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Basic messages

● Variable Elimination is not determininistic.
● The order of elimination governs the overall 

efficiency.  
● Finding an optimal ordering is difficult.
● While different methodologies exist they are all 

functionally identical.
● The cost of any ordering is exponential in the 

number of variables that appear in the largest 
factor.

Factor-Based Elimination.
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FBE: Trace
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Factor-based elimination
● Ordering Ω:

– A permutation of variables for elimination.  

● Factor Φ(X,Y) ℜ:
– A function mapping some set of variables to a real 

value.

● scope[Φ]: 
– The set of variables represented in the factor.  

● width[Ω] : 
– The scope of the largest factor produced by Ω.

FBE: Steps

• FBE consists of a series of elimination steps.

• Each step is as follows:
– Select a variable X from the set of variables remaining.
– Multiply all factors τ where  X ∈scope[τ] to produce a 

new factor ψ. 
– Sum X out of ψ to produce a new factor τ whose scope is 
ψ minus X.

• Repeat until a single factor τ(Y) remains where Y is 
the target variable of our inference.
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Complexity

• The complexity of each elimination step is:
– Where: 

• The complexity of the algorithm for a given ordering 
Ω is:
– Where: 

• n is the initial number of factors in the graph.
• .  

|)(|

...1

ii

ki

scopeN
i

ψ

φφψ

=

××=

)( iikNO

][max Ω= widthN

)( maxnNO

FBE: Trace



7

FBE: Trace.
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FBE: Trace.
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Moral Graphs

Moral-graph H[G]: of a bayesian network over X is an 
undirected graph over X that contains an edge between x 
and y if:

There exists a directed edge between them in G.

They are both parents of the same node in G.
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Moral Graphs

Why moralization? 
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Variable Elimination

● The variable elimination algorithm 
is based only on the scope of each 
factor.

● Factors are distilled from the graph 
representation.

● Variable Elimination can therefore 
be viewed as a graph algorithm.  
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VE: Trace (2)
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VE: Trace (4)
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Variable elimination: Induced 
Graph

● Induced Graph G': An 
undirected graph over X 
where y and z are connected if 
they both appear in some 
intermediate elimination factor 
of Ω.  

● Every factor generated during 
Ω appears as a subclique of 
the graph.
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Variable elimination: Induced 
Graph
● Induced Graph G': An 

undirected graph over X 
where y and z are connected if 
they both appear in some 
intermediate elimination factor 
of Ω.  

● Every factor generated during 
Ω appears as a subclique of 
the graph.

● The size of the largest clique 
governs the computation.
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● Tree-Width = best Max Factor-Width -1 = best Max 
Clique-Size -1

● the tree-width defined by transformation of the 
undirected graph to the best factor tree is the same
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Induced Graph to Tree 
Decomposition
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● For each Clique in the induced graph:
– Collapse the clique into a compound factor node 

containing the member variables.
– Draw a link between each pair of nodes that share a 

member variable.  

The Bad News

● Deciding whether or not there exists an ordering 
Ω s.t. Width(Ω) < N is NP-Hard.
– No matter what method is used.  

● At best the inference is still exponential in the 
treewidth of the factor graph
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Chordal graphs and Triangulations

Chordal Graph: an undirected graph G whose minimum 
cycle contains 3 verticies.  
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Chordal. Not Chordal.

Triangulation
● The process of converting a graph G into a chordal

graph is called Triangulation. 

● The induced graph is:
1) Guaranteed to be chordal.
2) Not guaranteed to be optimal.

● There exist exact algorithms for minimal chordal
graphs, and heuristic methods with a guaranteed upper 
bound. 
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Chordal Graphs: Good News
● If the moralized graph of our original network is chordal:

– There exists an elimination ordering that adds no edges.
– The minimal induced width of the graph is the size of the 

largest clique - 1. 
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Chordal Graphs: Bad News
● Given a minimum triangulation for a graph G, we can 

carry out the variable-elimination algorithm in the 
minimum possible time.  

● However, finding the minimal triangulation is NP-Hard.
– Time is exponential in terms of the largest clique 

(factor) in G.
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Initial Conclusions
● We cannot escape exponential costs in the treewidth.

● But in many graphs the treewidth is much smaller than the 
total number of variables 

● Still a problem: Finding the optimal decomposition is hard
– But, paying the cost up front may be worth it.
– Triangulate once, query many times. 
– Real cost savings if not a bounded one.   

Conditioning
● Up until now we have ignored some independences

● Assume the Student network from Koller and Friedman
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Conditioning
Concept:

– Fix some variable I s.t. I=i and remove it from the graph.
– Recalculate neighboring probabilities.
– Execute VE with the reduced graph.

C

D I
G S

L
J

C

D I
G S

L
J •We need to do a separate inference for

every value i of  I
•But the structure of the network is much
simpler

Conditioning
General conditioning works for sets of variables.
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Conditioning conclusions
● Conditioning on some variables may simplify the 

structure of the remaining network
– The network may break into small pieces.

● Variable elimination may be easier to perform on the 
new network 


