CS3710 Advanced Topics in AI, Lecture 6
 Variable Elimination and Conditioning:
 Complexity Forecasts.

Collin Lynch.
collinl@cs.pitt.edu
Milos Hauskrecht milos@cs.pitt.edu

9/19/2005

Outline

- Recap.
. Factor-Based Elimination.
- Moral Graphs and Triangulation.
- Variable Elimination.
- Induced Graph.
- Correspondence with Tree Decomposition.
- Initial Conclusions.
- Conditioning.
- Final Conclusions.

Recap (Problem).

Recap (Variable Elimination)

$$
\begin{aligned}
p(J) & =\sum_{L, S, G, H, l, D, C} \phi(c) \phi(i) \phi(d, c) \phi(g, i, d) \phi(s, i) \phi(l, g) \phi(j, l, s) \phi(h, g, j) \\
& =\sum_{L, S, G, H, I, D} \phi(i) \phi(g, i, d) \phi(s, i) \phi(l, g) \phi(j, l, s) \phi(h, g, j) \sum_{C} \phi(c) \phi(d, c) \\
& =\sum_{L, S, G, H, I, D} \phi(i) \phi(g, i, d) \phi(s, i) \phi(l, g) \phi(j, l, s) \phi(h, g, j) \tau(c)
\end{aligned}
$$

$$
=\sum_{s, I} \phi(j, l, s) \sum_{G} \phi(l, g) \tau(s, g) \tau(g, j)
$$

$$
=\sum_{s, I} \phi(j, l, s) \tau(l, s, j)
$$

$$
=\sum_{I} \tau(l, j)
$$

$=\tau(j)$

Basic messages

- Variable Elimination is not determininistic.
- The order of elimination governs the overall efficiency.
- Finding an optimal ordering is difficult.
- While different methodologies exist they are all functionally identical.
- The cost of any ordering is exponential in the number of variables that appear in the largest factor.

$$
\begin{aligned}
& \text { Factor-Based Elimination. } \\
& p(J)=\sum_{L, S, G, H, l, D, C} \phi(c) \phi(i) \phi(d, c) \phi(g, i, d) \phi(s, i) \phi(l, g) \phi(j, l, s) \phi(h, g, j) \\
&=\sum_{L, S, G, H, I, D} \phi(i) \phi(g, i, d) \phi(s, i) \phi(l, g) \phi(j, l, s) \phi(h, g, j) \sum_{C} \phi(c) \phi(d, c) \\
&=\sum_{L, S, G, H, I, D} \phi(i) \phi(g, i, d) \phi(s, i) \phi(l, g) \phi(j, l, s) \phi(h, g, j) \tau(c) \\
& \ldots \\
&=\sum_{S, I} \phi(j, l, s) \sum_{G} \phi(l, g) \tau(s, g) \tau(g, j) \\
&=\sum_{S, I} \phi(j, l, s) \tau(l, s, j) \\
&=\sum_{I} \tau(l, j) \\
&=\tau(j)
\end{aligned}
$$

FBE: Trace

Step	Var	Factors Used	New Factor
1	C	$\phi_{c}(C), \phi_{D}(D, C)$	$\tau_{1}(D)$
2	D	$\phi_{G}(G, I, D), \tau_{1}(D)$	$\tau_{2}(G, I)$
3	I	$\phi_{I}(I), \phi_{S}(S, I), \tau_{2}(G, I)$	$\tau_{3}(G, S)$
4	H	$\phi_{H}(H, G, J)$	$\tau_{4}(G, J)$
5	G	$\tau_{4}(G, J), \tau_{3}(G, S), \phi_{L}(L, G)$	$\tau_{5}(J, L, S)$
6	S	$\tau_{5}(J, L, S), \phi_{J}(J, L, S)$	$\tau_{6}(J, L)$
7	L	$\tau_{6}(J, L)$	$\tau_{7}(J)$

FBE: Trace

Step	Var	Factors Used	New Factor	Complexity
1	C	$\phi_{C}(C) \phi_{D}(D, C)$	$\tau_{1}(D)$	2
2	D	$\phi_{G}(G, I, D) \tau_{1}(D)$	$\tau_{2}(G, I)$	3
3	I	$\phi_{I}(I) \phi_{S}(S, I) \tau_{2}(G, I)$	$\tau_{3}(G, S)$	3
4	H	$\phi_{H}(H, G, J)$	$\tau_{4}(G, J)$	3
5	G	$\tau_{4}(G, J) \tau_{3}(G, S) \phi_{L}(L, G)$	$\tau_{5}(J, L, S)$	4
6	S	$\tau_{5}(J, L, S) \phi_{J}(J, L, S)$	$\tau_{6}(J, L)$	3
7	L	$\tau_{6}(J, L)$	$\tau_{7}(J)$	2

Factor-based elimination

- Ordering Ω :
- A permutation of variables for elimination.
. Factor $\boldsymbol{\Phi}(X, Y) \rightarrow \mathfrak{R}$:
- A function mapping some set of variables to a real value.
- scope[Ф]:
- The set of variables represented in the factor.
- width[Ω] :
- The scope of the largest factor produced by Ω.

FBE: Steps

- FBE consists of a series of elimination steps.
- Each step is as follows:
- Select a variable X from the set of variables remaining.
- Multiply all factors τ where $\mathrm{X} \in \operatorname{scope}[\tau]$ to produce a new factor ψ.
- Sum X out of ψ to produce a new factor τ whose scope is ψ minus X .
- Repeat until a single factor $\tau(\mathrm{Y})$ remains where Y is the target variable of our inference.

Complexity

- The complexity of each elimination step is: $O\left(N_{i} k_{i}\right)$
- Where:

$$
\begin{aligned}
& \psi_{i}=\phi_{1} \times \ldots \times \phi_{k_{i}} \\
& N_{i}=\left|\operatorname{scope}\left(\psi_{i}\right)\right|
\end{aligned}
$$

- The complexity of the algorithm for a given ordering $\boldsymbol{\Omega}$ is: $O\left(n N_{\max }\right)$
- Where:
- n is the initial number of factors in the graph.
- $N_{\max }=$ width $[\Omega]$.

FBE: Trace

Step	Var	Factors Used	New Factor
1	C	$\phi_{c}(C), \phi_{D}(D, C)$	$\tau_{1}(D)$
2	D	$\phi_{G}(G, I, D), \tau_{1}(D)$	$\tau_{2}(G, I)$
3	I	$\phi_{I}(I), \phi_{S}(S, I), \tau_{2}(G, I)$	$\tau_{3}(G, S)$
4	H	$\phi_{H}(H, G, J)$	$\tau_{4}(G, J)$
5	G	$\tau_{4}(G, J), \tau_{3}(G, S), \phi_{L}(L, G)$	$\tau_{5}(J, L, S)$
6	S	$\tau_{5}(J, L, S), \phi_{J}(J, L, S)$	$\tau_{6}(J, L)$
7	L	$\tau_{6}(J, L)$	$\tau_{7}(J)$

FBE: Trace.

Step	Var	Factors Used	New Factor	Complexity
1	C	$\phi_{C}(C) \phi_{D}(D, C)$	$\tau_{1}(D)$	2
2	D	$\phi_{G}(G, I, D) \tau_{1}(D)$	$\tau_{2}(G, I)$	3
3	I	$\phi_{I}(I) \phi_{S}(S, I) \tau_{2}(G, I)$	$\tau_{3}(G, S)$	3
4	H	$\phi_{H}(H, G, J)$	$\tau_{4}(G, J)$	3
5	G	$\tau_{4}(G, J) \tau_{3}(G, S) \phi_{L}(L, G)$	$\tau_{5}(J, L, S)$	4
6	S	$\tau_{5}(J, L, S) \phi_{J}(J, L, S)$	$\tau_{6}(J, L)$	3
7	L	$\tau_{6}(J, L)$	$\tau_{7}(J)$	2

Total cost: width $[\Omega]=4$

$$
O\left(n N_{\max }\right)=O(8 \times 4)=O(32)
$$

Ordering 2

Step	Var	Factors Used	New Factor
1	G	$\phi_{G}(G, I, D), \phi_{L}(L, G) \phi_{H}(H, G, J)$	$\tau_{1}(I, D, L, J, H)$
2	I	$\phi_{I}(I), \phi_{S}(S, I) \tau_{1}(I, D, L, J, H)$	$\tau_{2}(D, L, S, J, H)$
3	S	$\phi_{J}(J, L, S), \tau_{2}(D, L, S, J, H)$	$\tau_{3}(D, L, J, H)$
4	L	$\tau_{3}(D, L, J, H)$	$\tau_{4}(D, J, H)$
5	H	$\tau_{4}(D, J, H)$	$\tau_{5}(D, J)$
6	C	$\tau_{5}(D, J), \phi_{D}(D, C)$	$\tau_{6}(D, J)$
7	D	$\tau_{6}(D, J)$	$\tau_{7}(J)$

FBE: Trace.

Step	Var	Factors Used	New Factor	Complexity
1	C	$\phi_{G}(G, I, D) \phi_{L}(L, G) \phi_{H}(H, G, J)$	$\tau_{1}(I, D, L J, H)$	6
2	D	$\phi_{I}(I) \phi_{S}(S, I) \tau_{1}(I, D, L, J, H)$	$\tau_{2}(D, L, S, J, H)$	6
3	I	$\phi_{J}(J, L, S) \tau_{2}(D, L, S, J, H)$	$\tau_{3}(D, L, J, H)$	5
4	H	$\tau_{3}(D, L, J, H)$	$\tau_{4}(D, J, H)$	4
5	G	$\tau_{4}(D, J, H)$	$\tau_{5}(D, J)$	3
6	S	$\tau_{5}(D, J) \phi_{D}(D, C)$	$\tau_{6}(D, J)$	3
7	L	$\tau_{6}(D, J)$	$\tau_{7}(J)$	2

Total cost: width $[\Omega]=6$

$$
O\left(n N_{\max }\right)=O(8 \times 6)=O(48)
$$

Optimal Permutation.

Optimal Ordering Ω ':

$$
\Omega^{\prime} \text { s.t. } \forall \Omega^{\prime}: \text { width }\left[\Omega^{\prime}\right]<\text { width }[\Omega]
$$

Note:

- The optimal ordering is not guaranteed to be unique.
- Nor is is guaranteed to be less than: $O\left(n N_{\max }\right)$

Moral Graphs

Moral-graph H[G]: of a bayesian network over X is an undirected graph over X that contains an edge between x and y if:

- There exists a directed edge between them in G.
- They are both parents of the same node in G.

Moral Graphs

Why moralization?

$$
\begin{aligned}
& P(C, D, G, I, S, L, J, H)= \\
& \quad=P(C) P(D \mid C) P(G \mid I, D) P(S \mid I) P(L \mid G) P(J \mid L, S) P(H \mid G, J) \\
& \quad=\phi_{1}(C) \phi_{2}(D, C) \phi_{3}(G, I, D) \phi_{4}(S, I) \phi_{5}(L, G) \phi_{6}(J, L, S) \phi_{7}(H, G, J)
\end{aligned}
$$

Variable Elimination

 is based only on the scope of each factor.

- Factors are distilled from the graph representation.
- Variable Elimination can therefore be viewed as a graph algorithm.

VE: Trace (1)

(1)

a) Multiply the factors to produce: $\phi(D, C)=\phi(D) \times \phi(C)$
b) Sum over C to produce:
$\tau(D)=\sum_{C} \phi(D, C)$
(2)

a) Multiply the factors to produce:

$$
\phi(D, I, G)=\phi(G, I, D) \times \tau_{1}(D)
$$

b) Sum over D to produce:

$$
\tau_{2}(G, I)=\sum_{D} \phi(D, I, G)
$$

VE: Trace (2)

(3)

a) Multiply the factors to produce:

$$
\phi(I, G, S)=\phi(I) \times \phi(S, I) \times \tau_{2}(G, I)
$$

b) Sum over I to produce:
$\tau_{3}(G, S)=\sum_{I} \phi(I, G, S)$
(4)

a) Multiply the factors to produce:

$$
\phi(H, G, J)=\phi(H, G, J)
$$

b) Sum over I to produce:

$$
\tau_{4}(G, J)=\sum_{H} \phi(H, G, J)
$$

VE: Trace (3)

(5)

a) Multiply the factors to produce: $\phi(G, J, L, S)=\tau_{4}(G, J) \times \tau_{3}(G, S) \times \phi(L, G)$
b) Sum over I to produce:

$$
\tau_{5}(J, L, S)=\sum_{G} \phi(G, J, L, S)
$$

(6)

a) Multiply the factors to produce: $\phi(J, L, S)=\tau_{5}(J, L, S) \times \phi(J, L, S)$
b) Sum over I to produce:

$$
\tau_{6}(J, L)=\sum_{S} \phi(J, L, S)
$$

VE: Trace (4)

(5)

a) Multiply the factors to produce:

$$
\phi(J, L)=\tau_{6}(J, L)
$$

b) Sum over I to produce:

$$
\tau_{7}(J)=\sum_{L} \phi(J, L)
$$

Variable elimination: Induced Graph

- Induced Graph G^{\prime} : An undirected graph over X where y and z are connected if they both appear in some intermediate elimination factor of Ω.
- Every factor generated during Ω appears as a subclique of the graph.

Variable elimination: Induced Graph

- Induced Graph G^{\prime} : An undirected graph over X where y and z are connected if they both appear in some intermediate elimination factor of Ω.
- Every factor generated during Ω appears as a subclique of the graph.
- The size of the largest clique governs the computation.

- Tree-Width $=$ best Max Factor-Width $-1=$ best Max Clique-Size - 1
- the tree-width defined by transformation of the undirected graph to the best factor tree is the same

Induced Graph to Tree Decomposition

- For each Clique in the induced graph:
- Collapse the clique into a compound factor node containing the member variables.
- Draw a link between each pair of nodes that share a member variable.

The Bad News

- Deciding whether or not there exists an ordering Ω s.t. Width $(\Omega)<N$ is NP-Hard.
- No matter what method is used.
- At best the inference is still exponential in the treewidth of the factor graph

Chordal graphs and Triangulations

Chordal Graph: an undirected graph G whose minimum cycle contains 3 verticies.

Chordal.

Not Chordal.

Triangulation

- The process of converting a graph G into a chordal graph is called Triangulation.
- The induced graph is:

1) Guaranteed to be chordal.
2) Not guaranteed to be optimal.

- There exist exact algorithms for minimal chordal graphs, and heuristic methods with a guaranteed upper bound.

Chordal Graphs: Good News

- If the moralized graph of our original network is chordal:
- There exists an elimination ordering that adds no edges.
- The minimal induced width of the graph is the size of the largest clique - 1 .

Chordal Graphs: Bad News

- Given a minimum triangulation for a graph G, we can carry out the variable-elimination algorithm in the minimum possible time.
- However, finding the minimal triangulation is NP-Hard.
- Time is exponential in terms of the largest clique (factor) in G.

Initial Conclusions

- We cannot escape exponential costs in the treewidth.
- But in many graphs the treewidth is much smaller than the total number of variables
- Still a problem: Finding the optimal decomposition is hard
- But, paying the cost up front may be worth it.
- Triangulate once, query many times.
- Real cost savings if not a bounded one.

Conditioning

- Up until now we have ignored some independences
- Assume the Student network from Koller and Friedman

$$
\begin{aligned}
P(J) & =\sum_{c, d, i, g, s, l} P(C=c, D=d, I=i, G=g, S=s, L=l, J) \\
& =\sum_{c, d, i, g, s, l} P(I=i) P(C=c, D=d, G=g, S=s, L=l, J \mid I=i) \\
& =\sum_{i} P(I=i) \sum_{c, d, g, s, l} P(C=c, D=d, G=g, S=s, L=l, J \mid I=i) \\
& =\sum_{i} P(I=i) P(J \mid I=i)
\end{aligned}
$$

Conditioning

Concept:

- Fix some variable I s.t. I=i and remove it from the graph.
- Recalculate neighboring probabilities.
- Execute VE with the reduced graph.

-We need to do a separate inference for every value i of I
-But the structure of the network is much simpler

Conditioning

General conditioning works for sets of variables.
Assume:

Conditioning conclusions

- Conditioning on some variables may simplify the structure of the remaining network
- The network may break into small pieces.
- Variable elimination may be easier to perform on the new network

