factor.

. Factors are distilled from the graph
G representation.

. Variable Elimination can therefore
be viewed as a graph algorithm.

VE: Trace (1)

o a) Multiply the factors to produce:
¢(D,C) =¢(D)x¢(C)
1
M Ga ° b) Sum over C to produce:

7(D) =) ¢(D,C)

a) Multiply the factors to produce:
¢(D313G) = ¢(G919D)X71(D)

b) Sum over D to produce:

7,(G,1) =) ¢(D,1,G)




VE: Trace (2)

D ...,f.-.Z,'.':....‘.»-"j.':.‘.i . a) Multiply the factors to produce:
$(1,G,S)=¢(I)x (S, 1)x7,(G,I)

) / G b) Sum over I to produce:
7,(G,8)=>_¢(1,G,S)
I

a) Multiply the factors to produce:
$(H,G,J)=¢(H,G,J)
b) Sum over I to produce:

7,(G,J) =) $(H,G,J)

a) Multiply the factors to produce:
¢(G1J5L5S) = T4(G9J)XT3(G3S)X¢(L9G)

b) Sum over I to produce:

7,(J,L,8) =Y #G,J,L,S)

a) Multiply the factors to produce:
¢(J9L:S) = TS(J9L7S)X¢(J3L9S)
b) Sum over I to produce:

r(J,L)=Y ¢(J,L,S)

(6)




VE: Trace (4)

a) Multiply the factors to produce:

¢(J,L)=15(J,L)
®) / b) Sum overIto préoduce:
7,(J) =2 4(J.L)
i L

Variable elimination: Induced
Graph

. Induced Graph G': An @
/

undirected graph over X
where y and z are connected if

they both appear in some @
intermediate elimination factor : ;
ore @D

. Every factor generated during o
Q appears as a subclique of
the graph.




Variable elimination: Induced
Graph

Induced Graph G': An
undirected graph over X
where y and z are connected if
they both appear in some

intermediate elimination factor
of Q.

. Every factor generated during
Q appears as a subclique of
the graph.

The size of the largest clique
governs the computation.
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. Tree-Width = best Max Factor-Width -1 = best Max
Clique-Size -1

. the tree-width defined by transformation of the
undirected graph to the best factor tree is the same




Induced Graph to Tree

Decomposition
. For each Clique in the induced graph:

— Collapse the clique into a compound factor node
containing the member variables.

— Draw a link between each pair of nodes that share a
member variable.
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The Bad News

. Deciding whether or not there exists an ordering
Q s.t. Width(Q)) < N is NP-Hard.

— No matter what method is used.

. At best the inference is still exponential in the
treewidth of the factor graph




Chordal graphs and Triangulations

Chordal Graph: an undirected graph G whose minimum
cycle contains 3 verticies.
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Chordal. Not Chordal.

Triangulation

The process of converting a graph G into a chordal
graph is called Triangulation.

The induced graph is:
1) Guaranteed to be chordal.

2) Not guaranteed to be optimal.

There exist exact algorithms for minimal chordal
graphs, and heuristic methods with a guaranteed upper
bound.




Chordal Graphs: Good News

. If the moralized graph of our original network is chordal:

— There exists an elimination ordering that adds no edges.

— The minimal induced width of the graph is the size of the
largest clique - 1.

Chordal Graphs: Bad News

. Given a minimum triangulation for a graph G, we can
carry out the variable-elimination algorithm in the
minimum possible time.

. However, finding the minimal triangulation is NP-Hard.

- Time is exponential in terms of the largest clique
(factor) in G.




Initial Conclusions

. We cannot escape exponential costs in the treewidth.

. But in many graphs the treewidth is much smaller than the
total number of variables

. Still a problem: Finding the optimal decomposition is hard
- But, paying the cost up front may be worth it.
- Triangulate once, query many times.

- Real cost savings if not a bounded one.

Conditioning
. Up until now we have ignored some independences

. Assume the Student network from Koller and Friedman

P(J)= > P(C=c¢,D=d,1=i,G=g,S=s,L=1,J)

c,d,i,g,s,l
= D PU=DP(C=c¢,D=d,G=g,S=s,L=1,J]1=i)
c,d,i,g,s,l

=Y P(I=i) ) P(C=¢,D=d,G=g,S=s,L=1,J|I=i)

c,d,g,s,l

=> P =P |I=i)




Conditioning

Concept:
- Fix some variable I s.t. [=i and remove it from the graph.
- Recalculate neighboring probabilities.

- Execute VE with the reduced graph.

*We need to do a separate inference for
every value i of I

*But the structure of the network is much
simpler

Conditioning

General conditioning works for sets of variables.

Assume:

? . &
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Conditioning conclusions

. Conditioning on some variables may simplify the
structure of the remaining network

— The network may break into small pieces.

. Variable elimination may be easier to perform on the
new network




