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Overview

= |-MAPs

= d-separation (d-connection)

= |-equivalence

= P VMAP and equivalence classes




Independences

Distribution: a set of probabilities of a random
variables representing our view of the world

We use graphs to help us visualize the
dependences and independences between
these variables.
Independences allow us to factor out variables
= Ex: P(X, Y)=P(X)*P(Y) if (XLY)
= | ocal probability tables become smaller

POINT:
Independences = Smaller Tables = GOOD!

Independences in BBN (2)

Graph: DAG where nodes represent random
variables and edges (missing edges) represent
dependences (independences)

A BBN is a graph G andi a set of local conditional
probability distributions (CPDs)
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Independences in BBN (3)

= | ocal Markov assumption:

= For each variable X;, given its parents, Pa[X],
all non-descendants of X; are independent of
X

= Notation: (X; L NenDescendants[Xi| | Pa[X])
= Conseguence: only need local probability
distributions to; represent the full joint

= \We can recover the full' joint distribution
whenever we want

Independences in BBN (4)

= A specific graph (structure) defines a class
of probability distributions that obey certain
Independence assumptions
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Independence Assertions

= Given distribution P. Let I(P) be the set of
independence relations of the form
XLY|[2)
that hold in P.
= Similarly, given graph G, let I(G) be the set
of iIndependence assertions, that are
expressed in graph G.




Independence Assertions (2)

= |(G) and I(P) may be disjoint...

o

= QOverlap...

= Or be subsets of each other. ..

I-MAPs

= BN structure G is an I-MAP (independence
mapping) of P if I(G) < I(P)

= Note: complete graphs are always, I-MAPs

= Since all nodes are connected, there are no
independences

7 I(GCompIete) = < I(P)




Factorization

= Distribution P over X is said to factorize according
to G if P can be expressed as a product of each
variable’s probability, given its parents’ values...

P(X1 Xn) =11 P(Xi | Pa[Xi])
= This is the chain rule for BNs

= G is an |-map for P if and only if P factorizes
according to G.

= A BNis a pair (G, P)where P factorizes according
tol G, and where P is specified as aiset of CPDs
associated with G’s nodes.
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D-separation

= A graphical criterion used to identify.
independences (marginal or conditional)
that hold'in the BBN graph

Active Trails

= Active trails can occur along a few
different paths between nodes...
= Direct connection
B X—>Y or X<-Y
= |ndirect causal / evidential effect
B X—>Z—>Y or X<—Z<Y without Z
= Common cause
B X<Z—>Y without Z

= Common effect (also called a v-structure)
= X—>Z<Y given Z ox any. ofi itsidescendants




Active Trails (2)
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Active Trails (3)

" Common cause
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Active Trails (4)

= Common effect (cont.)
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d-separation

= Two nodes in a BN are d-separated if there is no
active trail' between them

= |f two nodes X and Y in G are d-separated
(given Z), then they: are conditionally
independent in all distributions that factorize
over G

= |f'two noedes X and Y in G are not d-separated
(given Z), then X and'Y are dependent in sorme
distribution| P that factorizes over G




Direct Connection

Obviously, Alarm will always

depend on the value of Burglary

Indirect Effect

= Q: Assume we know. that the
alarm has gone off. Mary then
calls. Does this affect our belief in
a burglary?

= A: No, it shouldn’t. Mary: calling
gives us no new information.
Hence, Burglary and Mary Calls
are conditionally’ independent.




Common Cause

= Q: Assume we know that the alarm
has gone off. John then calls.
Does this affect our belief in Mary
calling?
A: No, it shouldn’t. Since we
already know: the alarm has gone
off, our belief in Mary calling is
based strictly on'whether we
believe Mary is paying| attention.
Hence, Many calling and' John
calling are independent.

Common Effect (v-structure)

= Q: Assume we know:that the alarm
w has gone off (or we suspect because
a friend called us). This obviously.
\ has an effect on our belief in
burglary. We then find out that an
earthquake has occurred at our

house. Does this affect our belief in
a burglary occurring?

= A:Yes, it does. The alarm going ofif
increases our beliefin a burglany.
BUT, ence we know! the eanthguake
has occurred, we then “explain
away” the alarm, and our beliefin a
burglary drops doewniagain. Hence,
Burglary and Earthguake are
dependent upon each other.




Common Effect (v-structure)

= Q: Now assume we know: that

w we do not know: whether the
\ alarm has gone off or not. We
then find out that an
earthquake has occurred at
our house. Does this affect
our belief in a burglary.
occurring?

= A: No, it shouldn’t. A burglary

and an earthguake should be
independent events.

Alarm

Testing for d-separation

How. can we test for d-separation?

Enumerate over all paths.
= Bad idea... number of paths is.exponential in size of the graph.

Better strategy: Two step sweep
= Step 1: Begin at leaves. Traverse graph bottom up, marking all
nodes inievidence E or that have descendents: in E.
= Step 2: Begin at source node X. Traverse graph iniBES
fashion, stopping at a node Niifi
= Nis the “middle” of a v-structure and is;unmarked
= N is not the “middle™ ofi a v-structure and is/in E

Tihis strategy has a running time linear ini the size of the
graph
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l-equivalence

= Two BN graphs G, and G, over X are |-
equivalent it I(G,) = I(G;)

= The set of all graphs over X is partitioned
into a set of mutually exclusive and
exhaustive |-equivalence classes.




I-equivalence (2)

= How do we test |-equivalence?

= Skeleton

= Undirected version of a BN G that has an
edge {X,Y] for each directed edge (X,Y) in G.
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I-equivalence (3)

= | G, and G, have the same skeleton and
v-structures, then they are I-equivalent

= Reverse is not necessarily true!

= All complete graphs are I-equivalent, but they.
do not necessarily have the same skeleton or
V-structures.




I-equivalence (4)

= Jmmorality

= A v-structure X — Z < Y is an immorality: if
there is no direct edge between X and Y.

= G, and G, have the same skeleton and
immoralities if and only. if they are I-equivalent

v-structure v-structure and immorality

Overview

= Distributions, graphs, and independences
= |-MAPs

® d-separation (d-connection)

= |-equivalence




P-MAP

= \We want to go from a distribution to a
graph. How can we do this?

= Minimal I-MAP.
= [-MAP G for P is a minimal I-MAP: if the
removal of a single edge results in G no
longer being an I-MAP

= Not necessarily'a good candidate for
capturing independences of a distribution

P-MAP. (2)

= P-MAP (or perfect map) G for distribution P has
the property I(G) = I(P)
= Not all distributions have a P-MAP
= Ex: X xorY xor Z
. c?tir\w/:P no evidence, all variables are independent of each

= Given any: single variable, the other two become dependent
on each other

= Einding alP-MAP, or, moere useful, an
equivalence class of P-MAPs, is no more difficult
than finding| ai skeleton and the immoralities of a
P-MAP.




